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1 Introduction

1.1 Overview of the thesis

In the remainder of section 1, we define the Orthogonal Vectors problem and dis-

cuss its trivial algorithms. We also state the Orthogonal Vectors Conjecture and

Strong Exponential Time Hypothesis and explore their connections. In section 2, we

define Partial Match and Subset Query and show their equivalences to Orthogonal

Vectors. Further, we discuss a novel generalization of such kinds of problems and

prove a dichotomy result based on a graph theoretic characterization: in some cases

this generalized problem is at least as hard as Orthogonal Vectors and in the rest,

it can be solved in almost linear time. In section 3, we discuss a faster-than-trivial

algorithm for Orthogonal Vectors due to Abboud, Williams, and Yu [AWY15], mo-

tivating every step along the way. In section 4, we show that listing (almost) all

orthogonal pairs is sub-quadratically equivalent to detecting even a single orthog-

onal pair. Finally in section 5, we discuss a few natural extensions that can be

explored.

1.2 Preliminaries

Given two vectors u, v ∈ {0, 1}d, we say that they are orthogonal if
∑d

i=1 uivi = 0

where the sum is considered over the field of real numbers R (and crucially, not over

F2). Equivalently, they are orthogonal if
∨
i∈[d] ui ∧ vi = 0; spelled out in words,

this means that there is no i ∈ [d] such that ui = vi = 1. The Orthogonal Vectors

problem is defined as follows.

Input: Lists A,B of N d-dimensional 0-1 vectors each.

Output: A pair u ∈ A and v ∈ B such that u and v are orthogonal, if such

a pair exists.

We shall call the corresponding decision version of this problem Orthogonal

Detection. One immediately notices that a brute-force algorithm for this problem

runs in O(N2 ·d) time: for every pair of vectors (u, v) ∈ A×B, simply check if they

are orthogonal in O(d) time. Another simple idea is to do the following:

• For each vector v ∈ {0, 1}d, check if v belongs to A. If it does, add it to the

list A′. Similarly, create a new list B′.
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• Do a brute-force search for orthogonal vectors on these new lists A′ and B′.

Observe that the first step takes O(2dN · d) time. The purpose of creating

these new lists is to remove all redundant entries in the original lists. Once this is

done, the second step, in the worst case, simply takes O(22d · d) time for a total

running time of O(2d(N + 2d) · d). The running times of these algorithm clearly

suggest considering the two cases d > logN and d < logN . In the latter case,

the second algorithm performs better than the first. More precisely, observe that if

d = (1− ε) logN , then it has a running time of O(N2−ε ·d). Whereas, in the former

case, using the first algorithm of running time O(N2 · d) would be preferable. So

it is now natural to ask: can we also obtain a running time of O(N2−ε · d) when

d grows faster than logN? The Orthogonal Vectors Conjecture states that this is

impossible:

Conjecture 1 (OVC, [Wil05, AWW14]). If d = ω(logN), then there is no algo-

rithm for Orthogonal Vectors problem that runs in time Õ(N2−ε) for any ε > 0.

Here the notation Õ(·) is the same as O(·) except that it hides any logarithmic

factors in N . It is convenient to use here as we have already convinced ourselves

that an interesting regime for d is when it grows as c logN for some constant c > 0.

We shall only work in this regime throughout this document.

While the orthogonal vectors problem is of interest in multiple areas, espe-

cially in computational geometry to prove lower bounds assuming OVC (see for

example[Wil18], here we shall see its connection to one of the most important prob-

lems in computer science, the boolean satisfiability problem (CNF-SAT), which is

defined as follows:

Input: Boolean variables x1, . . . , xn and a formula in the conjunctive normal

form i.e. of the form C1 ∧ . . . ∧ Cm where each Ci is the logical OR of these

variables or their negations

Output: 1 if there exists an assignment to these variables on which this

formula evaluates to 1 and 0 otherwise

The same problem but with the added constraint that each clause of the input

formula contains at most k literals (a variable or its negation is called a literal) is

called k-CNF-SAT.
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1.3 Connection between OVC and SETH

We will now see a reduction from k-CNF-SAT to Orthogonal Vectors for any k.

