
A Faster Algorithm for 0-1 Integer Programming
from Communication Complexity
Deepanshu Kush
Department of Mathematics, IIT Bombay, Mumbai, India
deepkush@iitb.ac.in

Srikanth Srinivasan
Department of Mathematics, IIT Bombay, Mumbai, India
srikanth@math.iitb.ac.in

Abstract
We consider the 0-1 Integer Programming problem, where we are given a collection of linear
inequalities (with integer coefficients) on n variables and the question is to check if there is a
Boolean assignment to the variables that satisfies all of them. This problem generalizes the CNF-
SAT problem since each clause of a CNF formula can be easily translated into a constraint of
the above form.

We give a deterministic algorithm running in time 2n−n/O(log(m·M)) where M is an upper
bound on the bit-complexity of the integer coefficients of the linear inequalities and m is the
number of linear inequalities (for m,M ≤ 2no(1)). In particular, when M = poly(n) (i.e. the
coefficients are in the range [−2poly(n), 2poly(n)]) and m = poly(n) (i.e. polynomially many
inequalities), our algorithm runs in time 2n−n/O(logn), matching the running times of the best
CNF-SAT algorithm (due to Schuler (Journal of Algorithms, 2005)) in this range of parameters.

As far as we know, the previous best algorithm for this problem is that of Williams (STOC
2014), which runs in time 2n−n/O(logM ·(logm)5) · poly(Mmn), which for the particular range
of parameters mentioned above is 2n−n/O((logn)6). (Impagliazzo, Lovett, Paturi and Schneider
(ECCC 2014) give a faster algorithm in the special case that m = O(n).)

The algorithm is obtained by a reduction to the Orthogonal Vectors problem, which has been
studied extensively. The reduction is obtained via a simple 1-sided error MA communication
complexity protocol for any linear threshold function.

We also observe that any 2-sided error MA protocol (and hence in particular 2-sided error
randomized communication complexity protocol) can be converted into a 1-sided error MA pro-
tocol with only a slight degradation of parameters. In principle, this idea could be useful in
obtaining satisfiability algorithms for more general classes of constraints.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms
→ Mathematical Optimization → Discrete optimization

Keywords and phrases 0-1 Integer Programming, Satisfiability with Linear Threshold Con-
straints, MA Protocols in algorithm design

Digital Object Identifier 10.4230/LIPIcs...

1 The 0-1 Integer Programming problem

The 0-1 Integer Programming (I.P.) problem is defined as follows.

Input: A set of m linear inequalities (denoted by C1, . . . , Cm respectively) in n variables
x1, . . . , xn, say∑

j∈[n]

wi,jxj ≥ θi (1)

© Deepanshu Kush and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deepkush@iitb.ac.in
mailto:srikanth@math.iitb.ac.in
http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 A Faster Algorithm for 0-1 Integer Programming from Communication Complexity

for i ∈ [m], where wi,j , θi ∈ Z for all i, j. We call wij the “weights” corresponding to Ci
and θi the “threshold value” corresponding to Ci. Throughout, we assume that M is an
upper bound on the bit complexity of the numbers that appear in the inequalities (i.e.
all the numbers are in the range [−2M , 2M]).
Output: A Boolean (i.e. {0, 1}-valued) assignment to the variables x1, . . . , xn that
satisfies all the inequalities, if one exists.1

We will call the tuple (n,m,M) the parameters of an instance of the 0-1 I.P. problem.
Note that the size s of an instance with parameters (n,m,M) is lower bounded by
Ω(n+m+M) and upper bounded by O(nmM).

This is a well-known NP-complete problem, as is easy to prove by a simple reduction
from CNF-SAT: each clause of a CNF formula can be easily transformed to an inequality of
the above form. For instance, a clause of the form x1 ∨ ¬x2 ∨ x3 can be expressed via the
inequality

x1 + (1− x2) + x3 ≥ 1, or equivalently, x1 − x2 + x3 ≥ 0.

As a result, we do not expect to have polynomial-time algorithms for the 0-1 I.P. problem.
Nevertheless, the problem is an important one in many computational settings, and it is
desirable to have as fast an improvement over the trivial brute-force algorithm as possible.
(Note that the brute-force algorithm for the 0-1 I.P. problem would take time 2n ·poly(nmM).)

Such investigations have been conducted for many problems over the past two decades,
and there is by now a large body of results in the area (see, e.g. [12] for an introduction). For
example, in the case of the CNF-SAT problem, we have algorithms that count the number
of satisfying assignments of a given CNF instance on n variables and m clauses in time
2n−n/O(log(m/n)) [29, 6, 10, 18, 2, 7]. Significant improvements over these algorithms are
related via the Strong Exponential Time Hypothesis [19] to improving the complexity of
many other problems [34].

The 0-1 I.P. problem has also received quite a bit of attention. We only survey the very
recent history and refer the reader to [13] for a more detailed account. Impagaliazzo, Paturi
and Schneider [20] considered this problem in the setting when the number of non-zero
wi,j is at most cn for some c > 0 and gave an algorithm that runs in time 2n−sn where
s is exponentially small in c 2. This was strengthened by Impagliazzo, Lovett, Paturi
and Schneider [17], who obtained a satisfiability algorithm that runs in time 2n−sn for
s = 1/ poly(m/n). An algorithm with a worse running time but smaller space requirements
was given by Bansal, Garg, Nederlof and Vyas [5].

While the algorithm of Impagliazzo et al. [17] has truly exponential savings when m is
linear in n, it does not yield any improvement over brute force search when m = n2 (say). A
better algorithm for this range of parameters was devised by Williams [33], who showed that
the 0-1 I.P. problem can be solved by an algorithm in time 2n−n/O((logM)·(logm)5) , which in
the setting when M = poly(n) and m = poly(n) yields a running time of 2n−n/O(logn)6

.

In this paper, we give an improved algorithm that matches the running time of the best
CNF-SAT algorithm [29] in the above range of parameters. The main theorem is as follows.

1 More precisely, this is the feasibility question for 0-1 Integer programs. However, the more general
problem of optimizing a linear function over the solutions of a system of linear inequalities reduces to
the feasibility question using a simple binary search. See, e.g., [33].

