Streaming
&
Apache Storm

Recommended Text:

Storm Applied
Sean T. Allen , Matthew Jankowski, Peter Pathirana
Manning

© 2010 VMware Inc. All rights reserved

Big Data

= Volume

= Velocity
* Data flowing into the system very fast

Stream Processing

= A stream processor acts on an unbounded stream of data instead

of a batch of data points.

= A stream processor is continually ingesting new data (a “stream”).

The need for stream processing usually follows a need for

immediacy in the availability of results.

Operate on a single (or small number of) data point(s) at a time

* Work on multiple data points in parallel

* Sub-second-level latency in between the data being created and the results
being available.

Scenarios:

* financial applications, network monitoring, social network analysis, sentiment
analysis on tweets, etc.

Apache Storm

= Distributed, real-time computational framework that makes
processing unbounded streams of data easy.

= Stream-processing tool
* Runs indefinitely
* Listens to a stream of data
* Does “something” any time it receives data from the stream.

Apache Storm

A time-sensitive trending topics
report is kept up-to-date based on the
contents of each processed tweet. 7

A nightly batch process reads each day's
Real-time tweets from the database and produces
trending a daily topics report that doesn't have the

topics same strict, time-sensitive requirements
as the trending topics report.

Incoming tweets

yTYvaoen

Top daily
Live stream of tweets topics
coming into the system
from an external feed. A Storm
cluster is listening to this feed,
performing two actions on

each tweet.

The contents of each
tweet are persisted to
a database for later
processing.

Storm Concepts

= Topology: a graph of computation where the nodes represent some individual
computations and the edges represent the data being passed between nodes.

= Tuple: A tuple is an ordered list of values, where each value is assigned a
name. Nodes in the topology send data between one another in the form of
tuples.

= Stream: An unbounded sequence of tuples between two nodes in the topology.

Storm Concepts

= Spout: Source of a stream in the topology. Read data from an external
data source and emit tuples into the topology.

= Bolt: Accepts a tuple from its input stream, performs some computation
or transformation—filtering, aggregation, or a join, perhaps—on that
tuple, and then optionally emits a new tuple(s).

With permission from : Tiziano De Matteis, “Introduction to Apache Storm,” https://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258

Application Deployment

= When executed, the topology is deployed as a set of processing entities
over a set of computational resources (typically a cluster). Parallelism is
achieved in Storm by running multiple replicas of the same spout/bolt:

Groupings specify how tuples are routed to the
various replicas

With permission from : Tiziano De Matteis, “Introduction to Apache Storm,” https://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258

Stream Grouping

There are 7 built-in possibilities, the most interesting are:

shuffle grouping: tuples are randomly distributed;

field grouping: the stream is partitioned according to a tuple attribute.
Tuples with the same attribute will be scheduled to the same replica;
all grouping: tuples are replicated to all replicas;

direct grouping: the producer decides the destination replica

global grouping: all the tuples go to the same replica (low. ID).

Users have also the possibility of implementing their own grouping through the
CustomStreamGrouping interface

Example: Heat map

= Goal: Create a geographical map with a heat map overlay
identifying neighborhoods with the most popular bars.

pdition: = — ~ ‘esr Ath y
C reet Court
- > a2 R
ot Father Demo.
St : (
ukes pq
(%) \
. ames Jero0s
v o Pack
ton St ")
n
>
ourtyarn ! =~
or
nh sttan o
cur Ponts Sy
c athi

St

NYU
Athletics
-

. "
b hurc
£ = > b .
B 5%
@ Z o Ko
- ‘f .,(e
N A
" oy =N
o = =t
3 o & 3
~ & % -
i s,
= L / .
raton Manhattan 3
SoHa Village T2 Fagan Park .
. = 5 PO
Yandam g¢ 2 * ’ s b
. ’ >
1% . Sl S A
< (43
. (& 9
(g B s ﬁ e S@ P,
| Street Pool & 2.8y
ie: SPring St (=) =
os @ & 5o -
& % 7

\ = 2 a i,

= Input: Social network check-ins
[time="9:00:07 PM", address="287 Hudson St New York NY 10013"]

T Hudson

b4
o
T3

= Qutput: Time interval with list of coordinates

[time-interval="9:00:00 PM to 9:00:15 PM",

hotzones=List ((40.719908,-72.987277),
(40.72612,-74.001396),

(40.719908,-73.987277))1

Example: Heat map

Collects all the
check-ins coming
from mobile devices
and emits them
in a stream

Converts street
addresses to geo-
coordinates

-

Groups geo-
coordinates into
time intervals

HeatMap
Builder

= “ Ty 5
wess 3 West &4 . B)
. (@] Y - Shwer Counts A @
. £ ~f
M Eather Demo X)
Lguwe 5
b - o y Park
A StLukas py O
(8) ioa
Samex) | winzizn
Wake Pak « Chureh Squave &
s £ 2
g Houscon oy .;P d
o st o~ d
B y &, by -
T Courtpand , 4
= N N
Four Poais by . Hinhstins o/,
branen Marhattan (w0 &5 Lathwe -
Sot Vilage = Fogen Pack Ny
= ~ g
p- 3 K - v Athleics
Vandam 57 = . > ‘ & ” .
- B E S,
Thext o _*‘- _550 ""’q,)
- Stree Pool ¢ AS' &
|!:. Sning st O £
s @ M 3 .
Q o Dy Y
I = _—— o 5

~| Database

A
\ Saves to database
Persistor

Example: Heat map

|'|_ "9:00PM 287 Hudson St"

Each tuple contains Spout that pulls
more than a single — “-\ Checkins incoming check-ins
named value.] off the fire hose.