Theorem 1. There is an algorithm which on an instance F of k-CNF-SAT with n

variables and m clauses produces an instance T of Orthogonal Detection such that

F is yes instance if and only if T is a yes instance. Further, this reduction runs in

time O(2n/2m).

Proof. The technique we shall use to give the reduction is called split and list.

Consider a k-CNF formula F on variable set x1, . . . , xn and with claues C1, . . . , Cm.

We will construct two sets of d-dimensional boolean vectors A and B with N =

|A| = |B| = 2n/2 and d = m.

Split the variables into two sets and let α be an assigment to the first set of

variables. Define the vector Aα as

(Aα)j =

1, if α does not satisfy Ci

0, otherwise

Symmetrically, for β an assignment to the second set of variables define Bβ as

(Bβ)j =

1, if β does not satisfy Ci

0, otherwise

We define A as the set of all Aα obtained that way and B as the set of all Bβ. We

have that α, β satisfies the formula if and only if for all j either α or β satisfies Cj.

Hence either (Aα)j = 0 or (Bβ)j = 0, which is the case exactly if Aα and Bβ are

orthogonal. The running time is O(2n/2m) as for each assignment α (respectively

β) to the first set of variables, it takes O(m) time to construct the boolean vector

Aα (respectively Bβ).

Analogous to OVC, a conjecture about the lower bound for Orthogonal Vec-

tors, is a conjecture about the lower bound for SAT, which is called the Strong

Exponential Time Hypothesis :

Conjecture 2 (SETH, [CIP06]). For every ε > 0, there exists k ∈ N such that

k-CNF-SAT requires Ω(2n−εn) time.

Next, we observe the following relationship between the two conjectures using

theorem 1.
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Corollary 2. SETH implies OVC.

Proof. Let us prove the contrapositive. Assume that we have an algorithm for

orthogonal vectors that runs in time Õ(N2−ε) for some ε > 0 if d = ω(logN).

Then we have such an algorithm for d = C logN for all constants C. Hence, using

theorem 1, for any k we get a total running time to solve k-CNF-SAT (on n variables

and m clauses) of

O(2n/2 ·m+ (2n/2)2−ε) = O(2n−
nε
2 )

which contradicts SETH.

Remark 3. The reason we can ignore m when multiplied with 2n in the above

expression is because we can assume it be O(n) due to the following result which we

shall only state informally.

Lemma 4 (Sparsification Lemma, Informal). There is a sub-exponential time al-

gorithm which reduces the number of clauses of a k-CNF-SAT formula to O(n), for

any constant k.

2 A generalization to larger alphabets

2.1 Equivalence with Partial Match and Subset Query

Before we attempt to generalize this problem by considering alphabets larger than

{0, 1}, let us motivate it by first seeing a couple of examples of problems that are

known to be equivalent to orthogonal vectors and an example of a problem which

can be solved much faster. The Partial Match problem can be defined as follows:

Input: Queries x1, . . . , xn from {0, 1, ?}d and a database D ⊆ {0, 1}d of size

n

Output: Determine if for some query xi, there is a string y ∈ D such that xi

matches y at all its non-? positions

In a similar spirit, we define the Subset Query problem:

Input: Query subsets S1, . . . , Sn of [d] and a database D of size n containing

subsets of [d]

Output: Determine if for some query Si, there is a set T ∈ D such that

Si ⊆ T
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Let us see the equivalence between the three problems. Note that we have a

natural correspondence between S ⊆ [d] and a vector vS ∈ {0, 1}d where the ith

coordinate is 1 if and only if i ∈ S. Further, observe that S ⊆ T ⇔ S ∩ T = ∅.
To reduce between subset query and orthogonal vectors: we simply turn query sets

S ⊆ [d] into their corresponding d-bit vectors vS (or vice-versa) and flip the bits

of the database sets T ∈ D i.e. take the ones’ complement of vT , denoted by vT .

Finally, observe that S ⊆ T if and only if vS and vT are orthogonal.