2 The algorithm in [20] also works for a more general family of satisfiability problems for depth-2 threshold
circuits.

D. Kush and S. Srinivasan XX:3

I Theorem 1 (Main theorem). Assume n,m,M are growing integer parameters where
m,M ≤ 2no(1) . There is a deterministic algorithm which solves the 0-1 I.P. problem in time
2n−n/O(log(mM)) where the parameters of the input instance are (n,m,M).

1.1 Techniques.
The proof idea is based on a template provided in a result of Williams [33]. Given a function
F : {0, 1}n → {0, 1} whose satisfiability we would like to check (in our setting, F is a
conjunction of linear inequalities), we divide the input variables x1, . . . , xn into the two
sets x1, . . . , xn/2 and xn/2+1, . . . , xn, which we denote x≤n/2 and x>n/2 respectively. We
then consider the Boolean 2n/2 × 2n/2 matrix M , whose rows and columns are indexed
by assignments σ and τ to x≤n/2 and x>n/2 respectively; the entry M(σ, τ) of M is 1 iff
F (σ ∪ τ) = 1.

Obviously, the matrix M cannot be constructed in time less than 2n, but Williams’ idea
is to obtain some sort of “low-rank” decomposition for M , which can then be used to quickly
check for satisfiability using algebraic algorithms such as the Fast Fourier Transform or
Coppersmith’s [9] rectangular Matrix Multiplication algorithm.

In [33], Williams carried out this idea for 0-1 I.P. by using circuit complexity ideas to
obtain suitable bounded-depth circuits for F and then converting those to polynomials, which
can then be quickly evaluated using the Fast Fourier Transform.

Here, we follow a slightly different route, inspired by a later result of Abboud, Williams
and Yu [2]. In this paper, the authors study the Orthogonal Vectors problem, defined as
follows. The input to the problem is two lists of vectors A,B ⊆ {0, 1}d of size N each and the
question is to check if there are vectors u ∈ A and v ∈ B that do not share an index where
they are both 1 (we say that such a pair of vectors is orthogonal). The trivial algorithm for
this problem runs in time O(dN2) and it remains an open question to give a N2−Ω(1)-time
algorithm for this problem when d = ω(logN). This problem is closely related to the Strong
Exponential Time Hypothesis [32] and has been studied extensively in recent years (see the
survey [34] for a comprehensive list).

Abboud et al. [2] give the best-known algorithm for the Orthogonal Vectors problem.
Further, they use this algorithm to give improved satisfiability algorithms for the Symmetric
Boolean CSP problem: this is an extension of CNF-SAT where each “clause” is allowed to
check, on a subset of the input variables, for any function that is symmetric, i.e. only depends
on the number of input bits in that subset that are set to 1. The satisfiability algorithm is
obtained via a reduction to the Orthogonal Vectors problem for N = 2n/2 and small d (this
can be seen as a “low-rank decomposition” in the above sense). We describe this reduction
below.

The function F in this setting is a conjunction of symmetric functions F1, . . . , Fm :
{0, 1}n → {0, 1}. We split the input x into x≤n/2 and x>n/2 as above. Each Fi is a
symmetric function on a subset x(i) = x

(i)
≤n/2 ∪ x

(i)
>n/2 of the variables. We define {0, 1}-

vectors uσ and vτ for each assignment σ to x≤n/2 and τ to x>n/2 such that uσ and vτ are
orthogonal iff σ ∪ τ is a satisfying assignment for F . Taking A = {uσ | σ} and B = {vτ | τ}
then yields the reduction.

It remains to describe how uσ and vτ are constructed. Since each Fi is symmetric, the
set of inputs on which it is not satisfied can be partitioned into sets of the form Sp × Tq
(p, q ∈ {0, . . . , n}) where Sp denotes the set of assignments σ of x≤n/2 so that the assignment
to x(i)

≤n/2 has Hamming weight p, Tq is the set of assignments τ so that the assignment to
x

(i)
>n/2 has Hamming weight q, and Fi rejects inputs of Hamming weight p+ q. To construct

XX:4 A Faster Algorithm for 0-1 Integer Programming from Communication Complexity

uσ and vτ , we set d = m · (n+ 1)2 which is identified with [m]× {0, . . . , n} × {0, . . . , n}. For
(i, p, q) such that Fi rejects inputs of Hamming weight p+ q, set the (i, p, q)th co-ordinate of
uσ (resp. vτ) to 1 iff σ ∈ Sp (resp. τ ∈ Tq); all other co-ordinates are set to 0. It can now
easily be seen that σ ∪ τ is a satisfying assignment iff uσ and vτ are orthogonal. This finishes
the argument.

To use this idea for the 0-1 I.P. problem, we abstract the above argument. Note that we
only used the fact that for each i, the non-satisfying assignments of Fi can be written as
a small union of explicit sets of the form S × T where S and T are sets of assignments to
x≤n/2 and x>n/2 respectively. This is true more generally of functions whose complements
have small non-deterministic communication complexity [4]. Unfortunately, however, this is
not true for functions defined by linear inequalities, which we call linear threshold functions.

Nevertheless, it is known by a result of Nisan [26] that any linear threshold function
(and its complement, which is also a linear threshold function) has an efficient randomized
communication protocol. On the face of it, it seems that we could hope to use this to
obtain randomized algorithms for the 0-1 I.P. problem by using the randomized protocol as a
randomized reduction to the Orthogonal Vectors problem (exactly as above). However, this
does not work, because the randomized protocols for threshold functions necessarily have
2-sided error and hence can give false positives as well as false negatives. This means that the
randomized algorithm may misclassify non-satisfying assignments as satisfying assignments,
which is quite bad since there could, in the worst case, be only one satisfying assignment
and 2n − 1 non-satisfying assignments. In such a scenario, it is not clear how to filter out
the satisfying assignment efficiently.

At this point, what comes to our aid is non-determinism. As noted above, even an
efficient non-deterministic communication protocol would result in an efficient reduction
to Orthogonal Vectors. This also turns out to be true for non-deterministic randomized
communication protocols, or MA communication protocols, and randomized reductions.
Further, if the MA communication protocol happens to have 1-sided error (suitably defined),
then the reduction may misclassify satisfying assignments as non-satisfying (with a small
probability) but not vice-versa.

