Learning Objectives

By the end of this worksheet, you will:

- Prove and disprove statements about numbers and functions.
- Use mathematical definitions of predicates to simplify or expand formulas.
- Identify errors in an incorrect proof.

1. **A direct proof.** Recall that we say an integer n is **odd** if and only if $\exists k \in \mathbb{Z}, n = 2k - 1$. Using the technique from lecture, prove the following statement:

 For every pair of odd integers, their product is odd.

 Be sure to translate the statement into predicate logic. You can use the predicate $\text{Odd}(n)$: “n is odd” in your formula without expanding the definition, but you’ll need to use the definition in your proof.

 Solution

 Translation:

 $\forall m, n \in \mathbb{Z}, \text{Odd}(m) \land \text{Odd}(n) \Rightarrow \text{Odd}(mn)$.

 Discussion. Like the proof we saw in lecture, we’ll need to use the definition of odd to introduce new variables to write $m = 2k_1 - 1$ and $n = 2k_2 - 1$; the rest should be straightforward algebra.

 Proof. Let $m, n \in \mathbb{Z}$, and assume they are both odd. That is, we assume there exist $k_1, k_2 \in \mathbb{Z}$ such that $m = 2k_1 - 1$ and $n = 2k_2 - 1$. We need to prove that mn is odd, i.e., there exists k_3 such that $mn = 2k_3 - 1$. Let $k_3 = 2k_1k_2 - k_1 - k_2 + 1$.

 Then we can calculate:

 $$2k_3 - 1 = 2(2k_1k_2 - k_1 - k_2 + 1) - 1$$
 $$= 4k_1k_2 - 2k_1 - 2k_2 + 1$$
 $$= (2k_1 - 1)(2k_2 - 1)$$
 $$= mn$$

2. **An incorrect proof.** Consider the following claim:

 For every even integer m and odd integer n, $m^2 - n^2 = m + n$.

 (a) Using the predicates $\text{Even}(n)$ and $\text{Odd}(n)$ (which return whether an integer n is even or odd, respectively), express the above statement using the notation of symbolic logic.

 Solution

 $\forall m, n \in \mathbb{Z}, \text{Even}(m) \land \text{Odd}(n) \Rightarrow m^2 - n^2 = m + n$.

 (b) The following argument was submitted as a proof of the statement:
Proof. Let \(m \) and \(n \) be arbitrary integers, and assume \(m \) is even and \(n \) is odd. By the definition of even, \(\exists k \in \mathbb{Z}, m = 2k \); by the definition of odd, \(\exists k \in \mathbb{Z}, n = 2k - 1 \). We can then perform the following algebraic manipulations:

\[
m^2 - n^2 = (2k)^2 - (2k - 1)^2 = 4k^2 - 4k^2 + 4k - 1 = 4k - 1 = 2k + (2k - 1) = m + n
\]

The given argument is not a correct proof. What is the flaw? \(^2 \)

Solution

The author has assumed that \(m = 2k \) and that \(n = 2k - 1 \), using the same variable \(k \) to express both \(m \) and \(n \). In this way, the author has unwittingly assumed that \(m \) and \(n \) are consecutive integers. But the statement is about an arbitrary \(m \) and an arbitrary \(n \), and so it is wrong to assume that they are consecutive numbers. The author should have let \(m = 2k_0 \) and \(n = 2k_1 - 1 \), for some integers \(k_0 \) and \(k_1 \). And of course, \(k_0 \) is not necessarily equal to \(k_1 \)!

3. Comparing functions. Consider the following definition:\(^3 \)

Definition 1. Let \(f,g : \mathbb{N} \to \mathbb{R}^\geq \). We say that \(g \) is dominated by \(f \) (or \(f \) dominates \(g \)) if and only if for every natural number \(n \), \(g(n) \leq f(n) \).

(a) Express this definition symbolically by showing how to define the following predicate:

\[
\text{Dom}(f,g) : \quad \quad \quad \quad \quad \quad \quad , \text{ where } f,g : \mathbb{N} \to \mathbb{R}^\geq.
\]

Solution

\[
\text{Dom}(f,g) : \forall n \in \mathbb{N}, g(n) \leq f(n).
\]

(b) Let \(f(n) = 3n \) and \(g(n) = n \). Prove that \(g \) is dominated by \(f \).

