Cluster
Computing

© 2010 VMware Inc. All rights reserved

Architectures

Job Parallelism Request Parallelism

Administration

— Host

Execution

Load Balancer

Outline

= Replication

= Load balancing

= Self provisioning / auto scaling
= Replica control

= Sharding

= Caching

Replication

= Fault tolerance
* High availability despite failures

* |If one replica fails, there is another one that can take over

= Throughput
* Support a large user base
* Each replica handles a fraction of the users

e Scalability

= Response time
* Support a geographically distributed user base
* There is a replica close to the user

e Fast local access

Stateless vs. Stateful

= Stateless
* Services that require mainly computing
e State can be regenerated on demand
* Easy to replicate

* Example: web servers

= Stateful
e Services uses business critical data
* Good performance depends on state availability
* Harder to replicate

 Example: database servers

Replication Example

- Database Servers

q§_ E5420 % Ewi

Stateful

Stateless

Issues

= Load balancing

" Provisioning

= State

= Fault tolerance

Load Balancing

= Determines where requests will be executed

= Blind techniques
* Require minimum or no state on load balancer

e Strategies:

e Random
* Round robin

= | oad aware
* Consider load on replicas when routing requests

* Different request may generate different load
* Replica nodes may have different capacity

e Strategies:
e Shortest queue first
* Simple to implement, just track number of active requests

* Least loaded
* Replicas need to periodically provide load info to load balancer

Load Balancing

= Application Aware
» Uses knowledge of the application

e Strategies:
* Shortest execution length

* Profile request types to generate execution time estimates

* Load estimates load at replica by keeping tracks of pending requests and their
type, i.e., determines application-specific load metric.

* Routes to less loaded replica
* Locality-aware request distribution (LARD)

* Takes into account data accessed by requests, and routes similar request to the

same replica to increase cache hit rates

/
AAACBIOAACB] —»
\
Front—end node

e Conflict-aware distribution

N W

© Bl © © B —

=

Back—end nodes

©.@

* Execute potentially conflicting requests on same replica for early conflict detection

Load Balancing Comparison

= Blind
* General
e Easy to implement

e Suboptimal

= | oad aware
» Better performance

* Require more state

= Application aware
* Best performance
* Require even more state
* Harder to implement

* Brittle — need to change if application changes

AWS Elastic Load Balancer

= Balances load between EC2 instances

= Can distribute load across availability zones

= Within an availability zone:
* Round-robin among the least-busy instances

* Tracks active connections per instance
* Does not monitor CPU

= Supports the ability to stick user sessions to specific EC2
instances.

Self Provisioning

= Automatically adjust the worker pool or number of replicas to the
current workload

* Add workers/replicas when load increases

* Retire replica/workers when under load

= Approaches

* Reactive
* Reconfigure when load threshold reached

* Proactive
* User prediction mechanism to trigger reconfiguration
* Reconfigure before saturation
* Based on time series or machine learning approaches

Self Provisioning

= Retiring replicas/workers

* Move instance load to rest of system
* All new request go to other nodes

* Wait for outstanding transactions to commit

e \When idle, release

= Adding replicas/workers
* Boot new node
* Transfer state/database to new replica (optional)

* Add replica to pool

Self Provisioning Considerations

" | oad metrics

* Use low level system metrics to determine node utilization
e CPU, I/O utilization

* Use application level metrics
* Response time, e.g., transaction completes within X milliseconds.

= Cost/latency prediction
* How long and how expensive it is to add a replica/worker
* Reactive: the higher the latency the lower the configuration threshold

* Proactive: the higher the latency the farther into the future we need to predict

= Monitoring
* Monitoring isn’t free

* The more data that we collect, the higher the impact on the system

AWS Auto Scaling

= Scale automatically according to user-defined conditions
= Enabled by CloudWatch
= Create scale up/down policy

= Associate scaling policy with CloudWatch alarm

Replica Control

= Task of keeping data copies consistent as items are updated
" There is a set of database nodes RA, RE, ...
= Database consist of set of logical data items x, y,

= Each logical item x has physical copies xA, xB,....

e Where x” resides in RA

= A transaction is a sequence of read and write operation on logical
data items

" The replica control mechanism maps the operation on the logical
data items onto the physical copies

Read-One-Write-All (ROWA)