We show how to obtain a MA communication protocol of small communication complexity
with 1-sided error for any linear threshold function. This turns to be just a simple truncation
of Nisan’s randomized communication complexity protocol [26]. Turning this into a reduction
as above, we get a randomized reduction to Orthogonal vectors. We then show how to
efficiently derandomize it using Small-bias spaces, a standard tool in the derandomization
literature [24], to obtain a deterministic reduction to the Orthogonal vectors problem. This
yields the algorithm.

We then turn to MA communication protocols in general and ask if general MA communic-
ation protocols with 2-sided error can be converted to 1-sided error protocols of comparable
efficiency. (As noted above, a 1-sided error protocol is crucial to our satisfiability algorithm.)
It is a standard fact in Computational Complexity (see, e.g. [14, Section 3.3]) that every
language L ⊆ {0, 1}∗ in the (Turing Machine) complexity class MA has an MA protocol with
1-sided error. We observe that essentially the same proof carries through in the communica-
tion complexity setting. This is not too surprising: any reasonably black-box proof technique
in computational complexity should be expected to yield the same results in the communica-
tion complexity setting.3 However, we could not find this particular result anywhere in the
literature, and given the usefulness of MA protocols as reductions to Orthogonal vectors (as

3 This intuition was communicated to us by Mika Göös.

D. Kush and S. Srinivasan XX:5

above) and other similar problems [1, 28, 8], we feel that it is worth pointing out.

1.2 Related work.
We note that MA communication protocols have been used as reductions in many recent
results in the area [1, 21, 28, 8], starting with the work of Abboud, Rubinstein and Williams [1].
In these results, the MA protocols have been used to reduce CNF-SAT or the Orthogonal
Vectors problem to (approximation variants of) harder problems. Here, we try to give an
efficient reduction to the Orthogonal vectors problem from a more expressive satisfiability
question.

2 Preliminaries

Given vectors u, v ∈ {0, 1}d (for some d), we use 〈u, v〉 to denote their standard inner product
(i.e.

∑
i∈[d] uivi) modulo 2.

2.1 Orthogonal Vectors
Given two vectors u, v ∈ {0, 1}d, we say that they are orthogonal if

∨
i∈[d] ui ∧ vi = 0 (or

equivalently, if there is no i ∈ [d] such that ui = vi = 1). The Orthogonal Vectors problem is
defined as follows.

Input: A,B ⊆ {0, 1}d where |A| = |B| = N.

Output: A pair u ∈ A and v ∈ B such that u and v are orthogonal, if such a pair exists.

We will use the following deterministic algorithm of this problem due to Chan and
Williams [7], building on an earlier randomized algorithm due to Abboud, Williams and
Yu [2].

I Theorem 2 (Chan-Williams [7]). There is a deterministic algorithm for the Orthogonal
Vectors problem that runs in time N2−1/O(log(d/ logN)), provided d ≤ 2(logN)o(1)

.

2.2 MA protocols in communication complexity
We recall (see, e.g., [15]) that an ε-error MA communication complexity protocol for a
Boolean function F : {0, 1}n/2 × {0, 1}n/2 → {0, 1} is a communication protocol where the
players Alice and Bob receive, in addition to their respective inputs x, y ∈ {0, 1}n/2, an
additional input w ∈ {0, 1}k (which we think of as a “proof string”).

Given their inputs x, y and the proof string w, Alice and Bob execute a randomized
protocol Π (defined as a distribution over deterministic protocols) which has the following
properties:

Completeness: F (x, y) = 1⇒ ∃w s.t. PrΠ[Π(x, y, w) = 1] ≥ 1− ε.
Soundness: F (x, y) = 0⇒ ∀w PrΠ[Π(x, y, w) = 1] ≤ ε.

I Remark. Typically, the error ε is taken to be a constant (say 1/4), but we will use it as a
parameter.

Further, we say that an MA protocol has 1-sided error if we have instead that whenever
F (x, y) = 1, there is a w such that PrΠ[Π(x, y, w) = 1] = 1.

The complexity of an MA protocol is defined to be the sum of k (the length of the proof
string) and the total number of bits communicated by Alice and Bob in the worst case.

XX:6 A Faster Algorithm for 0-1 Integer Programming from Communication Complexity

2.3 Small bias spaces and subspace avoidance
We use the notion of a small-bias space, which is a standard tool in the derandomization
literature [24, 3].

I Definition 3 ([24]). We say that a multiset S ⊆ {0, 1}s is an ε-bias space if for any non-zero
u ∈ {0, 1}s, we have∣∣∣∣ Pr

a∈S
[〈u, a〉 = 1]− 1

2

∣∣∣∣ ≤ ε.
Near-optimal explicit constructions of ε-bias spaces first appeared in the work of Naor

and Naor [24]. Better (i.e. smaller) constructions are known [3, 31], but we do not need
them here.

I Theorem 4 (Naor and Naor [24]). There is a deterministic algorithm which when given as
input an s ∈ N and ε ∈ (0, 1/2), produces a multiset S ⊆ {0, 1}s of size poly(s/ε) that is an
ε-biased space. Further, the algorithm runs in time poly(s/ε).

The following is a standard fact about ε-bias spaces, which follows from [11, Lemma 2.5].

I Fact 5. Let S ⊆ {0, 1}s be an ε-biased space. Viewing {0, 1}s as Fs2, let V be an affine
subspace of {0, 1}s of codimension t. Then, Pra∈S [a ∈ V] ≤ (1/2t) + ε.

3 An MA protocol with 1-sided error for any threshold function

We recall that a linear threshold function is a Boolean function F : {0, 1}n → {0, 1} that can
be specified by a linear inequality in the following sense.

F (x1, . . . , xn) = 1⇔
n∑
i=1

wixi ≥ θ (2)

for w1, . . . , wn, θ ∈ R.
We consider the communication complexity of a linear threshold function where some

n/2 input bits are given to Alice and the rest to Bob. Nisan [26] showed that any threshold
function has an ε-error randomized communication complexity protocol of complexity O(logn).
However, his protocol is a 2-sided error protocol4 and this makes it unsuitable for our
algorithmic application.

Nevertheless, the ideas behind Nisan’s protocol easily yield a 1-sided MA protocol as we
argue below.

I Definition 6. For a 0-1 vector v, let v(i) denote its ith bit and let v(< i) denote its first
i− 1 bits (which is just an empty string if i = 1). We define the inner product of two empty
strings to be 0.

