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Abstract

Online multi-player detection and tracking in broadcast basketball videos are
significant challenging tasks. In this environments, the target distributions are
highly non-linear, and the varying number of objects creates complex interactions
with overlap and ambiguities. In this paper, we present a real-time multi-person
detection and tracking framework that is able to perform detection and tracking of
basketball players on sequences of videos. Our framework is based on YOLOv2,
a state-of-the-art real-time object detection system, and SORT, an object tracking
framework based on data association and state estimation techniques. For training
and testing, we use a given subset of the NCAA Basketball Dataset. As part of the
bonus, we trained a two-layer LSTM to do action recognition.

1 Introduction

The ability to visually detect and track multiples persons across a scene has been a long standing
challenge within the Computer Vision and Machine Learning communities. In terms of sports
analytics, automatic player detection and tracking is critical for team tactics, player activity analysis,
camera planning and even enjoyment in broadcast sports videos.

Compared with multiple object tracking (MOT) in other scenes, multiple player tracking in sports
video is much more difficult due to the following reasons: (1) players in the same team are always
visually similar ; (2) sports players often interact with others in complex ways and (3) the occlusions
are much more frequent and severe. All of these issues together have posed quite a great challenge to
the tracking system, which requires not only reliable observations but also a sophisticated tracking
strategy to make the system robust [1].

As a result, many algorithms have been proposed to deal with the multi-player detection and tracking
problem in sport games. For example, in [2], the authors use mixture particle filters and Adaboost to
detect and track hockey players using video sequences. Similarly, Zhu et al propose in [3] a detection
and tracking framework for broadcast sports video that uses support vector machine (SVM) and
particle filters [4]. The main limitation with those approaches is that in some way or another they
require a selection of hand-crafted features, which most of the time, makes their scalability to even
similar sports really challenging.

Recent years, however, have seen an extraordinary success of Deep Neural Networks in areas such
as Computer Vision and Natural Language Processing [5; 6]. Starting with AlexNet [5] , a deep
Convolutional Neural Network (CNN) trained to classify more than a million of images , we have
seen more and more models that uses Deep Neural Networks to perform image classification and
object recognition tasks.

Player detection and tracking frameworks have also been influenced by neural networks. They
have seen a significantly improve in their performance by incorporating CNNs to their architecture
pipelines. For instance, Ramanathan et al propose in [7] a detection and tracking architecture
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Figure 1: a, b, c) Performance of the presented framework during a sequence of frames. d) Precision
and Recall curves for the online multi-player detector. A short video illustrating the performance of
the architecture in the test set can be found here http://goo.gl/ZPWStU

composed of a CNN-based multibox detector from [8] and KLT tracker from [9]. With this approach,
they outperformed state-of-the-art methods for event classification and detection on the NCAA
basketball dataset.

In this paper, we present an online detection and tracking framework, that is composed by a bounding
box detector and a tracking algorithm. The detector is based on YOLOv2 [10], a state-of-the-art real-
time object detection system. The tracking algorithm, SORT [11], is primarily targeted towards online
tracking, and it uses combination of simple techniques such as Kalman Filter [12] and Hungarian
algorithm [13]. The presented approach was tested in the freely available NCAA basketball dataset
[7].

2 Model Architecture

The architecture of our model constitutes of two parts: (1) a detection network and (2) a tracking
algorithm. It is important to highlight that the accuracy of the detector is of paramount importance
and it is identified as a key factor influencing the tracking performance.

2.1 Player detection

The architecture of our player detector was based on YOLOv2 [10]. YOLOv2 is an improved version
of the darknet YOLO project [14; 15]. This model has been proved to produce state-of-the-art results
in terms of both accuracy and speed. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007, and
at 40 FPS, it gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN [16] with
ResNet[17] and SSD [18] while still running significantly faster [10].

