Virtualization

Based on materials from:

Introduction to Virtual Machines by Carl Waldspurger

Understanding Intel® Virtualization Technology (VT) by N. B. Sahgal and D. Rodgers

Intel Virtualization Technology Roadmap and VT-d Support in Xen by Jun Nakajima

A Performance Comparison of Container-based Virtualization Systems for MapReduce
Clusters by M. G. Xavier, M. V. Neves, and C.A.F. De Rose

Starting Point: A Physical Machine

® Physical Hardware
* Processors, memory, chipset, I/O
devices, etc.

« Resources often grossly
underutilized

Application

Operating System = Software

« Tightly coupled to physical
hardware

« Single active OS instance

* OS controls hardware

What is a Virtual Machine?

Virtualization Properties

S = Software Abstraction
App || App || App « Behaves like hardware

« Encapsulates all OS and
application state

A § = Virtualization Layer
— « Extra level of indirection
« Decouples hardware, OS

Operating System Operating System

« Enforces isolation

« Multiplexes physical hardware
across VMs

= Isolation
« Fault isolation
« Performance isolation
® Encapsulation
« Cleanly capture all VM state
« Enables VM snapshots, clones
= Portability
 Independent of physical hardware
« Enables migration of live, running VMs
® Interposition
« Transformations on instructions, memory, /0

« Enables transparent resource overcommitment,
encryption, compression, replication ...

Virtualization Applications

Types of Virtualization

= Server consolidation

= Data center management

= Desktop management

= Development, test and deployment
= Application and OS flexibility

= Fast, automated recovery

= Fault tolerance

® Process Virtualization
¢ Language-level Java, .NET, Smalltalk
* OS-level processes, Solaris Zones, BSD Jails, Docker Containers
¢ Cross-ISA emulation Apple 68K-PPC-x86

System Virtualization
* VMware Workstation, Microsoft VPC, Parallels
* VMware ESX, Xen, Microsoft Hyper-V @

Runtime

NI RO AN
Process
05 > vitual

Hardvare

Host

(@

Applications Applications

03

System
viriual
machine

Types of Virtualization What is a Virtual Machine Monitor?

= Native/Bare metal (Type 1)
« Higher performance
« ESX, Xen, HyperV, KVM

® Hosted (Type 2)
« Easier to install

= Classic Definition (Popek and Goldberg '74)

A virtual machine is taken to be an efficient, iso-
lated duplicate of the real machine. We explain these
notions through the idea of a virtual machine monitor
(vmm). See Figure 1. As a piece of software a vMM has
three essential characteristics. First, the vMM provides
an environment for programs which is essentially iden-
tical with the original machine; second, programs run
in this environment show at worst only minor decreases
in speed; and last, the vMM is in complete control of
system resources.

®= VMM Properties

< Equivalent execution: Programs running in the virtualized environment run
identically to running natively.

« Leverage host’s device drivers
* VMware Workstation, Parallels

« Performance: A statistically dominant subset of the instructions must be
executed directly on the CPU.

« Safety and isolation: A VMM most completely control system resources.

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/

What Needs to Virtualized Virtualized? Processor Virtualization

= Processor

= Memory An architecture is classically/strictly virtualizable if all its sensitive
.10 instructions (those that violate safety and encapsulation) are a
G 10S + licati o subset of the privileged instructions.
EES App pCations Y = all instructions either trap or execute identically
()
A § = instructions that access privileged state trap
V g
c
=2
...........{ Page [mmmma{Undef [snnuny” T
T
()
o
2
<
o
Virtual Machine Monitor

Trap and Emulate x86 Virtualization Challenges
® Run guest operating system deprivileged = Not Classically Virtualizable
= All privileged instructions trap into VMM « x86 ISA includes instructions that read or modify privileged state
= VMM emulates instructions against virtual state + But which don't trap in unprivileged mode
e.g. disable virtual interrupts, not physical interrupts = Example: POPF instruction
= Resume direct execution from next guest instruction « Pop top-of-stack into EFLAGS register

« EFLAGS.IF bit privileged (interrupt enable flag)
« POPF silently ignores attempts to alter EFLAGS.IF in unprivileged mode!
« So no trap to return control to VMM

= Deprivileging not possible with x86!