I Theorem 7. Let F be as given above and assume that the wi and θ are integers of bit
complexity M (i.e. in the range [−2M , 2M]). Then, there is an ε-error MA protocol for
F with complexity O(log((M + logn)/ε)) = O(logM + log logn + log(1/ε)). Further, the
protocol has 1-sided error.

4 It is not hard to argue that there is no 1-sided error randomized protocol of comparable efficiency.

D. Kush and S. Srinivasan XX:7

Proof. Suppose X ∪Y is a partition of the variable set {x1, . . . , xn} into parts of equal sizes,
where Alice is given the input bits in X and Bob the bits in Y . We assume that Alice and
Bob are given as inputs partial assignments σ : X → {0, 1} and τ : Y → {0, 1} respectively.
Set R =

⌈
log(n · 2M+1)

⌉
.

We define protocols Πz, indexed by z which is a collection of vectors z1, . . . , zt (t to be
chosen in terms of ε later) each chosen independently and uniformly at random from {0, 1}R,
as follows.

Protocol Πz on input (σ, τ):

1. Prover provides: an index i ∈ [R+ 1].
2. Alice computes Fσ := θ−

∑
xj∈X wjσ(xj)+n·2M and Bob computes Fτ :=

∑
xj∈Y wjτ(xj)+

n · 2M , both R bit numbers. We consider Fσ, Fτ as elements of {0, 1}R (using binary
notation).

3. If the given index i ∈ [R], they check if

(i) Fσ(i) < Fτ (i), and
(ii) 〈Fσ(< i), zj(< i)〉 = 〈Fτ (< i), zj(< i)〉 ∀j ∈ [t].

If both these conditions hold, then they output that σ ∪ τ satisfies F . If either of these
conditions fails to hold, then they output that σ ∪ τ does not satisfy F .

4. If i = R + 1, then they only check condition (ii). If it holds, they output that σ ∪ τ
satisfies F . Otherwise, they output that σ ∪ τ does not satisfy F .

Note that Fσ and Fτ are both in the range [0, n · 2M+1] and thus, can each be represented
using R bits. Further, F is satisfied by an assignment (σ, τ) if and only if Fσ ≤ Fτ .
Also, observe that the protocol has complexity O(logR) +O(t), as both conditions can be
checked by communicating O(t) many bits and the length of the proof string i ∈ [R+ 1] is
O(logR) = O(log(M + logn)).

Let us first verify the completeness property of this randomized protocol for F . Suppose
σ∪ τ satisfies F (i.e. F (σ, τ) = 1). Then Fσ ≤ Fτ . If Fσ < Fτ , then there exists a bit i ∈ [R]
such that Fσ(i) < Fτ (i) and Fσ(< i) = Fτ (< i). This i is the most significant bit at which
they differ. If Fσ = Fτ , then for i = R + 1, we trivially have Fσ(< i) = Fτ (< i). Thus, in
either case there exists a proof string i such that Fσ(< i) = Fτ (< i) and hence, regardless of
the choice of the random bits z, the protocol outputs the correct answer.

Now let us verify the soundness property. Suppose we are given an instance (σ, τ) such
that σ ∪ τ does not satisfy F i.e. Fσ > Fτ . We need to check that for every proof string
i ∈ [R+ 1], the randomized protocol errs with a small probability. Suppose the proof string
i ∈ [R]. Observe that the protocol errs only when Fσ(i) < Fτ (i) and the corresponding inner
products with zj(< i) match. But if for an i ∈ [R] Fσ(i) < Fτ (i), then along with Fσ > Fτ ,
this implies that Fσ(< i) 6= Fτ (< i). And if i = R+ 1, then Fσ > Fτ trivially implies that
Fσ(< i) 6= Fτ (< i). Now using the fact that the probability that 〈v, z〉 = 〈u, z〉 for distinct
vectors v, u where z is chosen uniformly at random is precisely 1/2 (which in turn follows
easily from the Schwartz-Zippel Lemma), and the fact that the zj are chosen independently,
we deduce that the probability that 〈Fσ(< i), zj(< i)〉 = 〈Fτ (< i), zj(< i)〉∀j ∈ [t] is at most
1
2t . So we set t =

⌈
log 1

ε

⌉
to obtain an error of at most ε.

Hence, this is an MA protocol with 1-sided error for F with complexity O(log(M +
logn)) +O(t) = O(log((M + logn)/ε)). J

I Remark. It is known [23] that any Linear Threshold function on n variables can be
represented with integer weights wi (i ∈ [n]) and θ as above with |wi|, |θ| ≤ nO(n). Thus,

XX:8 A Faster Algorithm for 0-1 Integer Programming from Communication Complexity

Alice and Bob can always agree on such a representation beforehand and then run the above
protocol, which will have complexity at most O(log(n/ε)).

Unfortunately, the proof of the above fact from [23] is not algorithmic, and hence we
cannot assume this bound on weights in our algorithmic application given below.

4 The reduction to Orthogonal Vectors

We use the ideas behind the MA protocol for threshold functions in Section 3 to give a
reduction from the 0-1 I.P. problem to the Orthogonal Vectors problem. An analogous
statement could be made for other classes of functions that have efficient MA protocols, but
we would need the protocol to satisfy some additional explicitness properties. Hence, we
omit the general statement here.

We start with a randomized reduction, which we will later derandomize.

I Lemma 8. There is a randomized algorithm which, when given as input an instance I of the
0-1 I.P. problem with parameters (n,m,M), produces an instance (A,B) of the Orthogonal
vectors problem with A,B ⊆ {0, 1}d, |A| = |B| = N = 2n/2, and d = O(m(M + logn))2 such
that:

If I is unsatisfiable, then with probability 1, there is no orthogonal pair of vectors u ∈ A
and v ∈ B.
If I is satisfiable, then with probability at least 1/2, there is an orthogonal pair of vectors
u ∈ A and v ∈ B. Given such an orthogonal vector, a satisfying assignment for I can be
recovered in time 2n/2 · poly(nmM).

Further, the reduction runs in time 2n/2 · poly(nmM).

Proof. We use ideas from the proof of theorem 7 to construct this randomized algorithm.
Suppose we are given an instance I consisting of m linear inequalities C1, . . . , Cm (which we
shall henceforth refer to as “clauses") defined by eq. (1), with parameters (n,m,M). Then
algorithm 1 (described below) produces the desired instance (A,B) of the Orthogonal Vectors
problem.

