
© 2010 VMware Inc. All rights reserved

Cluster 
Computing



2

Architectures

Request ParallelismJob Parallelism



3

Outline

! Replication
! Load balancing
! Self provisioning / auto scaling
! Replica control
! Sharding
! Caching



4

Replication

! Fault tolerance
• High availability despite failures
• If one replica fails, there is another one that can take over

! Throughput
• Support a large user base 
• Each replica handles a fraction of the users
• Scalability

! Response time
• Support a geographically distributed user base

• There is a replica close to the user
• Fast local access



5

Stateless vs. Stateful

! Stateless
• Services that require mainly computing
• State can be regenerated on demand
• Easy to replicate
• Example: web servers

! Stateful
• Services uses business critical data
• Good performance depends on state availability
• Harder to replicate
• Example: database servers



6

Replication Example

Stateless

Stateful



7

Issues

! Load balancing

! Provisioning

! State

! Fault tolerance



8

Load Balancing

! Determines where requests will be executed
! Blind techniques
• Require minimum or no state on load balancer
• Strategies:

• Random
• Round robin

! Load aware
• Consider load on replicas when routing requests
• Different request may generate different load

• Replica nodes may have different capacity
• Strategies:

• Shortest queue first
• Simple to implement, just track number of active requests

• Least loaded
• Replicas need to periodically provide load info to load balancer



9

Load Balancing

! Application Aware
• Uses knowledge of the application 
• Strategies:

• Shortest execution length
• Profile request types to generate execution time estimates
• Load estimates load at replica by keeping tracks of pending requests and their 

type, i.e., determines application-specific load metric.
• Routes to less loaded replica

• Locality-aware request distribution (LARD)
• Takes into account data accessed by requests, and routes similar request to the 

same replica to increase cache hit rates

• Conflict-aware distribution
• Execute potentially conflicting requests on same replica for early conflict detection



10

Load Balancing Comparison

! Blind
• General
• Easy to implement
• Suboptimal

! Load aware
• Better performance

• Require more state

! Application aware
• Best performance
• Require even more state
• Harder to implement
• Brittle – need to change if application changes



11

AWS Elastic Load Balancer

! Balances load between EC2 instances
! Can distribute load across availability zones
! Within an availability zone:
• Round-robin among the least-busy instances
• Tracks active connections per instance
• Does not monitor CPU 

! Supports the ability to stick user sessions to specific EC2 
instances.



12

Self Provisioning

! Automatically adjust the worker pool or number of replicas to the 
current workload
• Add workers/replicas when load increases
• Retire replica/workers when under load

! Approaches
• Reactive

• Reconfigure when load threshold reached

• Proactive
• User prediction mechanism to trigger reconfiguration
• Reconfigure before saturation
• Based on time series or machine learning approaches



13

Self Provisioning

! Retiring replicas/workers
• Move instance load to rest of system

• All new request go to other nodes

• Wait for outstanding transactions to commit
• When idle, release

! Adding replicas/workers
• Boot new node
• Transfer state/database to new replica (optional)
• Add replica to pool



14

Self Provisioning Considerations

! Load metrics
• Use low level system metrics to determine node utilization

• CPU, I/O utilization

• Use application level metrics
• Response time, e.g., transaction completes within X milliseconds.

! Cost/latency prediction
• How long and how expensive it is to add a replica/worker
• Reactive: the higher the latency the lower the configuration threshold
• Proactive: the higher the latency the farther into the future we need to predict

! Monitoring
• Monitoring isn’t free
• The more data that we collect, the higher the impact on the system 



15

AWS Auto Scaling

! Scale automatically according to user-defined conditions
! Enabled by CloudWatch
! Create scale up/down policy
! Associate scaling policy with CloudWatch alarm



16

Replica Control

! Task of keeping data copies consistent as items are updated
! There is a set of database nodes RA, RB, …
! Database consist of set of logical data items x, y, ….
! Each logical item x has physical copies xA, xB,….
• Where xA resides in RA

! A transaction is a sequence of read and write operation on logical 
data items

! The replica control mechanism maps the operation on the logical 
data items onto the physical copies