/l

[time="9:00 PM",address="287 Hudson St"]

. Shuffle
grouping
B . Geocode
_— Lookup

[time="9:00 PM",6 geocode="40.72612 74.001396']:| G'Ob.al
grouping
J
|
. —
Bolts performing / HeatMap
processingon —— Builder
the times and
location data.
.| [time-interval="9:00:00 PM to 9:00:15 PM",
\ hotzones=List ((40.719908,-73.987277), Shuffle
\ (40.72612,-74.001296),
\\ (40.719908,-732.987277))]

grouping
@

Strom Architecture

= Master node: runs the Nimbus, a central job master to which topologies are
submitted . It is in charge of scheduling, job orchestration, communication and

fault tolerance;
Worker nodes: nodes of the cluster in which applications are executed. Each of

them run a Supervisor.

The cluster has a single A cluster can consist of multiple nodes. Each node
master node that runs a represents a physical or virtual machine running whatever
daemon called Nimbus. \ flavor of operating system you have installed for each. —~\

1 /

4] N\
Storm cluster /" /--""‘\
Worker node Worker node] '
Master node '
- Supervisor Supervisor The cluster has
Nimbus multiple worker nodes
Worker Worker Worker Worker that each run a daemon
/ process || process process || process called a Supervisor.
Worker node Worker node //“/ \.
|
/ Supervisor Supervisor Each Supervisor
/ listens for work
/ Worker Worker Worker Worker assigned to its worker
[process || process process || process node by Nimbus and
1 X w starts/stops worker
| - / \ J processes.
\ . .
|
\‘- Nimbus distributes code around ~— [Each worker process is a —
the cluster, assigns tasks to worker JVM that executes the logic in the
nodes, monitors for failures, and spouts and bolts for a topology.

runs the Storm UL

Master and workers coordinate through Zookeper.

Strom Architecture

Three entities are involved in running a topology:

= Worker: 1+ per cluster node, each one is related to one topology;

: . thread spawned by the Worker. It runs one or more tasks for
the same component (bolt or spout);

= Task: a component replica.

r'/ -

J -\\\
! .| Worker node
A worker node
running a JVM.
JVM
[\ JVM / |
Each JVM can be Each executor (thread)
running one or more Thread Thread is executing one or more
executors (threads) tasks (instances of
of execution. Spout Spout Spout a spout/bolt).
or bolt or bolt or bolt

By default there is a 1:1 association between Executor and Tasks
builder.setBolt("split-bolt", new SplitSentenceBolt(),2).setNumTasks(4)

.shuffleGrouping("sentences-spout");

With permission from : Tiziano De Matteis, “Introduction to Apache Storm,” https://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258

streamparse

= A framework for storm applications written in python

® https://streamparse.readthedocs.io/en/stable/index.html

= Classes
* streamparse.Bolt
e streamparse.Sprout

* streamparse.Topology

= Commands
* Deploy sparse run

* Undeploy sparse Kill

https://streamparse.readthedocs.io/en/stable/index.html

Example: Word Count

("A",2)
Sentence Word (“B”,1)
Spout ——— Splitter — Count —— ner q
Bolt = (A) Bolt ced)
('D") (“D",2)
(“AD B C A D" ("B")
(“C")
("A")

("D")

Example: Word Count

from streamparse import Grouping, Topology

from bolts.split import SplitBolt
from bolts.count import CountBolt
from spouts.sentences import SentencesSpout

class WordCount(Topology):
sentences_spout = SentencesSpout.spec()

split_bolt
count_bolt

SplitBolt.spec(inputs=[sentences_spout], par=2)
CountBolt.spec(inputs={split_bolt: Grouping.fields("word")}, par=2)

Example: Word Count

from 1tertools import cycle

from streamparse import Spout

class SentencesSpout(Spout):
outputs = ["sentence"]
count = 0@

def initialize(self, stormconf, context):
self.sentences = cycle(["To everything turn, turn, turn",
"There 1s a season turn, turn, turn",
"And a time to every purpose",
"Under heaven"])

def next_tuple(self):
1f self.count < 10:
self.count = self.count + 1
sentence = next(self.sentences)
self.emit([sentence])

Example: Word Count

import os
from streamparse import Bolt

class SplitBolt(Bolt):
outputs = ["word"]

def process(self, tup):
words = tup.values[@].split()
for word in words:
self.emit([word])

Example: Word Count

import os
from collections import Counter

from streamparse import Bolt

class CountBolt(Bolt):
outputs = ["word2", "count"]

def initialize(self, conf, ctx):
self.counter = Counter()
self.pid = os.getpid()
self.total = @

def _increment(self, word, inc_by):
self.counter[word] += inc_by
self.total += inc_by

def process(self, tup):
word = tup.values[@]
self._increment(word, 1)
self.logger.info("CountBolt {} {} pid={}".format(word, self.counter[word], self.pid))