Let us now verify the correctness of algorithm 1.

Suppose I is unsatisfiable. We show that uσ ∈ A and vτ ∈ B are not orthogonal for every
σ : X → {0, 1} and τ : Y → {0, 1}. Since σ ∪ τ is not a satisfying assignment, there is a
clause C ∈ {C1, . . . , Cm} such that Cσ > Cτ (as defined as in line 3). But this means
that there is a bit i ∈ [R] (as these are R bit numbers) at which Cσ(i) = 1, Cτ (i) = 0
and Cσ(< i) = Cτ (< i). In other words, i is the most significant bit at which they differ.
Now, since Cσ(< i) and Cτ (< i) are equal, for every set of random vectors z, there is a
choice of b given by bj = 〈Cτ (< i), zj(< i)〉 = 〈Cσ(< i), zj(< i)〉 for j ∈ [t] such that for
this b and the previously specified i and C, we have uσ(C, i, b) = vτ (C, i, b) = 1 due to
the construction in line 7 and line 8, which immediately implies that uσ and vτ are not
orthogonal.
Suppose I is satisfiable and that σ ∪ τ is a satisfying assignment. Then for every clause
C ∈ {C1, . . . , Cm}, we must have Cσ ≤ Cτ . We shall prove that uσ and vτ are not
orthogonal with probability ≤ mR

2t (which is at most 1
2 by the choice of t). Note that

it is enough to show that for a given C and i ∈ [R], the probability that there exists b
such that uσ(C, i, b) = vτ (C, i, b) = 1 is at most 1

2t ; the desired upper bound on the error
probability then directly follows from the union bound. By line 8, we need to find the

D. Kush and S. Srinivasan XX:9

Algorithm 1 Reduction from the 0-1 I.P. problem to Orthogonal Vectors
Input: Boolean Variables x1, . . . , xn and clauses C1, . . . , Cm given by integral weights wij

and thresholds θi respectively; each from the range [−2M , 2M]
Output: An instance (A,B) of the Orthogonal vectors problem with A,B ⊆ {0, 1}d, |A| =
|B| = N = 2n/2, and d = O(m(M + logn))2

1: Partition the set of variables into X and Y , each of size n/2.
2: For a clause C ∈ {C1, . . . , Cm} given by weights {wj} and threshold value θ and a partial

assignment σ : X → {0, 1}, define Cσ := θ−
∑
xj∈X wjσ(xj) and for a partial assignment

τ : Y → {0, 1}, define Cτ :=
∑
xj∈Y wjτ(xj).

3: For every σ : X → {0, 1} and τ : Y → {0, 1}, redefine Cσ ← Cσ + n · 2M and
Cτ ← Cτ + n · 2M so that the newly defined numbers are both non-negative and in the
range [0, n · 2M+1].

4: Then σ ∪ τ does not satisfy C if and only if Cσ > Cτ .
5: Let R = dlog(n · 2M+1)e. Then each Cσ and Cτ can be represented as a binary string of

length R.
6: Pick t = dlogm+ logR+ 1e vectors z1, . . . , zt independently from {0, 1}R and uniformly

at random. Let z = (z1, . . . , zt) denote this choice of random vectors.
7: For every clause C, a choice of b = (b1, . . . , bt) ∈ {0, 1}t and an i ∈ [R], construct the

sets A(C,i,b)
z and B(C,i,b)

z , defined as follows:

A(C,i,b)
z := {σ : X → {0, 1}|Cσ(i) = 1 and 〈Cσ(< i), zj(< i)〉 = bj∀j ∈ [t]}

B(C,i,b)
z := {τ : Y → {0, 1}|Cτ (i) = 0 and 〈Cτ (< i), zj(< i)〉 = bj∀j ∈ [t]}.

8: For a partial assignment σ : X → {0, 1}, define a 0-1 vector uσ of length d = m ·R · 2t
(whose positions are indexed by tuples of the form (C, i, b)) as follows: uσ(C, i, b) = 1⇔
σ ∈ A(C,i,b)

z . Similarly, for a partial assignment τ : Y → {0, 1}, define vτ as follows:
vτ (C, i, b) = 1⇔ τ ∈ B(C,i,b)

z .
9: Output the lists A = {uσ|σ : X → {0, 1}} and B = {vτ |τ : Y → {0, 1}}.

probability that (σ, τ) ∈
⋃
bA

(C,i,b)
z ×B(C,i,b)

z given that Cσ ≤ Cτ . Stated in words, we
need to find the probability of the event that 〈Cτ (< i), zj(< i)〉 = 〈Cσ(< i), zj(< i)〉 for
all j ∈ [t], given that Cσ ≤ Cτ and Cσ(i) = 1, Cτ (i) = 0 (the latter because of the way
the sets A(C,i,b)

z and B(C,i,b)
z are defined; see line 7). Note that these conditions together

imply that Cσ(< i) 6= Cτ (< i). Finally, the claim follows at once when we observe that
the probability that 〈v, z〉 = 〈u, z〉 for two distinct vectors v, u where z is chosen uniformly
at random is precisely 1/2.

J

Next, we show that algorithm 1 can be easily derandomized.

I Lemma 9. We can modify algorithm 1 so that it uses only r = O(logm+ logR) random
bits at the expense of the success probability (in the case that I is satisfiable) dropping to 1/4.

Proof. Note that the only randomness used in the algorithm was the random choice of
z = (z1, . . . , zt) ∈ {0, 1}R·t. Further, the only property of z that was used in the analysis
was that when u and v are distinct vectors of length (i − 1) ≤ d, the probability that
〈u, zj(< i)〉 = 〈v, zj(< i)〉 for all j ∈ [t] is at most 1/2t.

XX:10 A Faster Algorithm for 0-1 Integer Programming from Communication Complexity

To (approximately) preserve this property, we claim that it suffices to choose z u.a.r.
from an ε-biased space S ⊆ {0, 1}R·t (see Section 2.3) where ε = 1/2t+1. To see this, fix any
distinct vectors u, v of length (i− 1) and let w be their bitwise XOR (which is a non-zero
vector). Note that 〈u, zj(< i)〉 = 〈v, zj(< i)〉 for each j ∈ [t] iff 〈w, zj(< i)〉 = 0 for each
j ∈ [t]. This is further equivalent to having 〈wj , z〉 = 0 for each j ∈ [t], where wj ∈ {0, 1}R·t
is the non-zero vector that has w in the first (i − 1) positions in its jth block (i.e. the
positions (j − 1)R+ 1, . . . , (j − 1)R+ (i− 1)) and 0 elsewhere.

