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Abstract

We present a deep generative model that is able to synthesized the movement of
a given basketball player conditioning on the trajectory of the ball. For that, we
used the freely available NBA SportVU tracking data and a Conditional Variational
Autoencoder (CVAE). Similar to previous approaches, we capture the movement
of the player and the ball using pictorial representations. The temporal aspects of
the trajectories are encoded using ‘fading’. We show that our architecture is able to
correctly model the movement of the players, the movement of a given player, and
the movement of a given player conditioning on the trajectory of the ball. To the
best of our knowledge, this work constitutes one of the first attempts to synthesize
the movement of basketball players using a deep generative approach.

1 Introduction

Basketball is fundamentally a game of effective movement, precision passing, communication and
team chemistry. However, when it comes to pure effectiveness on the basketball court, it is the ability
to know when and where to go what separates the great players from the rest. As a result, STATS
SportVU [1] utilizes a six-camera system to track the real-time positions of players and the ball 25
times per second during the game.

This combination of player and ball tracking statistics has led to an incredible amount of raw data
for basketball analytics. This, together with the extraordinary success of Deep Neural Networks in
areas such as Computer Vision and Natural Language Processing [2; 3], and the capacity of such
models to find insights into large volume of data [4] , has significantly increased the attention of
neural networks based architecture for basketball analytics.

For example, in [5] , the authors applies Recurrent Neural Networks [6] in the form of sequence
modeling to predict whether a three-point shot is successful. They show that their model is capable
of learning the trajectory of a basketball without any knowledge of physics. Similarly in [7], the
authors predict the likelihood of a player making a shot. For that, they use pictorial representation of
the movement of the players and a Convolutional Neural Network (CNN) [2]. They also capture the
temporal aspect of the trajectories using fading.

Wang and Zemel in [8] also use pictorial representations and neural networks to classifying NBA
Offensive Plays. In addition to the accuracy of their model, they showed that their approach achieves
good recognition rates when trained on one season and tested on the next.

Inspired by these previous works and the capacity of generative models to synthesized images that
captures the overall coherence of the original examples, we propose to model the movement of each
basketball player and the ball using pictorial representations.

Generative modeling loosely refers to a branch of unsupervised learning techniques which build a
model of the data [9], for instance p(image), such that we can sample from it. This is in contrast
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Figure 1: Synthesized offensive movement of two given players conditioning on the trajectory of
the ball. Not only does the model has learned to pay attention to the ball and the basketball position
of the players, but it has also learned to model the temporal aspects of the movement encoded as
‘fading’. a) Player Position: Center b) Player Position: Shooting Guard

to discriminative modeling, such as regression or classification, which tries to estimate conditional
distributions such as p(class|image). State-of-the-art generative models include Variational Auto-
encoders(VAE) [10] and Generative Adversarial Networks (GAN) [11]. These models have been
proved capable of synthesized data, mostly images, that captures the overall coherence of the original
examples.

In this paper, we show the capacity of deep generative models to synthesized the movement of
basketball players with and without conditioning them, on the player id, the trajectory of the ball or
both. For that, we firstly train a vanilla VAE to generate pictorial representation of the movement of
basketball players. Then we extend the model and use a Conditional VAE (CVAE) [12; 13] to also
synthesized pictorial representation of the players movements, however, this time conditioned on a
given player id. Finally, we illustrates the results we obtained by conditioning the CVAE on both the
player and the trajectory of ball.

2 Method

2.1 Data representation

The data used in this study comes from the publicly available SportVu tracking and play-by-play
data for 42 Toronto Raptors games played in Fall 2015. SportVu [1] is an optical tracking system
installed by the National Basketball Association (NBA) in all 30 courts to collect real-time data. The
tracking system records the spatial position of the ball and players 25 times a second during a game.
Along with the coordinates, it provides a unique player identifier. Based on that, we use each player
coordinates to create pictorial representation of each player and ball positions.

The number of images generated was proportional to the number of offensive events per game per
player plus the trajectory of the ball in the offensive event of those same games. Figures 2a and 2b
show an example of the player and ball’s trajectory for the same offensive event. To simplify our
input representation further, the generated pictorial representations were set to be 24x46 gray-scale
images. Note also that, in order to reduce the computational complexity of the training process, we
only model the movement of the Toronto Raptors players.

