
© 2010 VMware Inc. All rights reserved

Virtualization

Based on materials from:
Introduction to Virtual Machines by Carl Waldspurger
Understanding Intel® Virtualization Technology (VT) by N. B. Sahgal and D. Rodgers
Intel Virtualization Technology Roadmap and VT-d Support in Xen by Jun Nakajima
A Performance Comparison of Container-based Virtualization Systems for MapReduce

Clusters by M. G. Xavier, M. V. Neves, and C.A.F. De Rose

2

Starting Point: A Physical Machine

! Physical Hardware
• Processors, memory, chipset, I/O

devices, etc.
• Resources often grossly

underutilized

! Software
• Tightly coupled to physical

hardware
• Single active OS instance
• OS controls hardware

3

What is a Virtual Machine?

! Software Abstraction
• Behaves like hardware
• Encapsulates all OS and

application state

! Virtualization Layer
• Extra level of indirection
• Decouples hardware, OS
• Enforces isolation
• Multiplexes physical hardware

across VMs

4

Virtualization Properties

! Isolation
• Fault isolation
• Performance isolation

! Encapsulation
• Cleanly capture all VM state
• Enables VM snapshots, clones

! Portability
• Independent of physical hardware
• Enables migration of live, running VMs

! Interposition
• Transformations on instructions, memory, I/O

• Enables transparent resource overcommitment,
encryption, compression, replication …

5

Virtualization Applications

! Server consolidation
! Data center management
! Desktop management
! Development, test and deployment
! Application and OS flexibility
! Fast, automated recovery
! Fault tolerance

6

Types of Virtualization

! Process Virtualization
• Language-level Java, .NET, Smalltalk
• OS-level processes, Solaris Zones, BSD Jails, Docker Containers
• Cross-ISA emulation Apple 68K-PPC-x86

! System Virtualization
• VMware Workstation, Microsoft VPC, Parallels
• VMware ESX, Xen, Microsoft Hyper-V

7

Types of Virtualization

! Native/Bare metal (Type 1)
• Higher performance
• ESX, Xen, HyperV, KVM

! Hosted (Type 2)
• Easier to install
• Leverage host’s device drivers

• VMware Workstation, Parallels

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/

8

What is a Virtual Machine Monitor?

! Classic Definition (Popek and Goldberg ’74)

! VMM Properties
• Equivalent execution: Programs running in the virtualized environment run

identically to running natively.
• Performance: A statistically dominant subset of the instructions must be

executed directly on the CPU.
• Safety and isolation: A VMM most completely control system resources.

9

What Needs to Virtualized Virtualized?

Guest OS + Applications

Virtual Machine Monitor

Page
Fault

Undef
Instr

vIRQ

MMU
Emulation

CPU
Emulation

I/O
Emulation

U
np

riv
ile

ge
d

Pr
iv

ile
ge

d

! Processor
! Memory
! IO

10

Processor Virtualization

An architecture is classically/strictly virtualizable if all its sensitive
instructions (those that violate safety and encapsulation) are a
subset of the privileged instructions.
! all instructions either trap or execute identically
! instructions that access privileged state trap

11

Trap and Emulate

! Run guest operating system deprivileged
! All privileged instructions trap into VMM
! VMM emulates instructions against virtual state

e.g. disable virtual interrupts, not physical interrupts
! Resume direct execution from next guest instruction

Attribution: http://itechthoughts.wordpress.com/tag/full-virtualization/

12

x86 Virtualization Challenges

! Not Classically Virtualizable
• x86 ISA includes instructions that read or modify privileged state
• But which don’t trap in unprivileged mode

! Example: POPF instruction
• Pop top-of-stack into EFLAGS register
• EFLAGS.IF bit privileged (interrupt enable flag)

• POPF silently ignores attempts to alter EFLAGS.IF in unprivileged mode!
• So no trap to return control to VMM

! Deprivileging not possible with x86!

13

x86 Virtualization Approaches

! Binary translation
! Para virtualization
! HW support

14

Processor Paravirtualization

! Make OS aware of virtualization
! Present to OS software interface that is similar, but not identical to

underlying hardware
! Replace dangerous system calls with calls to VMM
• Page table updates

! Advantages: High performance
! Disadvantages: Requires porting OS
! Examples: Xen

15

HW Support

! Intel VT-x
• Codenamed "Vanderpool"
• Available since Itanium 2 (2005), Xeon and Centrino (2006)

! AMD-V
• Codename “Pacifica”
• Available since Athlon 64 (2006)

16

Intel VT-x

! VT extends the original x86 architecture to eliminate holes that
make virtualization hard.