The main idea behind YOLO is that the model only looks once to the image. In order to do that,
the authors frame object detection as a regression problem to spatially separated bounding boxes
and associated class probabilities. A neural network predicts bounding boxes and class probabilities
directly from full images in one evaluation. Since the whole detection pipeline is a single network, it
can be optimized end-to-end directly on detection performance. Note that, YOLO divides the input
image into an S × S grid. If the center of an object falls into a grid cell, that grid cell is responsible
for detecting that object.

The loss function of the end-to-end model must then simultaneously solve the object detection and
object classification tasks. This function simultaneously penalizes incorrect object detections as well
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as considers what the best possible classification would be. Equation 1 shows the loss function.
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)2

+

S2∑
i=0

1
obj
i

∑
c∈classes

(
pi(c)− p̂i(c)

)2
(1)

Note from equation 1 that λcoord and λnoobj are two independent hyperparameters. The first one
increases the loss from bounding box coordinate predictions, and the second decreases the loss from
confidence predictions for boxes that don’t contain objects. Similarly, 1obj

i denotes if an object
appears in cell i and 1obj

ij denotes that the jth bounding box predictor in cell i is responsible for that
prediction.

In order to use YOLOv2 in the NCAA basketball dataset, we need to change the number of filters in
the last Convolutional layer. Concretely, the number of filters need to be reduced to 30. The reason
for that is that YOLO predicts 5 boxes with 5 coordinates each (x, y, w, h, confidence) and x number
of classes per box. In this work, we are only interested in predicting the class ‘player’, then the need
to readjust the number of filters to 30.

At the end of the detection pipeline, we also introduce non-maximal suppression to fix multiple
detections in objects near the border of multiple cells. While not critical to performance as it is for
R-CNN or DPM, non-maximal suppression adds slight an improvement in terms of AP [14; 10].

2.2 The tracking framework

The tracking algorithm that we use is a lean implementation of a tracking-by-detection framework
where objects are detected each frame (using our modification of YOLOv2) and represented as
bounding boxes. Since the main purpose of this work is to end up with an online detection and
tracking pipeline, our tracker only relies on detection from the previous and the current frame.

Following the same idea presented in SORT [11], we approximate the inter-frame displacements of
each object with a linear constant velocity model which is independent of other objects and camera
motion. Concretely, the state of each target is modeled as: x = [u, v, s, r, û, v̂, ŝ]

T , where u and v
represent the horizontal and vertical pixel location of the centre of the target, and s and r represent the
scale (area) and the aspect ratio of the target’s bounding box respectively. The velocity components
are solved optimally via a Kalman filter framework [12]. If no detection is associated to the target, its
state is simply predicted without correction using the linear velocity model.

Another important step in this tracking framework is to correctly associate the players between
frames. For that, an assignment cost matrix is computed as the intersection-over-union (IOU) distance
between each detection and all predicted bounding boxes from the existing targets. The assignment is
then solved optimally using the Hungarian algorithm. Additionally, a minimum IOU is imposed to
reject assignments where the detection to target overlap is less than IOUmin.

For player tracking, it is also important the creation and deletion of tracking identities. To solve that,
SORT creates an object identity when there is a detection with an overlap less than IOUmin. On the
other hand, tracks are terminated if they are not detected for TLost frames.
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3 Experiments and Results

We evaluated the performance of our detection and tracking framework on the NCAA basketball
dataset. Starting with the detector, we split the dataset in 8787 annotated frames for training, and
1000 annotated frames for testing.

For training, we reused the learned weights of the first layers of YOLOv2 (Darknet-19 [15]) but we
randomly initialized the weights of the last Convolutional layers. The learning rate was set to 0.001,
we used stochastic gradient descent and a polynomial rate decay with a power of 4, weight decay of
0.0005 and momentum of 0.9. We also need to resize the mini-batch size to 12 as we didn’t have
enough computational resources to process greater mini-batches. λcoord and λnoobj were empirically
determined to be 5 and .5 respectively. The threshold for the NMS step was set to be 0.45, we tried
several values, but we obtained the best performance in the testing set with this one.