Since w is a non-zero vector, the vectors wj (j ∈ [t]) span a subspace of dimension t.
Thus, the probability that 〈wj , z〉 = 0 for each j ∈ [t] is equivalent to requiring that z
lie in a subspace of {0, 1}R·t of codimension t. By Fact 5, this probability is bounded by
(1/2t) + ε = 3/2t+1.

Repeating the argument in the proof of Lemma 8 with this choice of z and the above
property, we see that when I is satisfiable, the probability that the algorithm does not
output (A,B) with a pair of orthogonal vectors is at most 3mR/2t+1 ≤ 3/4. Hence, the
success probability of the reduction is 1/4. (The analysis in the case that I is unsatisfiable is
unchanged.)

Finally, as we have explicit ε-biased sets of size poly(Rt/ε) = poly(mR) (Theorem 4),
the randomized algorithm only uses O(logm+ logR) many random bits. The running time
remains 2n/2 · poly(nmM). J

The main theorem (Theorem 1) now follows easily.

Proof of Theorem 1. We can run the modified version of algorithm 1 from Lemma 9 which
uses only r many random bits for all possible choices of them i.e. 2r = poly(mR) many
times. This reduction would still take O(2n/2 · poly(nmM)) time (recall R = O(M + logn))
and produce pairs of subsets (Ai, Bi) (i ∈ [2r]) of {0, 1}d such that: (a) if I is unsatisfiable,
no (Ai, Bi) contains an orthogonal pair of vectors, (b) if I is satisfiable, then there is some
i ∈ [2r] such that (Ai, Bi) contains an orthogonal pair of vectors; further, it follows from the
proof of Lemma 8 that for any orthogonal pair (uσ, vτ), the Boolean assignment determined
by σ and τ is a satisfying assignment to the set of linear inequalities.

Running the deterministic algorithm for Orthogonal Vectors in Theorem 2 on each
pair of lists (Ai, Bi) of size N = 2n/2 and with d = O(m(M + logn))2 yields a total
running time of 2n−n/O(log(d/n)) = 2n−n/O(log(mM)). This yields a total running time of
2r · 2n−n/O(log(mM)) = 2n−n/O(log(mM)) for m,M ≤ 2no(1)

. J

I Remark. Using the same or similar ideas, we can also handle other kinds of constraints
that involve weighted sums of the input variables. Examples include arbitrary functions of
weighted sums with small weights (already done by Abboud et al. [2]), weighted equalities or
Exact Threshold functions as defined by [16] (which can be written as the conjunction of two
inequalities) and complements of weighted equalities (which have efficient non-deterministic
communication complexity protocols).

5 More on MA versus MA with 1-sided error

In this section, we show that any function that has efficient MA protocols (with possibly
2-sided error) also has efficient 1-sided error MA protocols. In particular, this result implies
that any function that has efficient 2-sided error randomized protocols also has efficient
1-sided error MA protocols. This generalizes the fact we proved for threshold functions in

D. Kush and S. Srinivasan XX:11

Section 3.5 In principle, this idea can be used for checking satisfiability for conjunctions of
more general classes of constraints than the threshold constraints we considered in Theorem 1.

The theorem we prove is as follows.

I Theorem 10. Let F : {0, 1}n/2 × {0, 1}n/2 → {0, 1} be any function that has a 1/4-error
MA protocol of complexity k. Then F also has an O(1/n2)-error MA protocol with 1-sided
error of complexity O(k logn).

The proof follows an idea of Lautemann [22] who used it to give an alternate proof of the
fact that BPP ⊆ ΣP

2 ∩ΠP
2 (due originally to Gacs and Sipser [30]) in the Turing Machine

setting. The idea is for the prover to convince the verifier that a computation accepts with
high probability by showing that the set of “accepting” random strings can be “shifted” a few
times to cover the entire universe of possible random strings. If most strings are accepting,
this can indeed be done; otherwise, any small set of shifts can only cover a negligible fraction
of the universe. This can be checked (with 1-sided error) by a verifier who simply chooses a
uniformly random string and sees that it belongs to one of the given shifts.

Proof. We can assume that k ≤ n, since otherwise the conclusion of the theorem is trivial.
Let Π be an MA protocol of complexity k for F . We thus have

F (x, y) = 1⇒ ∃w ∈ {0, 1}k s.t. PrΠ[Π(x, y, w) = 1] ≥ 3/4.
F (x, y) = 0⇒ ∀w ∈ {0, 1}k, PrΠ[Π(x, y, w) = 1] ≤ 1/4.

By repeating the randomized protocol O(logn) times and taking the majority vote, Alice
and Bob can reduce the error to 1/n2. We call this protocol Π′. Note that Π′ has the same
proof length as Π (which is at most k) but has communication O(k logn).

We assume that the protocol Π′ uses r random bits. It is a standard fact (implied by the
proof of Newman’s theorem [25]; see also [27, Theorem 3.5]) in randomized communication
complexity that any randomized communication complexity protocol for a Boolean function
with error ε can be assumed to use O(logn+ log(1/ε)) bits. It is easy to observe that the
same proof also works for MA protocols. So henceforth we will assume that r ≤ c logn for
some absolute constant c.

We now show how to obtain a 1-sided error protocol Π′′. Given inputs x, y to Alice and
Bob respectively, the protocol is as follows.
Protocol Π′′ on input (x, y):

1. Prover provides: a string w ∈ {0, 1}k and strings z(1), . . . , z(c) ∈ {0, 1}r.
2. Alice and Bob choose a string z ∈ {0, 1}r u.a.r. and run the protocol Π′ with random

strings z ⊕ z(i) (the bitwise XOR of z and z(i)) for each i ∈ [c]. If Π′ accepts on any of
these random strings, Alice and Bob accept. Otherwise, they reject.