2.2 The Generative Architecture

Let’s define our dataset containing pictorial representation of each of the player’s movement to be
X = {x(i)}Ni=i where each of these images x(i) ∈ R24×46 represents the movement of a given player
during an offensive event. Let’s also assume that the data is generated by some random process,
involving an unobserved continuous random variable z.

In the VAE framework, we can define z to be a latent representation of the data, which is of lower
dimensionality than the input data, and it is the output of a neural network qφ(z|x).This is typically
referred to as a ‘bottleneck’ because the encoder must learn an efficient compression of the data into
this lower-dimensional space [10].
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Figure 2: a) Pictorial representation of the movement of a basketball player for a particular offensive
event. b) Representation of the trajectory of the ball for the same offensive event. c) VAE framework.
The encoder and decoder networks are learned end-to-end by maximizing the evidence lower bound
(ELBO). In the case of the conditional VAE, both probability distributions qθ and pφ are conditioned
on the ball and the player id. d) Synthesized movement of two different players obtained by sampling
z from a Gaussian prior and feeding it to the decoder.

Following on that, we can also define a another neural network that model pθ(x|z) and ideally will
reconstruct the data x given the latent representation z. In practice, however, information is lost
because it goes from a smaller to a larger dimensionality. Figure 2c shows the architecture of the
described model.

The beauty of the architecture is that we can learned the parameters of the two networks,namely θ
and φ, in an end-to-end fashion [10; 13]. For that, we just need to trained the networks to maximize
the evidence lower bound (ELBO) shows in equation 1.

L(θ, φ) = Eqθ(z|x)[log pφ(x|z)]− KL(qθ(z|x)||p(z)) (1)

Note that, after learning the decoder network, we can easily generate pictorial representation of the
movement of the players by sampling z from the Gaussian prior p(z) ∼ N (0, I) and feeding the
vector into the decoder.

2.3 The Conditional Generative Architecture

The conditional Variational Autoencoder(CVAE) works similarly to the VAE described before. The
main difference is that during training a condition c is fed to both the encoder and the decoder
[12; 13]. In terms of optimization, we can use the same ELBO just conditioning the likelihood and
the variational posterior on c. Equation 2 shows the ELBO for the Conditional VAE.

L(θ, φ) = Eqθ(z|x,c)[log pφ(x|z, c)]− KL(qθ(z|x, c)||p(z)) (2)

To generate fake data, we just sample z from the Gaussian prior p(z) ∼ N (0, I) and feed this vector
and the condition c into the decoder. For the purpose of this paper, c constitutes either the player id ,
the pictorial representation of trajectory of the ball or both. In this last case, c is a combination of
them.

3 Experiments and Results

As described before, we trained three generative models, the first one was a vanilla VAE trained to
model the trajectory of the basketball players. In this model, we didn’t make any distinction between
players. We trained for 800 epochs on the 45635 pictorial representation of the players movements.
We used Adam optimizer and we kept the mini-batch size to be 64. During training, we used a test
set of 1000 pictorial representations to evaluate the average loss of the reconstruction and based on
that, we determined the hyper-parameters mentioned before.

The encoder architectures for this model was composed of two simple fully connected layers. The first
one reduced the dimension of the image to 400 and the second one to 20. We used a similar number
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Figure 3: a) Basketball positions in the court. b, c, d) Synthetically generated images conditioning
on the movement of the following NBA players: Kyle Lowry - PG , DeMar DeRozan - SG , Bismack
Biyombo - C. Not only is the model able to model the movement of the player during an offensive
event, but it is also able to associate, in a completely unsupervised fashion, their trajectories to their
given positions.

of layer in the decoder just in the reverse order. Figures 2a and 2d compare random samples generated
from the model with original data. We can see how the VAE learned the pictorial representation of
the movement of the players, and how it is able to generate sensible trajectories that resembles the
original ones.

The second model that we trained was condition on the player id. For simplicity, we kept the same
encoder/decoder architecture and we used Adam to minimize the negative of equation 2. We also
kept the same hyper-parameters mentioned before.