17

Read-One-Write-All (ROWA)

! Common replica control method
! Read can be sent to any replicas
• Logical read operation ri(x) on transaction Ti
• Mapped to ri(xA) on one particular copy of x

! Updates performed on all replicas
• Logical write operation wi(x) on transaction Ti
• Mapped to wi(xA), wi(xB), … on one particular copies of x



18

Read-One-Write-All (ROWA)

! Common replica control method
! Read can be sent to any replicas
• Logical read operation ri(x) on transaction Ti
• Mapped to ri(xA) on one particular copy of x

! Updates performed on all replicas
• Logical write operation wi(x) on transaction Ti
• Mapped to wi(xA), wi(xB), … on one particular copies of x

! ROWA works well because on most applications reads >> writes



19

Primary Copy vs. Update Anywhere

! Primary copy
• All updates are executed first on a single node, the primary
• Advantages: simpler to implement
• Disadvantages: primary can be come bottleneck

! Update Anywhere/Everywhere
• Updates and read only request can be sent to any replica

• Advantages: potentially more scalable
• Disadvantages: harder to guarantee consistency



20

Processing Write Operations

! Writes have to the executed on all replicas

! Write processing is the main overhead of replication

! Symmetric update processing
• SQL statement is sent to all replicas

• All replicas parse the statement, determine the tuples affected, and perform the 
modification/deletion/insertion.

• Pros: Reuse existing mechanisms

• Cons: Redundancy
Execution has to be deterministic. Consider and update that sets a timestamp

! Asymmetric update processing
• SQL statement is executed locally on a single replica

• Writeset (extracted changes) sent to other replicas

• Identifier and after-image of each updated record

• Pros: Efficiency

• Cons: Harder to implement



21

MySQL Replication

! ROWA
! Primary copy
! Eager and lazy replication
! Symmetric and asymmetric update processing 
! Full and partial replication



22

Sharding

! Challenges:
• Very large working set

• Slows reads
• Facebook/Google user table

• Too many writes

! Solution:
• Partition the data into shards
• Assign shards to different machines

• Denormalize the data 



23

Sharding Strategies

! Range-based partitioning
• E.g., username from a to m assigned to shard 1, n to z to shard 2
• Pros: simple
• Cons: hard to get load balancing right

! Directory-based partitioning
• Lookup service keeps track of partitioning scheme
• Pros: Flexibility
• Cons: Lookup service may become bottleneck

! Hash-based partitioning
• Compute hash of key.  
• Different shards responsible for different hash ranges
• Pros: Good load balancing
• Cons: A little more complex, 



24

Hash-based Partitioning



25

Denormalization

! Data that is access together is stored together
• E.g., multi valued properties in AppEngine datastore entities

! Eliminates costly joins
! May require replication
• E.g., a comment may be stored on the commenter’s and commentee’s profile



26

Sharding

! Pros
• High availability
• Faster queries
• More write bandwidth

! Cons
• Queries get more complicated

• Need to figure out which shard to target
• May need to join data from multiple shards

• Referential integrity
• Foreign key constrains are hard to enforce
• Not supported in many databases



27

NoSQL Examples

! MongoDB

! Dynamo

! Google Datastore

! Non-relational data model 
! Limited transactional support
! Sharding



28

Caching

! Objective: 
• Reduce load on storage server
• Reduce latency to access data

! Store recent/hot/frequent data in RAM
! Volatile
! Fast read/write access



29

memcached

! A distributed memory cache implementation
! Provides a key-value store interface

put (key,value)
value = get(key)

! Scalable and consistent temporary storage
• Secondary system that provides fast access to data
• Data stored reliably somewhere else 



30

Usage Model

! Data accesses
get value from memcached
if cache miss

fectch data from datastore
put value on memcached

operate on value

! Data updates
• Possible to overwrite value with new data
• No transactional way to do this
• Update may succeed in datastore and fail in memcache
• Updates may happen at different order in datastore and memcache
• Instead: Invalidate item on update

Fetch fresh value on next access