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/

11 12

x86 Virtualization Approaches

= Binary translation
= Para virtualization

= HW support

Processor Paravirtualization

® Make OS aware of virtualization

®= Present to OS software interface that is similar, but not identical to
underlying hardware

* Replace dangerous system calls with calls to VMM
« Page table updates

® Advantages: High performance
* Disadvantages: Requires porting OS

* Examples: Xen

13

14

HW Support

= Intel VT-x

« Codenamed "Vanderpool"

« Available since Itanium 2 (2005), Xeon and Centrino (2006)
= AMD-V

* Codename “Pacifica”

« Available since Athlon 64 (2006)

Intel VT-x

® VT extends the original x86 architecture to eliminate holes that
make virtualization hard.

Ring 0
Control Aops Ring 3
Operating
s

ystom
M vm

[Hypervisor » Ring -1

15

16

Operating Modes

= VMX root operation:
« Fully privileged, intended for VM monitor

= VMX non-root operation:
« Not fully privileged, intended for guest software
« Reduces Guest SW privilege w/o relying on rings
« Solution to Ring Aliasing and Ring Compression

VM Entry and VM Exit

= VM Entry
¢ Transition from VMM to Guest

* Enters VMX non-root operation
Loads Guest state and Exit criteria from VMCS

¢ VMLAUNCH instruction used on initial entry VM Exit [VM Entry VM Monitor
VMRESUME instruction used on subsequent entries R e o Hardware

= VM Exit
¢ VMEXIT instruction used on transition from Guest to VMM
* Enters VMX root operation
* Saves Guest state in VMCS
¢ Loads VMM state from VMCS

= VMM can control which instructions cause VM exists
* CR3 accesses, INVLPG

17

18

Benefits: VT Helps Improve VMMs

® VT Reduces guest OS dependency
« Eliminates need for binary patching / translation
« Facilitates support for Legacy OS
= VT improves robustness
« Eliminates need for complex SW techniques
« Simpler and smaller VMMs
« Smaller trusted-computing base
= VT improves performance
* Fewer unwanted Guest <> VMM transitions

x86 Memory Management Primer

® The processor operates with virtual addresses
= Physical memory operates with physical addresses
= x86 includes a hardware translation lookaside buffer (TLB)
« Maps virtual to physical page addresses
= x86 handles TLB misses in HW
« CR3 points to page table root
* HW walks the page tables
« Inserts virtual to physical mapping

= TR

page rot
presert

19

20

Memory Virtualization

Logical

= Native Process 1 Process 2 }
Pages

Physical
Pages

Virtual Machine #1 Virtual Machine #2

[(11 Dy

IS P el

Machine
Pages

o e
:
ituatized (71T (T[]]|(I11]

Memory Virtualization Techniques

= Shadow page tables
= Paravirtualization

= HW supported nested page tables

21

Shadow Page Tables

Keep a second set of page tables hidden from guest

= Map between guest virtual and machine pages

Detect when guest changes page tables
< TLB invalidation requests, page table creation, write to existing page tables

Update shadow page accordingly
® On context switch, install shadow page instead of guest page

Advantages: Can support unmodified guest

Disadvantages: Significant overhead to maintain consistency
= Examples: VMware and Xen HVM

o

Shados Page Tables

23

22

Memory Paravirtualization

Page table maps between virtual and machine addresses

OS and VMM share page tables

OS can only read

Changes to page table require hyper call
* VMM validates that guest owns machine address

Advantages: Higher performance can be achieved by batching
updates

Disadvantages: Requires changes to the OS

= Examples: Xen

24

Hardware Support

Nested page tables

HW keeps a second set of page tables that map from physical to
machine addresses.