Solution

We want to prove the following statement:

\[
\forall n \in \mathbb{N}, n \leq 3n
\]

Proof. Let \(n \in \mathbb{N} \).
Then since \(1 \leq 3 \), we can multiply both sides by \(n \) to get \(n \leq 3n \). \(\square \)

(c) Let \(f(n) = n^2 \) and \(g(n) = n + 165 \). Prove that \(g \) is not dominated by \(f \). Make sure to write the statement you’ll prove in predicate logic, in fully simplified form (negations moved all the way inside).

Solution

The statement we want to prove is the negation of \(\text{Dom}(f,g) \):

\[
\exists n \in \mathbb{N}, n + 165 > n^2
\]

We leave the proof as an exercise.

\(^2 \)If you have time, you might want to consider whether the given statement is true or false, and write a correct proof or disproof.

\(^3 \)We’ll use the symbol \(\mathbb{R}^\geq \) to denote the set of all nonnegative real numbers, i.e., \(\mathbb{R}^\geq = \{ x \mid x \in \mathbb{R} \land x \geq 0 \} \).
(d) Now let’s generalize the previous statement. Translate the following statement into symbolic logic (expanding the definition of \textit{Dom}) and then prove it!

For every positive real number \(x \), \(g(n) = n + x \) is \textit{not} dominated by \(f(n) = n^2 \).

Solution

Translation:

\[
\forall x \in \mathbb{R}, \ x > 0 \Rightarrow (\exists n \in \mathbb{N}, \ n + x > n^2)
\]

For a proof, remember that zero is a natural number!
4. More with floor. Recall that the floor of a number \(x \), denoted \(\lfloor x \rfloor \), is the maximum integer less than or equal to \(x \). We can always write \(x = \lfloor x \rfloor + \epsilon \), where \(0 \leq \epsilon < 1 \).

Prove the following statement\(^4\)

\[\forall x \in \mathbb{R}^{\geq 0}, \ x \geq 4 \Rightarrow (\lfloor x \rfloor)^2 \geq \frac{1}{2}x^2 \]

Hint: First, prove the following simpler statement, and use it in your proof: \(\forall x \in \mathbb{R}^{\geq 0}, \ x \geq 4 \Rightarrow \frac{1}{2}x^2 \geq 2x \).

Solution

Proof. Let \(x \in \mathbb{R}^{\geq 0} \), and assume that \(x \geq 4 \). As noted in the question, we let \(\epsilon \in \mathbb{R} \) be defined as \(x - \lfloor x \rfloor \), and so \(0 \leq \epsilon < 1 \).

Then we can calculate:

\[
(\lfloor x \rfloor)^2 = (x - \epsilon)^2 \\
= x^2 - 2x\epsilon + \epsilon^2 \\
\text{(1)}
\]

We now want to show that \(2x\epsilon < \frac{1}{2}x^2 \), which we can do using our assumption \(x \geq 4 \):

\[
\begin{align*}
4 & \leq x \\
4x & \leq x^2 \\
2x & \leq \frac{1}{2}x^2 \\
2x\epsilon & \leq \frac{1}{2}x^2 \\
(\text{since} \ \epsilon < 1)
\end{align*}
\]

So then we can use this inequality in equation (1) to get:

\[
(\lfloor x \rfloor)^2 = x^2 - 2x\epsilon + \epsilon^2 \\
\geq x^2 - \frac{1}{2}x^2 + \epsilon^2 \quad \text{(since} \ 2x\epsilon \leq \frac{1}{2}x^2) \\
= \frac{1}{2}x^2 + \epsilon^2 \\
\geq \frac{1}{2}x^2
\]

\[\square\]

\(^4\)For extra practice, try proving the following generalization of this statement: \(\forall k \in \mathbb{R}^{\geq 0}, \ k < 1 \Rightarrow (\exists x_0 \in \mathbb{R}^{\geq 0}, \ \forall x \in \mathbb{R}^{\geq 0}, \ x \geq x_0 \Rightarrow (\lfloor x \rfloor)^2 \geq kx^2) \).