Next, given an instance of orthogonal vectors with lists A,B of n d-dimensional

vectors each, we can reduce it to an instance of partial match as follows: for each

u ∈ A, define a query u∗ ∈ {0, 1, ?}d by replacing a 0-position in u to ? in u∗ and

keeping the 1-positions as they are. Let the database D be the collection of all v

(ones’ complement of v), where v ∈ B. Recall that u ∈ A and v ∈ B are orthogonal

if and only if there is no index i ∈ [d] such that ui = vi = 1, which if true implies

vi = 0 whenever ui = 1. In other words, v matches u∗ at all its non-? positions

if and only if u ∈ A and v ∈ B are orthogonal. Conversely, given partial match

queries q ∈ {0, 1, ?}d and database vectors v ∈ {0, 1}d, we create an instance of

orthogonal vectors as follows: construct list A, which contains uq ∈ {0, 1}2d for

every query q, defined as: for all indices i = 1, 2, . . . , d,

• if qi = 0, define (uq)2i−1 = 1 and (uq)2i = 0.

• if qi = 1, define (uq)2i−1 = 0 and (uq)2i = 1.

• if qi = ?, define (uq)2i−1 = 0 and (uq)2i = 0.

Similarly construct list B which contains v′ ∈ {0, 1}2d for all database vectors v,

defined as follows: for all indices i = 1, 2, . . . , d,

• if vi = 0, define v′2i−1 = 0 and v′2i = 1.

• if vi = 1, define v′2i−1 = 1 and v′2i = 0.

Then it is straightforward to observe that a query q matches with a database vector

v at all non-? positions if and only if uq and v′ are orthogonal.

It is important to note that all these reductions run in O(nd) time and therefore,

in the regime when d = C log n which is what we are interested in, the existence of

an Õ(n2−ε) algorithm for one problem implies so for the other two as well.
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2.2 Almost linear time algorithm for a similar problem

Next, we study a problem very similar to partial match, which we shall call Exact

Match:

Input: Queries x1, . . . , xn from {0, 1}d and a database D ⊆ {0, 1}d of size n

Output: Determine if for some query xi, there is a string y ∈ D such that

xi = y

Despite the obvious similarity to partial match, we observe that Exact Match

can be solved rather quickly.

Theorem 5. There is an algorithm that solves Exact Match with running time

Õ(n).

Proof. On input queries x1, . . . , xn from {0, 1}d and database D = {y1, . . . , yn} ⊆
{0, 1}d, do the following:

1. Treat each xi as the binary representation of some integer and sort x1, . . . , xn

using any optimal sorting algorithm (for example Merge Sort).

2. For each j ∈ [n], use binary search to determine if there is an i ∈ [n] such

that yj = xi.

Using the fact that sorting of d-bit numbers takesO(dn log n) time and binary search

takes O(d log n) time, it is evident that this algorithm runs in Õ(n) time.

2.3 The generalization and dichotomy result

In the remainder of this section, we aim to study the reason behind this stark

contrast between the runtime of Exact Match and the runtime of Partial Match

(assuming OVC is true). Let us begin with a few definitions.

Definition 6 (Problem Π(f,Σ1,Σ2)). Suppose we are given two lists A,B of d-bit

strings where the strings come from Σd
1 and Σd

2 respectively for some constant-sized

alphabets Σ1,Σ2. Further, assume that f : Σ1×Σ2 → {0, 1} is any boolean function

(also called predicate). Then define Π(f,Σ1,Σ2) to be the problem of determining if

there are strings s ∈ A, t ∈ B such that
∧
i∈[d] f(si, ti).

We readily observe that all problems that we have discussed so far immediately

fall into this framework. For example, consider the example of Partial Match.

What f,Σ1,Σ2 does it correspond to? Clearly, we must have Σ1 = {0, 1, ?} and

Σ2 = {0, 1}. f must be given by the predicate PM which takes the following values:
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• PM(?, 0) = PM(?, 1) = 1.

• PM(0, 0) = PM(1, 1) = 1.

• PM(0, 1) = PM(1, 0) = 0.