On a TLB miss, first find physical address from guest page tables,
then map to machine address

Intel EPT (Extended Page Table)
« Since Corei7 (2008)

AMD RVI (Rapid Virtualization Indexing)
« Since Opteron and Phenom Il (2007)

s
e LB Fill Hardware -
1

v Y GuestPT Pir 9VA—>gPA
Nested PTPIr 2as
s
gPA—>hPA
8P

25

Memory Reclamation

= Balloning: guest driver allocates pinned PPNs, hypervisor
deallocates backing MPNs

= Swapping: hypervisor transparently pages out PPNs, paged in on
demand

= Page sharing: hypervisor identifies identical PPNs based on
content, maps to same MPN copy-on-write

27

Page Sharing
] hashpsgecontents - ppqggear
VM1 VM 2 VM 3
hint frame
Mocror B Hash: ..06af |,
PFN 4308 y
MPN: 123b |~ :‘:ﬁ:

29

Issues with Nested Page Tables

= Positives
« Simplifies monitor design
« No need for page protection calculus
= Negatives
* Guest page table is in physical address space
* Need to walk PhysMap multiple times

* Need physical-to-machine mapping to walk guest page table
* Need physical-to-machine mapping for original virtual address

26

Ballooning

inflate balloon
(+ pressure)

may page out
to virtual disk

Guest OS guest OS manages memory

. \ implicit cooperation

may page in

Guest OS i i
deflate balloon from virtual disk
(— pressure) ®
Page Sharing
VM1 VM 2 VM 3
shared frame
Memory [| Hash: ...06af | ™

Refs: 2
MPN: 1236 | /|| pasn
table

30

1/0 Virtualization

= Emulation
= Paravirtualization (split driver)
® Direct mapped/PCl passthrough

® Hardware support

Emulation

® Guest runs original driver
* VMM emulates HW in SW
® Advantages: Can run unmodified guest

* Disadvantages: Slow

Xen Hypervisor

Hardware

31

10 Paravirtualization

= Slip driver approach

® Privileged domain interact with 10 devices, exports high level
interface as back-end drive

= Guest domain implements front end driver

® Front and back end drivers

Applicaith VM Viewer: VNC, SDL
VMGL

X Server VMGL GL Stub

Commands ~ Vendor
Open GL

Guest Host:

Dom 0

33

Hardware Support

= |OMMU (10 Memory Management Unit)
= Translates memory addresses from “lO space” to “physical space”

® Provides isolation. Limits device’s ability to access machine
memory.

= Intel VT-d
= Core 2 (2008) Main Memory

" AMD-Vi T Physical addresses?
= Six Core Opteron (2010) [JOMMU] [MMU]

{ Device Taddresses Virtual Taddresse‘;

Device CPU

35

32

Direct Mapped/PCI Passthrough

= Allocate a physical device to a specific domain
® Driver runs of guest domain
= Cannot use DMA

* DMA uses physical addresses.

= Breaks isolation

34

Intel VT-d

® Provides infrastructure for I/O virtualization

* DMA and interrupt remapping

North Bridge

C==

PCl, LPC
Legacy

36

VT-d Applied to Pass-through Model

= Direct Device Assignment to Guest OS

® Guest OS directly programs physical

device VM,

= VMM sets up guest- to host-physical
DMA mapping

= PCI-SIG I/O Virtualization Working Group

= Activity towards standardizing
natively sharable I/O devices

= IOV devices provide virtual ;>
interfaces, each independently Assigned
assignable to VMs D‘% 0
= Advantages: High performance and

VM,

Guest OS Guest OS
and Apps and Apps
Device Device
Drivers Drivers

Hypervisor

simple VMM

= Disadvantages: Limits VM migration

37

Operating System-Level Virtualization

« Each container has:
* Own virtual network interface (and IP Address)
* Own filesystem
* Isolation
* Processes in different containers can not see each other
* Allocation of RAM, CPU, I/O

« Examples
* Linux Vserver, OpenVZ, LXC

39

Operating System Level Virtualization

« aka Container-based Virtualization

« Shared operating system

« A group of OS processes in an insolated environment
« Lightweight virtualization layer

Guest Guest
Processes Processes
C——
Guest
& - Guest S Guest 0S
Vitualization Layer Virtuaiization Layer
T ——————

Host 08 Host OS
Hardware [Hardware

38

Hypervisor vs. System-Level Virtualization

0S-Level/Con

Different Kernel OS Single Kernel
Device Emulation Syscall

Limits per machine Limits per process
Higher overhead Lower overhead
More secure Less secure

40