Clearly, the protocol has complexity O(ck logn) = O(k logn).
We analyze the correctness of the protocol. Consider first the case when F (x, y) = 0. In

this case, no matter which proof string w is supplied, a run of Π′ on input (x, y, w) with a
random string σ ∈ {0, 1}r accepts with probability at most O(1/n2). Since z (as chosen by
Alice and Bob in Step 2) has the uniform distribution, so does the string z ⊕ z(i) for each

5 There is a small caveat here to do with parameters. The MA protocol we gave in Section 3 for threshold
functions is more efficient than the one that is implied by the results in this section. This results in a
more efficient algorithm than we would obtain were we to use the results from this section instead.

XX:12 A Faster Algorithm for 0-1 Integer Programming from Communication Complexity

i ∈ [c]. Thus, the probability that the protocol Π′ accepts on each such string is at most
O(1/n2). By a union bound, the probability that Π′′ accepts is at most O(c/n2) = O(1/n2).

Now consider the case when F (x, y) = 1. We know that there is a w ∈ {0, 1}k such that
Π′ rejects only with probability O(1/n2). Let A ⊆ {0, 1}r be the set of strings z such that
Π′ accepts (x, y, w) on random string z. We have |A| ≥ 2r(1−O(1/n2)). It suffices to show
that there is a choice of z(1), . . . , z(c) ∈ {0, 1}r such that for every z ∈ {0, 1}r, there is a z(i)

such that z ⊕ z(i) ∈ A.
We show the existence of such a z(1), . . . , z(c) by the probabilistic method. Choose

z(1), . . . , z(c) i.u.a.r. from {0, 1}r. Fix a z ∈ {0, 1}r. Since z⊕z(i) has the uniform distribution
over {0, 1}r for each i ∈ [c], we have

Pr
z(1),...,z(c)

[∀i ∈ [c], z ⊕ z(i) 6∈ A] =
∏
i∈[c]

Pr
z(i)

[z ⊕ z(i) 6∈ A] ≤
(
O(1)
n2

)c
<

1
nc
.

By a union bound, the probability that there is a z ∈ {0, 1}r such that for every i ∈ [c],
z ⊕ z(i) 6∈ A is strictly less than 2r/nc ≤ 1 (since r ≤ c logn). This shows the existence of
z(1), . . . , z(c) as required. J

Acknowledgements. We thank Mika Göös for a helpful discussion on communication
complexity classes.

References
1 Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. Distributed PCP theorems for

hardness of approximation in P. In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 25–36,
2017. URL: https://doi.org/10.1109/FOCS.2017.12, doi:10.1109/FOCS.2017.12.

2 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the poly-
nomial method to algorithm design. In Proceedings of the Twenty-Sixth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 218–230, 2015. URL: https://doi.org/10.1137/1.9781611973730.17,
doi:10.1137/1.9781611973730.17.

3 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of al-
most k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304, 1992.
URL: https://doi.org/10.1002/rsa.3240030308, doi:10.1002/rsa.3240030308.

4 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory (preliminary version). In 27th Annual Symposium on Foundations of
Computer Science, Toronto, Canada, 27-29 October 1986, pages 337–347, 1986. URL:
https://doi.org/10.1109/SFCS.1986.15, doi:10.1109/SFCS.1986.15.

5 Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster space-efficient
algorithms for subset sum and k-sum. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 198–209, 2017. URL: http://doi.acm.org/10.1145/3055399.3055467, doi:
10.1145/3055399.3055467.

6 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause
width and clause density for SAT. In 21st Annual IEEE Conference on Computational
Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 252–260, 2006.
URL: https://doi.org/10.1109/CCC.2006.6, doi:10.1109/CCC.2006.6.

7 Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and
more: Quickly derandomizing razborov-smolensky. In Proceedings of the Twenty-Seventh

https://doi.org/10.1109/FOCS.2017.12
http://dx.doi.org/10.1109/FOCS.2017.12
https://doi.org/10.1137/1.9781611973730.17
http://dx.doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1002/rsa.3240030308
http://dx.doi.org/10.1002/rsa.3240030308
https://doi.org/10.1109/SFCS.1986.15
http://dx.doi.org/10.1109/SFCS.1986.15
http://doi.acm.org/10.1145/3055399.3055467
http://dx.doi.org/10.1145/3055399.3055467
http://dx.doi.org/10.1145/3055399.3055467
https://doi.org/10.1109/CCC.2006.6
http://dx.doi.org/10.1109/CCC.2006.6

D. Kush and S. Srinivasan XX:13

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA,
USA, January 10-12, 2016, pages 1246–1255, 2016. URL: https://doi.org/10.1137/
1.9781611974331.ch87, doi:10.1137/1.9781611974331.ch87.

8 Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner
product. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018,
San Diego, CA, USA, pages 14:1–14:45, 2018. URL: https://doi.org/10.4230/LIPIcs.
CCC.2018.14, doi:10.4230/LIPIcs.CCC.2018.14.

9 Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput.,
11(3):467–471, 1982.

10 Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Handbook of Satisfiab-
ility, pages 403–424. 2009. URL: https://doi.org/10.3233/978-1-58603-929-5-403,
doi:10.3233/978-1-58603-929-5-403.

11 Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudoran-
dom generators for depth 2 circuits. Electronic Colloquium on Computational Complexity
(ECCC), 16:141, 2009. URL: http://eccc.hpi-web.de/report/2009/141.

12 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010. URL: https://doi.org/10.1007/
978-3-642-16533-7, doi:10.1007/978-3-642-16533-7.

13 Krasimira Genova and Vassil Guliashki. Linear integer programming methods and ap-
proaches - a survey. Cybernetics and Information Technologies, 11(1):3–25, 2011.

14 Oded Goldreich and David Zuckerman. Another Proof That BPP ⊆ PH (and More), pages
40–53. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. URL: https://doi.org/10.
1007/978-3-642-22670-0_6, doi:10.1007/978-3-642-22670-0_6.

15 Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication com-
plexity classes. In 43rd International Colloquium on Automata, Languages, and Program-
ming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 86:1–86:15, 2016. URL: https:
//doi.org/10.4230/LIPIcs.ICALP.2016.86, doi:10.4230/LIPIcs.ICALP.2016.86.