Definition 7 (Graph Gf,Σ1×Σ2 of Π(f,Σ1,Σ2)). Given f,Σ1,Σ2 as above, we create

a bipartite graph Gf,Σ1×Σ2 with parts Σ1,Σ2 such that there is an edge between u ∈ Σ1

and v ∈ Σ2 if and only if f(u, v) = 1.

The purpose of considering the graphs corresponding to the predicate f and the

alphabets Σ1,Σ2 is to use them to precisely characterize the hardness of Π(f,Σ1,Σ2):

when is it as hard as Orthogonal Vectors and when is it as easy as Exact Match?

Before moving on this characterization, let us first look at the graphs correspond-

ing to Orthogonal Vectors and Exact Match. Let OV be the Orthogonal Vectors

predicate on Ω = {0, 1} i.e. OV (a, b) = 0 ⇔ (a, b) = (1, 1). Similarly, let EM be

the Exact Match predicate on Ω i.e. EM(a, b) = 1⇔ a = b.

(a) A picture of GOV,Ω2 (b) A picture of GEM,Ω2

Figure 1: Difference between the graphs of Orthogonal Vectors and Exact Match

We observe that GOV,Ω2 is precisely a path of length 3. Also, GEM,Ω2 is simply

a perfect matching of size 2. Further, note that one can also define Exact Match

on a larger alphabet Σ of constant size c, where the bits of both the query strings

and database strings come from Σ. It is easy to see that theorem 5 will continue to

hold in this case, as instead of treating strings as binary representations of integers,

we can think of them as representations in base c. Moreover, GEM,Σ2 will still be a

perfect matching, albeit of size c.

Consider the graphs of the two problems we’ve shown to be equivalent to Or-

thogonal Vectors: Subset Query and Partial Match. What can we say about their

graphs? Observe that they both contain GOV,Ω2 as induced subgraphs! This leads

us to the following

Theorem 8. There is a dichotomy in the hardness of Π(f,Σ1,Σ2):
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• If Gf,Σ1×Σ2 contains a path of length 3 as an induced subgraph, then Π(f,Σ1,Σ2)

is at least as hard as Orthogonal Vectors.

• Otherwise, there is an algorithm that solves Π(f,Σ1,Σ2) in time Õ(n).

Proof. • If Gf,Σ1×Σ2 contains GOV,Ω2 as induced subgraph, then upon relabelling

if necessary, it is easy to see that any instance of Orthogonal Vectors can

be simulated using Π(f,Σ1,Σ2). In other words, a sub-quadratic algorithm

(i.e. an algorithm with running time Õ(n2−ε) for some constant ε > 0) for

Π(f,Σ1,Σ2) would imply one for Orthogonal Vectors.

• Suppose Gf,Σ1×Σ2 does not contain any path of length 3 as an induced sub-

graph. Without loss of generality, we may assume that it does not contain

any isolated vertices. Using the terminology of definition 6, this is because

if a ∈ Σ1 is isolated and s is a string in list A in which a appears, then we

can straight away rule out the possibility of there being a t ∈ B for which∧
i∈[d] f(si, ti). We now appeal to the following

Lemma 9. Suppose G is bipartite graph with parts X and Y having no isolated

vertices such that it does not contain a path of length 3 as an induced subgraph.

Then it must be the disjoint union of complete bipartite graphs.

Proof. Let us prove the contrapositive of this statement. Suppose G has a

connected component Gj with parts Xj ⊆ X and Yj ⊆ Y such that Gj is not

complete. This means that there exist vertices x ∈ Xj and y ∈ Yj that are not

adjacent. But by assumption, neither of them are isolated; thus, there must

be vertices u ∈ Xj and v ∈ Yj such that x is adjacent to v and y is adjacent

to u. But then the graph induced by the vertices x, y, u, v is precisely a path

of length 3.

Applying this lemma to Gf,Σ1×Σ2 , we obtain that it must be the disjoint union

of G1, . . . , Gc where each Gj is a complete bipartite graph with parts Xj ⊆ Σ1

and Yj ⊆ Σ2. Define an alphabet Σ = {1, 2, . . . , c}. Then given an instance

of Π(f,Σ1,Σ2), we reduce it to an instance of Π(EM,Σ,Σ): for a string

s ∈ A ⊆ Σd
1, define a new string s′ ∈ Σd as follows. We know that each bit si

lies in a unique set Xj where 1 ≤ j ≤ c. Define s′i to be this precise j ∈ Σ.

