Learning Objectives

By the end of this worksheet, you will:

- Analyse the average running time of an algorithm.
- Analyse the worst-case and best-case running time of functions.

1. **Average-case analysis.** Consider the following algorithm that we studied a few weeks ago. The input is an array A of length n, containing a list of n integers.

   ```python
   def hasEven(A):
       """A is a list of integers.""
       n = len(A)
       even = False
       for i in range(n):
           if A[i] % 2 == 0:
               print('Even number found')
               return i
       print('No even number encountered')
       return -1
   ```

 In class we proved that the worst-case complexity of this algorithm is $\Theta(n)$. In this problem we will examine the **average case** complexity of this algorithm.

 For simplicity, we will assume that the input is a binary array A of length n. That is, A is an array containing a list of n integers, where each integer is either 0 or 1.

 (a) For each $n \in \mathbb{Z}^+$, let T_n be the set of all binary arrays of length n. Write an expression (in terms of n) for $|T_n|$, the size of T_n.

 Solution

 The number of inputs of length n is 2^n, thus $|T_n| = 2^n$.

1 Depending on your lecture section, you may have seen this example already. Even so, please treat this question as a good opportunity for review!
(b) For each \(n \in \mathbb{Z}^+ \) and each \(i \in \{0, 1, \ldots, n - 1\} \), let \(S_n(i) \) denote the set of all binary arrays \(A \) such that the first 0 occurs in position \(i \). More precisely, let \(S_n(i) \) denote the binary arrays that satisfy the following two properties:

(i) \(A[i] = 0 \).
(ii) for all \(j \in \mathbb{N} \), if \(j < i \) then \(A[j] = 1 \).

Also let \(S_n(n) \) be the set of binary arrays that contain no 0's. For each \(i \), \(0 \leq i \leq n \), write an expression for \(|S_n(i)|\).

Solution

For \(0 \leq i \leq n - 1 \), \(|S_n(i)| = 2^{n-1-i}\).
Also, \(|S_n(n)| = 1\).

(c) Argue that for each \(n \in \mathbb{Z}^+ \), each binary array of length \(n \) is in exactly one set \(S_i \) (for some \(i \in \{0, \ldots, n\} \)).

Use this to show that \(\sum_{i=0}^{n} |S_n(i)| = |T_n| \).

Solution

For each input, either it contains a 0 or it doesn’t. If it doesn’t then it is (the single input) in \(S_n(n) \). If it does, then we partition these inputs according to the smallest location \(i \leq n - 1 \) where \(A[i] = 0 \): if an input has its first 0 in \(A[i] \), then it is in the set \(S_n(i) \). The sum is \(2^{n-1} + 2^{n-2} + \ldots + 1 + 1 = 2^n \).
(d) Let the runtime of the algorithm on a binary list \(A \) be the number of executions of the loop. Give an exact expression for the average runtime of the above algorithm using the quantities that you calculated. You should get a summation; do not simplify the summation in this part.

Solution

Note that each input in \(S_n(i) \) causes the loop to execute exactly \(i+1 \) times. So the overall average runtime is:

\[
\frac{1}{2n} \sum_{i=0}^{n} |S_n(i)| \times (i + 1) = \left(\frac{1}{2n} \sum_{i=0}^{n-1} |S_n(i)| \times (i + 1) \right) + \frac{|S_n(n)| \times (n + 1)}{2n} \\
= \left(\frac{1}{2n} \sum_{i=0}^{n-1} 2^{n-1-i} \times (i + 1) \right) + \frac{n + 1}{2n} \\
= \left(\frac{1}{2n} \sum_{i'=1}^{n} 2^{n-i'} \times i' \right) + \frac{n + 1}{2n} \quad \text{(change of variable } i' = i + 1) \\
= \left(\sum_{i'=1}^{n} \left(\frac{1}{2} \right)^{i'} \times i' \right) + \frac{n + 1}{2n}
\]

(e) Show that the runtime that you calculated is in \(O(1) \). You may use without proof that for all \(x \in \mathbb{R} \) such that \(|x| < 1 \),

\[
\sum_{i=1}^{\infty} ix^i = \frac{x}{(1-x)^2}.
\]

Solution

So we have \((n + 1)/2^n + \sum_{i'=1}^{n} i'(1/2)^{i'}\). The first part is eventually less than 1, and by the formula given above, the second part is at most 2. Thus the expected runtime is \(\Theta(1) \).
2. Bipartite graphs. A bipartite graph is a graph $G = (V, E)$ that satisfies the following properties:

(a) There exist subsets $V_1, V_2 \subset V$ such that $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V.\(^2\)

(b) Every edge in E has exactly one endpoint in V_1, and exactly one endpoint in V_2. (That is, no two vertices in V_1 are adjacent, and no two vertices in V_2 are adjacent.)

When G is bipartite, we call the partitions V_1 and V_2 a bipartition of G.

(a) Prove that the following graph $G = (V, E)$ is bipartite.

$$V = \{1, 2, 3, 4, 5, 6\} \quad \text{and} \quad E = \{(1, 2), (1, 6), (2, 3), (3, 4), (4, 5), (5, 6)\}$$

Solution

Let $V_1 = \{1, 3, 5\}$ and $V_2 = \{2, 4, 6\}$. Then V_1 and V_2 together provide a partition of V, as $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, and neither V_1 nor V_2 is empty.

Note that all of the vertex labels in V_1 are odd numbers and all of the vertex labels in V_2 are even numbers.

Each of the edges $(1, 2), (1, 6), (2, 3), (3, 4), (4, 5), \text{and } (5, 6)$, has one endpoint that with a vertex label that is an odd number and one that is an even number.

(b) Let m and n be positive integers. A complete bipartite graph on (m, n) vertices is a graph $G = (V, E)$ that satisfies the following properties:

i. There exist subsets $V_1, V_2 \subset V$ such that $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V.

ii. Every edge in E has exactly one endpoint in V_1, and exactly one endpoint in V_2. (That is, no two vertices in V_1 are adjacent, and no two vertices in V_2 are adjacent.)

iii. (new) $|V_1| = m$ and $|V_2| = n$.

iv. (new) For all vertices $u \in V_1$ and $w \in V_2$, u and w are adjacent.

How many edges are in a complete bipartite graph on (m, n) vertices? Your answer will depend on m and n. Explain your answer.

Solution

Let $G = (V, E)$ be a complete bipartite graph on (m, n) vertices, with bipartition V_1, V_2, and $|V_1| = m$ and $|V_2| = n$.

Then each vertex $u \in V_1$ appears as an endpoint in n edges in E, since it has an edge to each of the n vertices in V_2. As there are m vertices in V_1 and the previous statement is true for each of them, we know that there are at least mn edges in E.

But, since there are no edges between vertices in V_1 and no edges between vertices in V_2, there are no other edges to count.

And so we can conclude that the number of edges in a complete bipartite graph on (m, n) vertices is mn.

\(^2\)That is, $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$.