17

Operating Modes

! VMX root operation:
• Fully privileged, intended for VM monitor

! VMX non-root operation:
• Not fully privileged, intended for guest software
• Reduces Guest SW privilege w/o relying on rings
• Solution to Ring Aliasing and Ring Compression

18

VM Entry and VM Exit

! VM Entry
• Transition from VMM to Guest
• Enters VMX non-root operation

Loads Guest state and Exit criteria from VMCS
• VMLAUNCH instruction used on initial entry

VMRESUME instruction used on subsequent entries

! VM Exit
• VMEXIT instruction used on transition from Guest to VMM
• Enters VMX root operation
• Saves Guest state in VMCS
• Loads VMM state from VMCS

! VMM can control which instructions cause VM exists
• CR3 accesses, INVLPG

19

Benefits: VT Helps Improve VMMs

! VT Reduces guest OS dependency
• Eliminates need for binary patching / translation
• Facilitates support for Legacy OS

! VT improves robustness
• Eliminates need for complex SW techniques
• Simpler and smaller VMMs

• Smaller trusted-computing base

! VT improves performance
• Fewer unwanted Guest " VMM transitions

20

x86 Memory Management Primer

! The processor operates with virtual addresses
! Physical memory operates with physical addresses
! x86 includes a hardware translation lookaside buffer (TLB)
• Maps virtual to physical page addresses

! x86 handles TLB misses in HW
• CR3 points to page table root
• HW walks the page tables
• Inserts virtual to physical mapping

21

Memory Virtualization

! Native

! Virtualized

22

Memory Virtualization Techniques

! Shadow page tables
! Paravirtualization
! HW supported nested page tables

23

Shadow Page Tables

! Keep a second set of page tables hidden from guest
! Map between guest virtual and machine pages
! Detect when guest changes page tables
• TLB invalidation requests, page table creation, write to existing page tables

! Update shadow page accordingly
! On context switch, install shadow page instead of guest page
! Advantages: Can support unmodified guest
! Disadvantages: Significant overhead to maintain consistency
! Examples: VMware and Xen HVM

24

Memory Paravirtualization

! Page table maps between virtual and machine addresses
! OS and VMM share page tables
! OS can only read
! Changes to page table require hyper call
• VMM validates that guest owns machine address

! Advantages: Higher performance can be achieved by batching
updates

! Disadvantages: Requires changes to the OS
! Examples: Xen

25

Hardware Support

! Nested page tables
! HW keeps a second set of page tables that map from physical to

machine addresses.
! On a TLB miss, first find physical address from guest page tables,

then map to machine address
! Intel EPT (Extended Page Table)
• Since Corei7 (2008)

! AMD RVI (Rapid Virtualization Indexing)
• Since Opteron and Phenom II (2007)

26

Issues with Nested Page Tables

! Positives
• Simplifies monitor design
• No need for page protection calculus

! Negatives
• Guest page table is in physical address space
• Need to walk PhysMap multiple times

• Need physical-to-machine mapping to walk guest page table
• Need physical-to-machine mapping for original virtual address

27

Memory Reclamation

! Balloning: guest driver allocates pinned PPNs, hypervisor
deallocates backing MPNs

! Swapping: hypervisor transparently pages out PPNs, paged in on
demand

! Page sharing: hypervisor identifies identical PPNs based on
content, maps to same MPN copy-on-write

28

Ballooning

29

Page Sharing

30

Page Sharing

31

I/O Virtualization

! Emulation
! Paravirtualization (split driver)
! Direct mapped/PCI passthrough
! Hardware support

32

Emulation

! Guest runs original driver
! VMM emulates HW in SW
! Advantages: Can run unmodified guest
! Disadvantages: Slow

33

IO Paravirtualization

! Slip driver approach
! Privileged domain interact with IO devices, exports high level

interface as back-end drive
! Guest domain implements front end driver
! Front and back end drivers

34

Direct Mapped/PCI Passthrough

! Allocate a physical device to a specific domain
! Driver runs of guest domain
! Cannot use DMA

! DMA uses physical addresses.
! Breaks isolation

35

Hardware Support

! IOMMU (IO Memory Management Unit)
! Translates memory addresses from “IO space” to “physical space”
! Provides isolation. Limits device’s ability to access machine

memory.
! Intel VT-d

! Core 2 (2008)
! AMD-Vi

! Six Core Opteron (2010)

36

Intel VT-d

! Provides infrastructure for I/O virtualization
! DMA and interrupt remapping

37

VT-d Applied to Pass-through Model

! Direct Device Assignment to Guest OS
! Guest OS directly programs physical

device
! VMM sets up guest- to host-physical

DMA mapping
! PCI-SIG I/O Virtualization Working Group

! Activity towards standardizing
natively sharable I/O devices

! IOV devices provide virtual
interfaces, each independently
assignable to VMs

! Advantages: High performance and
simple VMM

! Disadvantages: Limits VM migration

38

Operating System Level Virtualization

• aka Container-based Virtualization
• Shared operating system
• A group of OS processes in an insolated environment
• Lightweight virtualization layer

39

Operating System-Level Virtualization

• Each container has:
• Own virtual network interface (and IP Address)
• Own filesystem
• Isolation

• Processes in different containers can not see each other
• Allocation of RAM, CPU, I/O

• Examples
• Linux Vserver, OpenVZ, LXC

40

Hypervisor vs. System-Level Virtualization

Hypervisor OS-Level/Container
Different Kernel OS Single Kernel
Device Emulation Syscall
Limits per machine Limits per process
Higher overhead Lower overhead
More secure Less secure

