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Abstract

Gradient descent on images is a promising approach to generating high-resolution
class-conditional images with crisp details and coherent overall structure. Previous
work synthesized images by maximizing p(class|image)p(image), with pre-trained
models specifying these two terms. However, this maximization often produces
unrepresentative super-stimuli. Instead, we sample from p(image|class) using
gradient-based MCMC methods. This approach produces realistic and content-
diverse class-conditional images, and removes the need for ad-hoc tweaks to the
objective when longer iterations are introduced.

1 Introduction

Current cutting-edge image generation techniques are generally based on Generative Adversarial
Networks (GAN) [1] or Variational Autoencoders (VAE) [2]. The Deep Convolutional Generative
Adversarial Networks (DCGAN) [3] is the well-known state-of-the-art technique in this field and the
DRAW Algorithm [4] is the cutting-edge extension of the VAE. Although DCGAN and DRAW can
produce promising low-resolution images on the CIFAR and MNIST datasets [3; 4], they struggle to
produce high-resolution images on the ImageNet and MS COCO datasets [5; 6].

A completely different approach, due to Nguyen et. al. [7], uses gradient-based optimization of
images to do approximate maximum a posteriori probability (MAP) estimation, synthesizing large
(227 x 227) class-conditional images. An initial image is specified by a random vector z ∼ N (0, I)
which is passed through a pre-trained image generation network gθ(z). This image is fed into a
pre-trained classification network to compute class probabilities. The latent vector is then optimized
according to the gradient of the chosen class probability with respect to the image, multiplied by the
gradient of the image with respect to the latent vector, using backpropagation.

Image optimization is more expensive than most class-conditional image generation techniques, but
is able to produce large, high-resolution images with both crisp details and coherent overall structure.

Method Interpolate
within Class

Details
Crisp

Coherent Overall
Structure

High
Resolution

Fast
Generation

Class-Conditional GAN X X × × X

Image optimization × X X X ×
Table 1: Comparison between different generative methods

The experiments of [7], compose two types of pre-trained neural networks together. First, an
adversarially-trained image generation network from [8], trained on ImageNet [9]. This network is
used as the image prior p(image) that takes in an input vector and outputs a synthetic image. Second,
off-the shelf image classification networks (CaffeNet [10], AlexNet [11], or GoogleNet [12]) are
used as likelihoods p(class|image).



Figure 1: Architecture using the DGN and DNN.

In the experiments of [7], the input vector z is optimized to maximize a regularized loss. We note
that this loss is equivalent to the conditional log-probability log p(gθ(z)|class):

ẑ = arg maxz φ(gθ(z))− λ‖z‖22 (1)
= arg maxz log p(class|gθ(z)) + log p(z) (2)
= arg maxz log p(gθ(z)|class) (3)

Although maximizing (1) can generate high resolution class-conditional images, we observe that
this method tends to produce over-saturated super-stimuli unless the latent vectors z are bounded
within class-specific regions based on empirical statistic for that class. This ad-hoc fix is referred
to in [7] as clipping. One of our findings is that clipping is unnecessary if the method is run for
several thousand iterations, instead of 200 iterations as in [7]. Figure 2 compares images generated
using [7]’s approach both with and without clipping, with and without extra iterations, and using
gradient-based MCMC methods.

2 Sampling-based Conditional Image Generation

To produce class-conditional images that are more representative of the true distribution of images
containing that class, we adopt the Hamiltonian Monte Carlo (HMC) [13] and the Metropolis-adjusted-
Langevin-algorithm (MALA) [14] to sample images from p(image|class).

Markov Chain Monte Carlo (MCMC) can be used to sample from complex distributions. However,
the non-adaptive proposal distributions of many Metropolis-Hastings methods can lead to slow mixing
of the Markov chain. To address such problems, some MCMC methods use the gradient information
of the log-posterior to guide the sampler towards high-density regions. One such method is called
the Metropolis-adjusted-Langevin-algorithm (MALA) [14] which uses a combination of Langevin
diffusion and Metropolis-Hasting acceptance criteria to propose the new states of the random walk.
Another method called the Hamiltonian Monte Carlo (HMC) [13] incorporates the Hamiltonian
dynamics into the MCMC method by introducing an auxiliary variable, the momentum, into the
process.