16 Kristoffer Arnsfelt Hansen and Vladimir V. Podolskii. Exact threshold circuits. In
Proceedings of the 25th Annual IEEE Conference on Computational Complexity, CCC
2010, Cambridge, Massachusetts, USA, June 9-12, 2010, pages 270–279, 2010. URL:
https://doi.org/10.1109/CCC.2010.33, doi:10.1109/CCC.2010.33.

17 Russell Impagliazzo, Shachar Lovett, Ramamohan Paturi, and Stefan Schneider. 0-1 integer
linear programming with a linear number of constraints. Electronic Colloquium on Compu-
tational Complexity (ECCC), 21:24, 2014. URL: http://eccc.hpi-web.de/report/2014/
024.

18 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability
algorithm for ac0. In Proceedings of the Twenty-Third Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,
pages 961–972, 2012. URL: http://portal.acm.org/citation.cfm?id=2095193&CFID=
63838676&CFTOKEN=79617016.

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput.
Syst. Sci., 62(2):367–375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727, doi:
10.1006/jcss.2000.1727.

20 Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algorithm
for sparse depth two threshold circuits. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 479–488,
2013. URL: https://doi.org/10.1109/FOCS.2013.58, doi:10.1109/FOCS.2013.58.

21 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized com-
plexity of approximating dominating set. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,

https://doi.org/10.1137/1.9781611974331.ch87
https://doi.org/10.1137/1.9781611974331.ch87
http://dx.doi.org/10.1137/1.9781611974331.ch87
https://doi.org/10.4230/LIPIcs.CCC.2018.14
https://doi.org/10.4230/LIPIcs.CCC.2018.14
http://dx.doi.org/10.4230/LIPIcs.CCC.2018.14
https://doi.org/10.3233/978-1-58603-929-5-403
http://dx.doi.org/10.3233/978-1-58603-929-5-403
http://eccc.hpi-web.de/report/2009/141
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-16533-7
http://dx.doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/978-3-642-22670-0_6
https://doi.org/10.1007/978-3-642-22670-0_6
http://dx.doi.org/10.1007/978-3-642-22670-0_6
https://doi.org/10.4230/LIPIcs.ICALP.2016.86
https://doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
https://doi.org/10.1109/CCC.2010.33
http://dx.doi.org/10.1109/CCC.2010.33
http://eccc.hpi-web.de/report/2014/024
http://eccc.hpi-web.de/report/2014/024
http://portal.acm.org/citation.cfm?id=2095193&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095193&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1109/FOCS.2013.58
http://dx.doi.org/10.1109/FOCS.2013.58

XX:14 A Faster Algorithm for 0-1 Integer Programming from Communication Complexity

2018, pages 1283–1296, 2018. URL: http://doi.acm.org/10.1145/3188745.3188896,
doi:10.1145/3188745.3188896.

22 Clemens Lautemann. BPP and the polynomial hierarchy. Inf. Process. Lett., 17(4):215–
217, 1983. URL: https://doi.org/10.1016/0020-0190(83)90044-3, doi:10.1016/
0020-0190(83)90044-3.

23 Saburo Muroga. Threshold logic and its applications. Wiley, 1971.
24 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and

applications. SIAM J. Comput., 22(4):838–856, 1993. URL: https://doi.org/10.1137/
0222053, doi:10.1137/0222053.

25 Ilan Newman. Private vs. common random bits in communication complexity. Inf. Process.
Lett., 39(2):67–71, 1991.

26 Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul
Erdos is Eighty, 1:301–315, 1993.

27 Anup Rao and Amir Yehudayoff. Communication complexity (early draft). URL: https:
//homes.cs.washington.edu/~anuprao/pubs/book.pdf.

28 Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pages 1260–1268, 2018. URL: http://doi.acm.
org/10.1145/3188745.3188916, doi:10.1145/3188745.3188916.

29 Rainer Schuler. An algorithm for the satisfiability problem of formulas in conjunctive nor-
mal form. J. Algorithms, 54(1):40–44, 2005. URL: https://doi.org/10.1016/j.jalgor.
2004.04.012, doi:10.1016/j.jalgor.2004.04.012.

30 Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335.
ACM, 1983.

31 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 238–251, 2017. URL: http://doi.acm.org/10.
1145/3055399.3055408, doi:10.1145/3055399.3055408.

32 Ryan Williams. Algorithms and resource requirements for fundamental problems. PhD
Thesis, 2007.

33 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 194–202, 2014. URL: http://doi.acm.org/10.1145/2591796.2591858,
doi:10.1145/2591796.2591858.

34 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In 10th Interna-
tional Symposium on Parameterized and Exact Computation, IPEC 2015, September 16-18,
2015, Patras, Greece, pages 17–29, 2015. URL: https://doi.org/10.4230/LIPIcs.IPEC.
2015.17, doi:10.4230/LIPIcs.IPEC.2015.17.

http://doi.acm.org/10.1145/3188745.3188896
http://dx.doi.org/10.1145/3188745.3188896
https://doi.org/10.1016/0020-0190(83)90044-3
http://dx.doi.org/10.1016/0020-0190(83)90044-3
http://dx.doi.org/10.1016/0020-0190(83)90044-3
https://doi.org/10.1137/0222053
https://doi.org/10.1137/0222053
http://dx.doi.org/10.1137/0222053
https://homes.cs.washington.edu/~anuprao/pubs/book.pdf
https://homes.cs.washington.edu/~anuprao/pubs/book.pdf
http://doi.acm.org/10.1145/3188745.3188916
http://doi.acm.org/10.1145/3188745.3188916
http://dx.doi.org/10.1145/3188745.3188916
https://doi.org/10.1016/j.jalgor.2004.04.012
https://doi.org/10.1016/j.jalgor.2004.04.012
http://dx.doi.org/10.1016/j.jalgor.2004.04.012
http://doi.acm.org/10.1145/3055399.3055408
http://doi.acm.org/10.1145/3055399.3055408
http://dx.doi.org/10.1145/3055399.3055408
http://doi.acm.org/10.1145/2591796.2591858
http://dx.doi.org/10.1145/2591796.2591858
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.17

	The 0-1 Integer Programming problem
	Techniques.
	Related work.

	Preliminaries
	Orthogonal Vectors
	MA protocols in communication complexity
	Small bias spaces and subspace avoidance

	An MA protocol with 1-sided error for any threshold function
	The reduction to Orthogonal Vectors
	More on MA versus MA with 1-sided error