Let the collection of all such s′ be called A′. Similarly define t′ for all strings

t ∈ B using the partition {Yj}cj=1 of Σ2 and call this collection B′. Note that
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this reduction takes O(nd) time. It is now clear that
∧
i∈[d] f(si, ti)⇔ s′i = t′i.

Or in other words, this is true if and only if
∧
i∈[d] EM(s′i, t

′
i). But we have

already seen that Exact Match can be solved in Õ(n) time. This concludes

the proof.

Remark 10. Notice that we write ‘Gf,Σ1×Σ2 contains a path of length 3 as an

induced subgraph’ and not simply ‘...contains a path of length 3’. This is important

because K2,2 is a graph containing the latter but not the former. And indeed, a

problem Π whose graph is K2,2 is reducible to Exact Match and thus, can be solved

in almost linear time.

3 A fast algorithm for Orthogonal Vectors

In this section, we shall describe a faster randomized algorithm for Orthogonal

Vectors due to Abboud, Williams and Yu [AWY15]. As we can expect, the running

time of this algorithm is not sub-quadratic, but nevertheless it improves significantly

on the trivial O(n2d) algorithm.

Theorem 11. For vectors of dimension d = c(n) log n, Orthogonal Detection can

be solved in n2−1/O(log c(n)) time by a randomized algorithm that is correct with high

probability.

Proof. Before moving on to the formal description and analysis of this algorithm, it

is imperative that we describe the key high-level ideas involved in the proof. Suppose

we are given lists A,B of n d-dimensional 0-1 vectors each, as input. There are four

important ideas:

1. Reduce the problem to many subproblems of very small size i.e. divide both

lists A and B into q = dn
s
e many sub-lists (A1, . . . , Aq and B1, . . . , Bq) of size s

each. A subproblem now is to determine whether there is a pair of orthogonal

vectors in Ai ×Bj.

2. Construct small boolean circuits for solving these subproblems. We’ve already

seen that x and y are orthogonal if and only if
∨
i∈[d] xi ∧ yi = 0 or in other

words, if
∧
i∈[d] ¬xi ∨ ¬yi which when expressed as a circuit is an AND of

fan-in d over ORs of fan-in 2. Build on this to come up with a circuit for a

subproblem (Ai, Bj) which outputs 1 if and only if there is a pair of orthogonal

vectors in Ai ×Bj.
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3. Evaluate circuits using probabilistic polynomials (defined as a distribution over

certain polynomials) of low degree i.e. construct polynomials (over F2) that on

an input (Ai, Bj), determine if there is a pair of orthogonal vectors in Ai×Bj,

with high probability. But how do we transform these small circuits into low-

degree polynomials? This requires a tool (due to Razborov and Smolensky).

4. Finally, evaluate this polynomial over all possible q2 pairs (Ai, Bj) in Õ(n2/s2)

time, using fast rectangular matrix multiplication (due to Coppersmith).

Now that we have this big picture in mind, let us first formally describe the two

major tools that we are going to use to come up with this algorithm. The first of

them is a probabilistic construction of polynomials over F2 that approximates small

boolean circuits, due to Razborov[Raz87] and Smolensky[Smo87]. Suppose we wish

to compute the OR of the bits y1, . . . , yd by evaluating a polynomial over F2. It is

not hard to figure out that 1 + Πd
j=1(1 + yj) does the job. But the question that

we want to ask ourselves is that can a smaller degree polynomial do the job? If not

always, then perhaps with a high probability?

Lemma 12. Let t, d ∈ N and suppose rij are chosen independently and uniformly

at random from F2 for 1 ≤ i ≤ t and 1 ≤ j ≤ d. Define the expression

At(y1, . . . , yd) =
t∏
i=1

(1 +
d∑
j=1

rij(1 + yj)).