After training, we sampled from the model conditioning on the player id. The main idea was to see
whether the synthetically generated representations were able to capture the movement of that given
player during an offensive event. Figures 3b, 3c and 3d show three randomly trajectories conditioning
on the following three NBA players: Kyle Lowry, DeMar DeRozan and Bismack Biyombo. It can
be seen from the picture that in addition to model the movement of the players during an offensive
event, the model is also able to associate, in a completely unsupervised fashion, their trajectories to
their given positions. For example, it can be seen from figure 3d that the samples corresponding to
Bismack Biyombo mostly reflect movements in the middle of the court. This behavior was expected
and desired as he spent most of his time playing as a center during Fall 2015. The basketball positions
in the court are shown in figure 3a to give the reader the possibility to freely compare.

Our final model was conditioned on both the player id and the pictorial representation of the trajectory
of the ball. It is important to highlight that in this case, we had to increase the deepness of the
encoder/decoder neural networks. For the encoder, we added an initial fully connected layer that
reduced the dimensionality of the image to 800 and kept the other two layers identically. As stated
before, it is exactly the same for the decoder just in the reverse order. Everything else was remained
the same, including the optimization hyper-parameters and the optimizer.

Figure 1 illustrates an example of two synthetically generated movement representations. This time
conditioning on the two different player ids and ball trajectories. Note how the model learned to
pay attention to the ball, to the basketball position of the players and to the temporal aspects of the
movement (encoded as ‘fading’ in the original representations).

4 Limitations

Although our approach was able to generate synthetic images that model the trajectory of the
basketball players, we noticed that in some cases the generated trajectories were blurry and in others
we couldn’t see the trajectory at all. We hypothesize that this happens because the simplicity of our
encoder/decoder didn’t give to the model complexity enough. For example, we noticed a significantly
increase in the performance of the CVAE when we just added another fully connected layer to the
architecture. However, we couldn’t extend more the capacity of the networks as we didn‘t have
enough computational resources.

4



5 Conclusions

We have presented a novel generative approach that is able to model the movement of the basketball
players in the court. Based on the VAE and CVAE frameworks, we trained three models on the freely
available NBA SportVU tracking data and used pictorial representation to capture the trajectories of
the players and the ball. We illustrated that in all the tested cases, the proposed architectures was able
to synthesized trajectories that resembles the original movement of the players. In the case of the
conditional VAE, we showed how the generated trajectories defined patterns in terms of the given
player. When we also conditioned on the trajectory of the ball, we were able to see how the model
implicitly learned to pay attention to it.
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Abstract

In this supplementary material we include a larger set of additional experiments and
visualizations. We start by showing synthesized offensive movement of random
players. Then, we provide visualization of the movement of a particular players.
Finally, we show a greater variety of generated offensive plays, this time the images
are conditioning on both the player and the trajectory of the ball.

1 Visualization

Figure 1 illustrates synthesized offensive plays. Note that in this case , the images don not correspond
to any player in particular. These images were obtained by sampling from the vanilla VAE trained on
the pictorial representation of players movement. Figures 2 - 6, on the other hand, show synthesized
images that resemble the movement of a particular player during an offensive event. In the first case
(figure 2) the sampled pictorial representations are also conditioned on the trajectories of the ball.
These conditional representations were obtained by sampling from the CVAE.

Figure 1: Synthesized offensive movement of players. The temporal aspects of the movement
encoded as ‘fading’.
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Synthesized	offensive	plays

Ball	trajectories

+	Players:	Biyombo	,DeRozan	,Lowry	,Johnson	,Carroll	,Biyombo	,Patterson	,Valanciunas	,Biyombo	,Joseph

Figure 2: Synthesized offensive movement of the given players conditioning on the trajectories of
the ball
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Figure 3: Synthesized movement conditioning on the player “Scola”.Position: PF
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Figure 4: Synthesized movement conditioning on the player “Lowry”.Position: PG
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Figure 5: Synthesized movement conditioning on the player “DeRozan”.Position: SG
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Figure 6: Synthesized movement conditioning on the player “Valanciunas”.Position: C
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