Note that we didn‘t use a validation set. The reason is that training the detector was an extremely
expensive task for our computational resources and we couldn’t train several times in order to find
the best hyper-parameters. That said, we selected them based on the results of previous works that
use the same detector/architecture [15; 14; 10].

For evaluation, we compute the precision-recall curves (figure 1d). This curves were computed
following the PASCAL criteria [19] for object detection. However, in addition to the standard
PASCAL criteria (IOU>0.5), we also evaluated the model following a slightly harder criteria where
we required an IOU>0.7. Figure 1d shows the performance of the detector, we obtained anAP = 0.89
for the standard case (IOU>0.5) and 0.63 for the harder one.

In order to find the hyperparameters of the tracking algorithm and test the output of the whole
framework, we use 20 clips where each clip corresponds to approximately 20 frames of a segment of
the game. These clips were carrefully selected so that they correspond to unseen data for both the
detector and the tracker. The hyper-parameters of the tracking algorithm, namely the initial Kalman
filter covariances, IOUmin, and TLost, were determined using the same approaches presented in
[12; 11]. Figure 1a, 1b and 1c illustrate a sequences of detected and tracked players in one of the
unseen clips. The colors of the different bounding boxes, in the case of the detection + tracking
output, define the same player throughout the clip.

4 Limitations

Although our framework is able to accurately detect and track basketball players, we noticed that
there are several situation when particular players are lost. During our experiments, this mostly
happened at the end of the offensive action. At that time, the majority of the players occlude each
other. However, when we checked the output of the detector, in most of the cases, we realized that all
of the players were correctly detected. We believe that further improvement on the tracking side can
help resolve this problem. In terms of the detector, the majority of the failure cases correspond to
occlusion of one or two players. It is important to highlight, however, that those cases were extremely
difficult to detect even for us as human beings.

5 Conclusion

We have presented a novel on-line multi-detection and tracking framework that is able to accurately
detect and track basketball players by just looking at broadcast videos. Our detection and tracking
pipeline was composed by YOLOv2, a real-time state-of-the-art detector, and SORT a simple but
accurate tracking by detection algorithm. We evaluated the performance of our detector using the
PASCAL VOC criteria and we showed the accurate performance of the whole pipeline.

6 Bonus

The main idea behind the bonus is to do action recognition on the given subset of clips. As commented
before, these clips are a subset of the 14548 annotated clips corresponding to the NCAA Basketball
Dataset. In particular, the annotated clips correspond to one of the 11 possible actions (e.g shot,pass)
and their length is at most 20 consecutive frames.
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We believe that temporal information is of paramount importance in order to do action recognition.
Therefore, similar to [7], we model it using a Recurrent Neural Network (RNN). Concretely, we use
a two-layer LSTM [20] trained on top of the features extracted from ResNet[17].

In order to do that, we used the pre-trained version of ResNet-18 available in PyTorch, we removed
the last fully connected layer of ResNet and used the rest of the architecture as an encoder. Then, we
added two LSTM layers with 256 hidden units and a fully connected layer on the last hidden state
(256 to 11). The sequence length was set to 20 and in the cases where the length of the clip was
less than 20 frames, we padded it with 0. The total number of given clips was 550. Therefore, we
randomly picked 450 to be our training set , 50 to be our validation set and 50 to be our test-set. We
used mini-batches of 10 due to the limitations on terms of computational resources. The optimizer
used was Adam and the learning rate was set to be 0.001.

During training, we realized that the model heavily over-fitted the training data just after a few epochs.
Therefore, we added a dropout of 0.5 and used data augmentation techniques. Concretely, we used
Random Crops and RandomHorizontalFlip. With this techniques we obtained a slightly increased in
the accuracy, however, the best accuracy we could obtained was around 33% in the test set.

We hypothesize that the main reason why this happened is because the given dataset was too small
(i.e only 550 sequences) and that amount of data was not enough, resulting in a training set heavily
over-fitted. We believe that training the same architecture using the whole NCAA Dataset will give
more promising results.
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