Virtualization

Based on materials from:

Introduction to Virtual Machines by Carl Waldspurger

Understanding Intel® Virtualization Technology (VT) by N. B. Sahgal and D. Rodgers

Intel Virtualization Technology Roadmap and VT-d Support in Xen by Jun Nakajima

A Performance Comparison of Container-based Virtualization Systems for MapReduce
Clusters by M. G. Xavier, M. V. Neves, and C.A.F. De Rose

Starting Point: A Physical Machine

® Physical Hardware
* Processors, memory, chipset, I/O
devices, etc.

« Resources often grossly
underutilized

Application

Operating System = Software

« Tightly coupled to physical
hardware

« Single active OS instance

* OS controls hardware

What is a Virtual Machine?

Virtualization Properties

S = Software Abstraction
App || App || App « Behaves like hardware

« Encapsulates all OS and
application state

A § = Virtualization Layer
— « Extra level of indirection
« Decouples hardware, OS

Operating System Operating System

« Enforces isolation

« Multiplexes physical hardware
across VMs

= Isolation
« Fault isolation
« Performance isolation
® Encapsulation
« Cleanly capture all VM state
« Enables VM snapshots, clones
= Portability
 Independent of physical hardware
« Enables migration of live, running VMs
® Interposition
« Transformations on instructions, memory, /0

« Enables transparent resource overcommitment,
encryption, compression, replication ...

Virtualization Applications

Types of Virtualization

= Server consolidation

= Data center management

= Desktop management

= Development, test and deployment
= Application and OS flexibility

= Fast, automated recovery

= Fault tolerance

® Process Virtualization
¢ Language-level Java, .NET, Smalltalk
* OS-level processes, Solaris Zones, BSD Jails, Docker Containers
¢ Cross-ISA emulation Apple 68K-PPC-x86

System Virtualization
* VMware Workstation, Microsoft VPC, Parallels
* VMware ESX, Xen, Microsoft Hyper-V @
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Types of Virtualization What is a Virtual Machine Monitor?

= Native/Bare metal (Type 1)
« Higher performance
« ESX, Xen, HyperV, KVM

® Hosted (Type 2)
« Easier to install

= Classic Definition (Popek and Goldberg '74)

A virtual machine is taken to be an efficient, iso-
lated duplicate of the real machine. We explain these
notions through the idea of a virtual machine monitor
(vmm). See Figure 1. As a piece of software a vMM has
three essential characteristics. First, the vMM provides
an environment for programs which is essentially iden-
tical with the original machine; second, programs run
in this environment show at worst only minor decreases
in speed; and last, the vMM is in complete control of
system resources.

®= VMM Properties

< Equivalent execution: Programs running in the virtualized environment run
identically to running natively.

« Leverage host’s device drivers
* VMware Workstation, Parallels

« Performance: A statistically dominant subset of the instructions must be
executed directly on the CPU.

« Safety and isolation: A VMM most completely control system resources.

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/

What Needs to Virtualized Virtualized? Processor Virtualization

= Processor

= Memory An architecture is classically/strictly virtualizable if all its sensitive
.10 instructions (those that violate safety and encapsulation) are a
G 10S + licati o subset of the privileged instructions.
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Virtual Machine Monitor

Trap and Emulate x86 Virtualization Challenges
® Run guest operating system deprivileged = Not Classically Virtualizable
= All privileged instructions trap into VMM « x86 ISA includes instructions that read or modify privileged state
= VMM emulates instructions against virtual state + But which don't trap in unprivileged mode
e.g. disable virtual interrupts, not physical interrupts = Example: POPF instruction
= Resume direct execution from next guest instruction « Pop top-of-stack into EFLAGS register

« EFLAGS.IF bit privileged (interrupt enable flag)
« POPF silently ignores attempts to alter EFLAGS.IF in unprivileged mode!
« So no trap to return control to VMM

= Deprivileging not possible with x86!

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/
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x86 Virtualization Approaches

= Binary translation
= Para virtualization

= HW support

Processor Paravirtualization

® Make OS aware of virtualization

®= Present to OS software interface that is similar, but not identical to
underlying hardware

* Replace dangerous system calls with calls to VMM
« Page table updates

® Advantages: High performance
* Disadvantages: Requires porting OS

* Examples: Xen
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HW Support

= Intel VT-x

« Codenamed "Vanderpool"

« Available since Itanium 2 (2005), Xeon and Centrino (2006)
= AMD-V

* Codename “Pacifica”

« Available since Athlon 64 (2006)

Intel VT-x

® VT extends the original x86 architecture to eliminate holes that
make virtualization hard.
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Operating
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Operating Modes

= VMX root operation:
« Fully privileged, intended for VM monitor

= VMX non-root operation:
« Not fully privileged, intended for guest software
« Reduces Guest SW privilege w/o relying on rings
« Solution to Ring Aliasing and Ring Compression

VM Entry and VM Exit

= VM Entry
¢ Transition from VMM to Guest

* Enters VMX non-root operation
Loads Guest state and Exit criteria from VMCS

¢ VMLAUNCH instruction used on initial entry VM Exit [ VM Entry VM Monitor
VMRESUME instruction used on subsequent entries R e o Hardware

= VM Exit
¢ VMEXIT instruction used on transition from Guest to VMM
* Enters VMX root operation
* Saves Guest state in VMCS
¢ Loads VMM state from VMCS

= VMM can control which instructions cause VM exists
* CR3 accesses, INVLPG
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Benefits: VT Helps Improve VMMs