Then Prrij [At(y1, . . . , yd) = AND(y1, . . . , yd)] ≥ 1 − 1/2t for all (y1, . . . , yd) ∈
{0, 1}d.

Proof. Suppose b1, . . . , bd are chosen independently and uniformly at random from

F2. Consider the expression
∑d

j=1 bjyj. If all yj = 0, then this expression computes

OR(y1, . . . , yd) correctly with probability 1. Otherwise there is a j for which yj = 1

and by the Schwartz-Zippel lemma, this expression computes OR(y1, . . . , yd) cor-

rectly with probability at least 1/2. To bring down the error probability to 1/2t,

we simply run this process t times, and take the AND over all outcomes. In other

words, we conclude that the expression

Bt(y1, . . . , yd) =
t∏
i=1

(
d∑
j=1

rijyj

)
.

equals OR(y1, . . . , yd) with probability at least 1− 1/2t for all choices of y1, . . . , yd.

Finally, to see the conclusion about At, just observe that AND(y1, . . . , yd) =

OR(y1, . . . , yd), where the overline denotes the complement.
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Next, we state the main result due to Coppersmith[Cop82] that allows us to

perform fast rectangular matrix multiplication.

Lemma 13. For all sufficiently large N , multiplication of an N × N0.172 matrix

with an N0.172 ×N matrix can be done in O(N2 log2N) arithmetic operations.

As mentioned earlier, we also want to understand how we can use matrix mul-

tiplication in evaluating polynomials over many inputs simultaneously.

Lemma 14. For a polynomial P (x1, . . . , x`, y1, . . . , y`) over F2 with at most N0.1

monomials, and two lists of N inputs A = {u1, . . . , uN} ⊆ {0, 1}`, B = {v1, . . . , vN} ⊆
{0, 1}`, we can evaluate P on all pairs (ui, vj) ∈ A×B in Õ(N2) time.

Proof. We shall reduce this problem of evaluating P to fast rectangular matrix

multiplication and then use lemma 13. Let m ≤ N0.1 be the number of monomials

of P . First, we order the monomials of P arbitrarily. Next, we construct an N ×m
matrix K with its rows indexed by strings in A, and columns indexed by monomials

of P in the fixed order that we have assigned to them. Similarly, we also construct

an m × N matrix L whose rows are indexed by monomials of P in this assigned

order and columns are indexed by strings in B. More precisely, for i = 1, . . . , n and

j = 1, . . . ,m, we define Kij to be the value of the jth monomial of P restricted to

the x-variables evaluated on ui (i.e. we set all y-variables in the jth monomial to

1, and plug in the assignment defined by ui for the variables x1, . . . , x`.). Similarly

for j = 1, . . . ,m and k = 1, . . . , n, define Ljk to be the value of the jth monomial of

P restricted to the y-variables evaluated on vk. Then, Kij · Ljk equals the value of

the jth monomial of P on the assignment (ui, vk), and therefore,

(L ·K)ik =
m∑
j=1

Kij · Ljk.

Or in other words, the (i, k)-th entry of the product matrix L ·K equals the value of

P on the assignment (ui, vk). But by lemma 13, we know that this product matrix

can be computed in Õ(N2) time.

Now let us expand on the second idea of writing the existence of an orthogonal

vector pair in a subproblem (A′, B′) (where A′ ⊆ A,B′ ⊆ B are of size s each, and

where s will eventually be chosen as something small in terms of n) as a boolean

circuit. Given xi ∈ A′ and yj ∈ B′, we know that

F (xi, yj) =
∧
k∈[d]

¬xi[k] ∨ ¬yj[k]
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is true if and only if xi and yj are orthogonal. Therefore, the circuit

C(A′, B′) =
s∨

i,j=1

F (xi, yj)

evaluates to 1 if and only if there is an orthogonal pair in A′ × B′. Note that the

circuit C is therefore an OR of s2 ANDs of d ORs of two negations of input bits,

of size O(s2d), as can be seen from figure 2.

∨

∧

∨

¬xi[k] ¬yj[k]

∨

∧

. . . . . . . . .