We use gradient-based MCMC to approximately sample from the class-conditional posterior:

ẑ ∼ p(z|class) ∝ p(class|gθ(z))p(z) where p(z) = N (0, I) (4)

and p(class|gθ(z)) is defined by a classifier neural network.

We compare MAP and MALA image generation algorithms below. Note that in [7], the input vector z
is bounded through clipping (line 5 of Algorithm 1). On the other hand, MALA uses the Metropolis-
Hasting acceptance criterion (line 5 of Algorithm 2). Similarly, HMC also has an Metropolis-Hasting
accept/reject step; however, it uses Hamiltonian dynamics for the proposal distribution [13].

Algorithm 1 MAP with Clipping[7]
1: z ∼ N(0, I)
2: for iterations do
3: g = ∇log(p(class|z)p(z))
4: z = z + αg
5: z = clip(z)
6: end for

Algorithm 2 MALA
1: z ∼ N(0, I)
2: for iterations do
3: g = ∇log(p(class|z)p(z))
4: ẑ = z + αg +

√
2αε

5: z = MH Accept/Reject(z, ẑ)
6: end for
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3 Experiments and Results

In the following subsections, we first present the advantages of using MCMC methods to synthesize
images. Then, we measure how natural the images are by feeding them into the discriminator of a
DCGAN [3].

In our experiments, we use [7]’s image generator and classifiers (AlexNet and CaffeNet). Our MALA
incorporates annealed Gaussian noise [15], both MALA and HMC use decaying step size schedules
[16], and our combined iteration and leapfrog cost is 6000 runs.

We also examine the effect of using the clipping mechanism on MALA. In addition to the standard
MALA, we have a modified version where clipping is added after the Metropolis-Hasting acceptance
criterion.

Figure 2: Images generated with MAP, MALA, and HMC.
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Figure 3: Content-diverse images generated with MALA and HMC

3.1 Image Samples

Figure 2 shows images sampled with MALA and HMC. In contrast to MAP inference, we observe
that the MCMC methods produce realistic images even without the clipping mechanism. The sampled
images not only correctly illustrate their corresponding classes but also look natural. We also observe
that combining the clipping mechanism with MALA reduces the required number of iterations
substantially.

3.2 Diversity of Image Contents

We notice also that given enough iterations, gradient-based MCMC methods can generate content-
diverse images. For example, Figure 3 shows a picture of a beacon that notably also includes a sunset,
as well as an image of lipstick that also contains other types of makeup.

Note that in Figure 3, images for the parachute, alley, leaf beetle, and lipstick classes are generated
using MALA with clipping.

3.3 Automatically Evaluating Image Quality

In order to determine how natural the images are, we feed the synthesized images into the discriminator
of [3]’s DCGAN. The discriminator, trained on ImageNet, outputs the probability of an image being
natural versus synthesized from a GAN. Table 2 shows that the average log-probabilities of gradient-
based MCMC methods are very close to that of the MAP method. In addition, when MALA is
combined with clipping, the discriminator has a stronger belief that the image is real.

MAP with Clipping[7] MALA with Clipping MALA HMC

Average log-probability -6.00 -5.53 -9.79 -7.96
Table 2: Average log-probability of synthetic images being real.

4 Limitations

MCMC methods are known for slow convergence, particularly in high-dimensional data spaces [13].
Small step sizes and high number of iterations are often adopted to help improving the mixing rate.
However, this is computationally expensive and time consuming. In our experiments, we use an
iteration size of 6000, whereas the approach presented in [7] only requires 200 iterations.

5 Conclusions

We have shown that MALA and HMC are robust mechanisms that do not require the ad-hoc clipping
constraints to generate realistic looking images from p(image|class). We have also shown that MALA
and HMC are able to generate more content-diverse images that display not only the object of the
class but also objects that are closely associated to the class. In addition, we have shown that clipping
can be combined with gradient-based MCMC methods to improve the quality of the images.
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