= Common replica control method

= Read can be sent to any replicas
* Logical read operation r(x) on transaction T,

e Mapped to r,(x”*) on one particular copy of x

= Updates performed on all replicas
* Logical write operation w;(x) on transaction T,

e Mapped to w;(x”), w;(xB), ... on one particular copies of x

Read-One-Write-All (ROWA)

= Common replica control method

= Read can be sent to any replicas
* Logical read operation r(x) on transaction T,

e Mapped to r,(x”*) on one particular copy of x

= Updates performed on all replicas
* Logical write operation w;(x) on transaction T,

e Mapped to w;(x”), w;(xB), ... on one particular copies of x

= ROWA works well because on most applications reads >> writes

Primary Copy vs. Update Anywhere

= Primary copy
» All updates are executed first on a single node, the primary
* Advantages: simpler to implement
* Disadvantages: primary can be come bottleneck

= Update Anywhere/Everywhere
* Updates and read only request can be sent to any replica
* Advantages: potentially more scalable

* Disadvantages: harder to guarantee consistency

Processing Write Operations

= Writes have to the executed on all replicas
= Write processing is the main overhead of replication

= Symmetric update processing
* SQL statement is sent to all replicas

* All replicas parse the statement, determine the tuples affected, and perform the
modification/deletion/insertion.

* Pros: Reuse existing mechanisms

* Cons: Redundancy
Execution has to be deterministic. Consider and update that sets a timestamp

= Asymmetric update processing
* SQL statement is executed locally on a single replica

» Writeset (extracted changes) sent to other replicas

* |dentifier and after-image of each updated record
* Pros: Efficiency

* Cons: Harder to implement

MySQL Replication

= ROWA

= Primary copy

= Eager and lazy replication

= Symmetric and asymmetric update processing

= Full and partial replication

Sharding

= Challenges:

* Very large working set
* Slows reads

Database “User”

User Table
s_name

* Facebook/Google user table

e Too many writes R

kim

User Table DB Sharding lee
L] 3 p::k :;
= Solution: v
e Partition the data into shards Gar e
3 park
* Assign shards to different machines | am

e Denormalize the data

Sharding Strategies

= Range-based partitioning
* E.g., username from a to m assigned to shard 1, n to z to shard 2
* Pros: simple
* Cons: hard to get load balancing right

= Directory-based partitioning
* Lookup service keeps track of partitioning scheme
* Pros: Flexibility

e Cons: Lookup service may become bottleneck

= Hash-based partitioning
e Compute hash of key.
* Different shards responsible for different hash ranges
* Pros: Good load balancing

e Cons: A little more complex,

Hash-based Partitioning

Denormalization

= Data that is access together is stored together
* E.g., multi valued properties in AppEngine datastore entities

= Eliminates costly joins

= May require replication
* E.g., a comment may be stored on the commenter’'s and commentee’s profile

" users v
users_id INT
»login VARCHAR(16) |, mF
password VARCHAR(16)
&
| users
users_id INT

> login VARCHAR(16)

> password VARCHAR(16)
>image_id INT

> keyl VARCHAR(255)

> key2 VARCHAR(255)

] images v
images_id INT

> keyl VARCHAR(255)

> key2 VARCHAR(255)

5 users_id INT select * from users,

where users.user_id
users.user_id

select * from users

images
images.user_id and
10;

where user_id = 10;

Sharding

" Pros
e High availability
* Faster queries

e More write bandwidth

= Cons
* Queries get more complicated

* Need to figure out which shard to target
* May need to join data from multiple shards

» Referential integrity
* Foreign key constrains are hard to enforce
* Not supported in many databases

NoSQL Examples

= MongoDB

= Dynamo

= Google Datastore

" Non-relational data model

= Limited transactional support

= Sharding

Caching

= Objective:
* Reduce load on storage server

* Reduce latency to access data
= Store recent/hot/frequent data in RAM
= Volatile

= Fast read/write access

memcached

= A distributed memory cache implementation

" Provides a key-value store interface
put (key,value)
value = get(key)

= Scalable and consistent temporary storage

» Secondary system that provides fast a Memcached
* Data stored reliably somewhere else a4 3
Web
@ ™ Network V

. El /3 y
D -
' Database

=

. i‘,
s",

Usage Model

= Data accesses
get value from memcached

if cache miss
fectch data from datastore
put value on memcached

operate on value

= Data updates
* Possible to overwrite value with new data

No transactional way to do this

Update may succeed in datastore and fail in memcache

Updates may happen at different order in datastore and memcache

Instead: Invalidate item on update
Fetch fresh value on next access