® VT Reduces guest OS dependency
« Eliminates need for binary patching / translation
« Facilitates support for Legacy OS
= VT improves robustness
« Eliminates need for complex SW techniques
« Simpler and smaller VMMs
« Smaller trusted-computing base
= VT improves performance
* Fewer unwanted Guest <> VMM transitions

x86 Memory Management Primer

® The processor operates with virtual addresses
= Physical memory operates with physical addresses
= x86 includes a hardware translation lookaside buffer (TLB)
« Maps virtual to physical page addresses
= x86 handles TLB misses in HW
« CR3 points to page table root
* HW walks the page tables
« Inserts virtual to physical mapping

= TR

page rot
presert
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Memory Virtualization

Logical
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Memory Virtualization Techniques

= Shadow page tables
= Paravirtualization

= HW supported nested page tables
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Shadow Page Tables

Keep a second set of page tables hidden from guest

= Map between guest virtual and machine pages

Detect when guest changes page tables
< TLB invalidation requests, page table creation, write to existing page tables

Update shadow page accordingly
® On context switch, install shadow page instead of guest page

Advantages: Can support unmodified guest

Disadvantages: Significant overhead to maintain consistency
= Examples: VMware and Xen HVM

o

Shados Page Tables
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Memory Paravirtualization

Page table maps between virtual and machine addresses

OS and VMM share page tables

OS can only read

Changes to page table require hyper call
* VMM validates that guest owns machine address

Advantages: Higher performance can be achieved by batching
updates

Disadvantages: Requires changes to the OS

= Examples: Xen
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Hardware Support

Nested page tables

HW keeps a second set of page tables that map from physical to
machine addresses.

On a TLB miss, first find physical address from guest page tables,
then map to machine address

Intel EPT (Extended Page Table)
« Since Corei7 (2008)

AMD RVI (Rapid Virtualization Indexing)
« Since Opteron and Phenom Il (2007)
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Memory Reclamation

= Balloning: guest driver allocates pinned PPNs, hypervisor
deallocates backing MPNs

= Swapping: hypervisor transparently pages out PPNs, paged in on
demand

= Page sharing: hypervisor identifies identical PPNs based on
content, maps to same MPN copy-on-write
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Issues with Nested Page Tables

= Positives
« Simplifies monitor design
« No need for page protection calculus
= Negatives
* Guest page table is in physical address space
* Need to walk PhysMap multiple times

* Need physical-to-machine mapping to walk guest page table
* Need physical-to-machine mapping for original virtual address

26

Ballooning
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1/0 Virtualization

= Emulation
= Paravirtualization (split driver)
® Direct mapped/PCl passthrough

® Hardware support

Emulation

® Guest runs original driver
* VMM emulates HW in SW
® Advantages: Can run unmodified guest

* Disadvantages: Slow

Xen Hypervisor

Hardware
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10 Paravirtualization

= Slip driver approach

® Privileged domain interact with 10 devices, exports high level
interface as back-end drive

= Guest domain implements front end driver

® Front and back end drivers

Applicaith VM Viewer: VNC, SDL
VMGL

X Server VMGL GL Stub

Commands ~ Vendor
Open GL

Guest Host:

Dom 0
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Hardware Support

= |OMMU (10 Memory Management Unit)
= Translates memory addresses from “lO space” to “physical space”

® Provides isolation. Limits device’s ability to access machine
memory.

= Intel VT-d
= Core 2 (2008) Main Memory

" AMD-Vi T Physical addresses?
= Six Core Opteron (2010) [ JOMMU ] [ MMU ]

{ Device Taddresses Virtual Taddresse‘;

Device CPU
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Direct Mapped/PCI Passthrough

= Allocate a physical device to a specific domain
® Driver runs of guest domain
= Cannot use DMA

* DMA uses physical addresses.

= Breaks isolation
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Intel VT-d

® Provides infrastructure for I/O virtualization

* DMA and interrupt remapping

North Bridge

C==

PCl, LPC
Legacy
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VT-d Applied to Pass-through Model

= Direct Device Assignment to Guest OS

® Guest OS directly programs physical

device VM,

= VMM sets up guest- to host-physical
DMA mapping

= PCI-SIG I/O Virtualization Working Group

= Activity towards standardizing
natively sharable I/O devices

= IOV devices provide virtual ;>
interfaces, each independently Assigned
assignable to VMs D‘% 0
= Advantages: High performance and

VM,

Guest OS Guest OS
and Apps and Apps
Device Device
Drivers Drivers

Hypervisor

simple VMM

= Disadvantages: Limits VM migration
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Operating System-Level Virtualization

« Each container has:
* Own virtual network interface (and IP Address)
* Own filesystem
* Isolation
* Processes in different containers can not see each other
* Allocation of RAM, CPU, I/O

« Examples
* Linux Vserver, OpenVZ, LXC
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Operating System Level Virtualization

« aka Container-based Virtualization

« Shared operating system

« A group of OS processes in an insolated environment
« Lightweight virtualization layer

Guest Guest
Processes Processes
C——
Guest
& - Guest S Guest 0S
Vitualization Layer Virtuaiization Layer
T ——————

Host 08 Host OS
Hardware [ Hardware
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Hypervisor vs. System-Level Virtualization

0S-Level/Con

Different Kernel OS Single Kernel
Device Emulation Syscall

Limits per machine Limits per process
Higher overhead Lower overhead
More secure Less secure
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