. . . . . .

Figure 2: A picture of C(A′, B′): the top OR gate (in red) has fan-in s2; the bottom OR

gates (in blue) have fan-in 2; the AND gates have fan-in d.

Now, we want to formalize the third idea. How do we construct probabilistic

polynomials that evaluate to C with good probability? We will randomly convert

C into a low-degree polynomial, as follows. First, the bottom ORs of the form

(¬a ∨ ¬b) can be directly converted into polynomials over F2, by replacing each

of them with the expression 1 + a · b. Next, applying the Razborov-Smolensky

construction from lemma 12 to the AND gates, we replace each of them by the

expression A3 log s. This replacement of one AND gate will yield an error of at most

1/s3. Thus, the probability that any of them errs is bounded by s2

s3
= 1

s
. Finally, we

replace the top OR gate by the expression B2 (recall its definition from the proof

of lemma 12). The probability that B2 will evaluate OR incorrectly on its inputs

is at most 1/4. Let P be the final polynomial obtained (on 2 · sd variables i.e. each

bit of each string of A′ and B′) after making all these replacements. Therefore, by

the union bound, the probability that P does not compute C(A′, B′) correctly is

bounded by 1
s

+ 1
4
≤ 1

3
(we shall see that 1/s will turn out to be small enough for

instances with sufficiently large n).
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Let us now discuss the fourth and final idea. We have constructed a polyno-

mial P that computes whether (A′, B′) has an orthogonal vector pair or not with

probability at least 2/3. Now, we wish to compute P efficiently on all subproblems

(Ai, Bj) where 1 ≤ i, j ≤ q simultaneously (recall that q = dn/se). To this end,

we make use of lemma 14. But to do this, we first need to estimate the number of

monomials in P and ensure that it is bounded by n0.1. This will then give an idea

of what s needs to be.

We note that when any of the middle ANDs is replaced with A3 log s (after

replacing the bottom OR with the expression 1+xi[k]·yi[k]), the expression becomes

3 log s∏
t=1

(
1 +

d∑
k=1

rtk · xi[k] · yj[k]

)
.

each of whose brackets contains d + 1 terms and therefore, the expansion contains

O((d + 1)3 log s) monomials. Now the replacement for the top OR is B2 which has

two brackets each of which is the sum of s2 terms, each of which corresponds to

one middle AND. Therefore, the total number of monomials in P can be bounded

by (s2(d + 1)3 log s)2 = s4(d + 1)6 log s, which we force to be upper bounded by n0.1.

Let s = 2ε
logn
log d (the reason behind this peculiar choice will become apparent in a

moment) for ε = 1/160. Then, the number of monomials m of P is at most

s4(d+ 1)6 log s = s4(d+ 1)6ε logn
log d

and therefore,

logm ≤ 4ε
log n

log d
+ 6ε log n

log(d+ 1)

log d

≤ 4ε log n+ 12ε log n

≤ 16ε log n

= 0.1 log n

and thus, lemma 14 is applicable.

Running Time. First, we need to figure out the runtime of the process of ex-

panding out P into a sum of monomials. Note that as written above, each of the

t1 = 3 log s brackets of A3 log s contains d + 1 terms. Degree of each term after ex-

pansion is t1 and thus, writing down one term takes O(t1) time. Therefore, writing

down all the terms takes O((d + 1)t1t1) time. Doing so for each AND gate and
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adding them up takes O(s2(d + 1)t1t1) time. Finally, note that we are multiplying

two such brackets to compute B2 and therefore, in all, it takes time

O((s2(d+ 1)t1t1)2) = O(s4(d+ 1)6 log s log2 s) = Õ(n0.1)

which is insignificant compared to the time taken to run the algorithm from lemma 14

i.e. Õ(n2/s2), which as s = nε/ log d, is n2− 1
O(log d) .

Remark 15. The reader might notice that this is not quite the runtime that is

promised in the theorem statement; indeed, what we have proved is a slightly weaker

result. To get the runtime mentioned in the theorem, we must use a stronger bound

on the number of monomials of A3 log s:
(
d+1

3 log s

)
instead of O((d + 1)3 log s), coupled

with a slightly different expression for s. The rest of the proof however, is identical

and doesn’t involve any new ideas.

