
Databases

1

2

Three Tier Architecture

3

RDBMS

• Relational Database Management Systems

• A way of saving and accessing data on persistent (disk)
storage.

4

Why Use an RDBMS

• Data Safety
– data is immune to program crashes

• Concurrent Access
– atomic updates via transactions

• Fault Tolerance
– replicated dbs for instant fail-over on machine/disk crashes

• Data Integrity
– aids to keep data meaningful

• Scalability
– can handle small/large quantities of data in a uniform manner

• Reporting
– easy to write SQL programs to generate arbitrary reports

estore

5

6

RDBMS Technology
• Client/Server Databases

– Oracle, Sybase, MySQL, SQLServer

• Personal Databases
– Access

• Embedded Databases
– SQLite

7

Server
server process

disk i/o

Client/Server Databases

client client
client processes

tcp/ip connections

8

client
application

code

Inside the Client Process

tcp/ip
connection
to server

db library

API

9

MySQL Python Connector
• Standard SQL database access interface.
• Allows a Python program to issue SQL statements and

process the results.
• Defines classes to represent constructs such as database

connections, SQL statements, result sets, and database
metadata.

10

API: Connection
import mysql.connector

db_config = { 'user': ’ece1779',
'password': ’some_password',
'host': '127.0.0.1',
'database’: estore'}

db = mysql.connector.connect(user=db_config['user'],
password=db_config['password'],
host=db_config['host'],
database=db_config['database'])

db.close()

11

API: Executing Queries

• A query can return many rows, each with many attributes
• Steps are

1 Send query to the database
cursor = cnx.cursor()
query = 'SELECT * FROM customer'
cursor.execute(query)

2 Retrieve one row at a time
3 For each row, retrieve attributes

for row in cursor:
print(row[0])

12

Trivial Example

trivial.py

13

trivial.html

14

CRUD Design Pattern

• Common design pattern for single table data manipulation
• Create, Read, Update, Delete (CRUD)

15

URL Verb Purpose

/courses/ GET Display a list of courses.

/courses/[id] GET Display details about a specific course.

/courses/edit/[id] GET Display editable form populated with course data.
POST Save the form changes for a particular course.

/courses/create GET Display an empty HTML form that allows users to
define a new course.

POST Create a new Course and save it.

/courses/delete/[id] POST Deletes the specified course

16

Transactions
• Definition: A transaction is a collection of DB modifications, which is

treated as an atomic DB operation.
– Transactions ensure that a collection of updates leaves the database in a

consistent state (as defined by the application program); all updates take
place or none do.

– A sequence of read and write operations, terminated by a commit or abort

• Definition: Committed
– A transaction that has completed successfully; once committed, a transaction

cannot be undone
• Definition: Aborted

– A transaction that did not complete normally
• Python Connector: By default in transactional mode: auto commit has

been disabled, the method commit must be called explicitly; otherwise,
database changes will not be saved.

17

Example: Buy a Product

• Definition: A transaction is a collection of DB modifications, which is
treated as an atomic DB operation.

– Transactions ensure that a collection of updates leaves the database in a
consistent state (as defined by the application program); all updates take

Steps:

– Query product for availability
– If quantity > 0

• Insert an entry into customer_has_product

• Update entry in product
– Else

• Fail