Error Reduction. We have seen that the polynomial P that we construct only

computes the correct answer with probability 2/3. To bring down the error to say,

1/n, we simply repeat this algorithm 10 log n times (i.e. construct P1, . . . , P10 logn)

and then, simply output the majority value of the outputs of these 10 log n trials.

Chernoff bound guarantees that the majority value will be correct with probability

1 − 1/n. Further, this only blows up the runtime of our algorithm by a log n

factor.

4 A list version of Orthogonal Vectors

The Orthogonal Detection problem simply asks if there is an orthogonal pair in

A × B. What if we were to to ask for the list of all such pairs? How hard is this

problem? Certainly on the face of it, it seems like a harder problem than Orthogonal

Detection. Perhaps that’s why, the following result might seem surprising.

Theorem 16. Suppose Orthogonal Vectors has an algorithm A that on input lists

A,B ⊆ {0, 1}d of size n each, runs in Õ(n2−ε) time. Then there is an algorithm to

list all orthogonal pairs in A×B that runs in O(n2− εδ
2 ) time, assuming A×B has

at most ∆ = O(n2−δ) many orthogonal pairs.

Proof. Similar to the proof of theorem 11, the idea again is to use a divide and

conquer strategy. We start by partitioning both lists into blocks such that each

block is of size m (to be chosen later, in terms of n and ∆) so that there are n2/m2

pairs of blocks. On every pair A′ ⊆ A,B′ ⊆ B, run A and collect those pairs
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which do have an orthogonal pair. For each such pair (A′, B′), do the following:

split A′ and B′ into equal halves A′1, A
′
2 ⊂ A and B′1, B

′
2 ⊂ B and for each of

the 4 possible pairs of halves (A′i, B
′
j) for i, j ∈ {1, 2}, determine if it contains an

orthogonal pair by running A. If such a pair (A′i, B
′
j) contains an orthogonal pair,

recurse with the following provision: at each level i of the recursion (i goes from

0 to dlogme), maintain a global counter ci of the number of recursion calls that

have been executed at that level. Once ci > ∆, do not recurse on any more pairs

at recursion level i anymore. Once a pair consists of just singletons, we check if the

vectors are orthogonal or not.

Running Time. Note that at level i, there are m
2i

vectors in each list. Further,

at every level, only at most ∆ pairs containing an orthogonal pair are examined,

owing to the global counter constraint. Thus, the complexity of the algorithm for

level i ≥ 1 is O(∆
(
m
2i

)2−ε
) and at level 0 (i.e. the very first step) is O( n

2

m2 ·m2−ε) =

O(n2/mε) so that the total complexity is

O

(
n2

mε
+ ∆m2−ε

∑(
1

22−ε

)i)
= O

(
n2

mε
+ ∆m2−ε

)
.

Therefore, we decide to fix m = n/
√

∆ to equate the two terms. We obtain the

claimed running time upon substituting ∆ = O(n2−δ).

Remark 17. This theorem actually establishes the sub-quadratic equivalence be-

tween Orthogonal Detection and listing sub-quadratically many orthogonal pairs,

the formal (Turing Machine) definition of which we omit here.

The proof of theorem 16 is inspired from that of theorem 3.3 of [WW18], which

shows the sub-cubic equivalence between finding a negative weight triangle and

listing subcubically many negative weight triangles in a graph.

5 Further Work

Given that the list version of Orthogonal Vectors is sub-quadratically equivalent to

Orthogonal Vectors, one can ask the same question about Π(f,Σ1,Σ2), particularly

in the case when Gf,Σ1×Σ2 does not contain an induced subgraph of length 3. Also,

note that we have only shown that Π(f,Σ1,Σ2) is at least as hard as Orthogonal

Vectors in such a case. Therefore, in principle, it might be possible to come up with

a predicate and a pair of alphabets for which it is relatively easy to show that a
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sub-quadratic algorithm is impossible. These observations warrant making further

efforts into such investigations.
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