
Minimax regret based elicitation of generalized additive utilities

Darius Braziunas
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4
darius@cs.toronto.edu

Craig Boutilier
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4
cebly@cs.toronto.edu

Abstract

We describe the semantic foundations for elicita-
tion of generalized additively independent (GAI)
utilities using the minimax regret criterion, and
propose several new query types and strategies
for this purpose. Computational feasibility is ob-
tained by exploiting the local GAI structure in the
model. Our results provide a practical approach
for implementing preference-based constrained
configuration optimization as well as effective
search in multiattribute product databases.

1 Introduction

Representing, reasoning with, and eliciting the preferences
of individual users is a fundamental problem in the design
of decision support tools (and indeed, much of AI). A key
issue in preference research is dealing with large, multi-
attribute problems: preference representation and elicita-
tion techniques must cope with the exponential size of the
outcome space. By exploiting intrinsic independencies in
preference structure,factoredutility models can provide
tractable (although sometimes approximate) solutions to
the problem. Utility function structure (such as additive,
multilinear, generalized additive, etc.) can be used to rep-
resent large utility models very concisely [10]. While ad-
ditive models are the most widely used in practice,gener-
alized additive independence models(GAI) have recently
generated interest because of their greater flexibility and
applicability [1, 3, 8, 4, 6]. Even though the semantic
foundations of the GAI representation were described by
Fishburn decades ago [7], the design of effective elicitation
techniques has gained attention only recently [4, 8, 6].

In this paper, we develop a new model for utility elicitation
in GAI models based on the minimax regret decision cri-
terion [13, 11]. Minimax regret provides a robust way of
making decisions under utility function uncertainty, min-
imizing worst-case loss under all possible realizations of
a user’s utility function [3, 12, 4]; as such it is applica-
ble when distributional information over utility functions

is not easily available. Regret has also proven to be an
effective driver of preference elicitation [14, 4, 5]. How-
ever, prior work on regret-based elicitation for GAI models
has ignored key semantic issues, thus simplifying the ap-
proach to both elicitation and regret computation and opti-
mization. By building on the semantic foundations of GAI
elicitation laid out in [6], we identify new classes of elici-
tation queries suitable for regret-based elicitation, and pro-
pose several new query strategies based on these classes.

Our approach emphasizeslocal queriesover small sets of
attributes; butglobal queriesover full outcomes are re-
quired to calibrate certain terms across GAI factors (a prob-
lem ignored in previous work on regret-based elicitation).
However, we will demonstrate that most of the “heavy lift-
ing” can be achieved using local queries. Our new ap-
proach guarantees the semantic soundness of the utility rep-
resentation in a way that techniques that ignore interactions
across factors do not. In addition, our new queries impose
much more intricate constraints on GAI model parameters
than those considered in previous work. For this reason,
we develop new formulations of the linear mixed integer
programs (MIPs) that are used in regret-based optimiza-
tion, and show that the problem can be effectively solved
despite the added complexity.

We begin in Sec. 2 with relevant background on multiat-
tribute utility. We discuss appropriate forms of both lo-
cal and global queries for GAI elicitation in Sec. 3. We
then describe effective MIP formulations for minimax re-
gret computation in Sec. 4, including discussion of regret
computation in multiattribute product databases. Sec. 5
presents several elicitation strategies based on the query
types above as well as empirical evaluation. Future direc-
tions are summarized in Sec. 6.

2 Multiattribute preferences

Assume a set of attributesX1, X2, . . . , Xn, each with finite
domains, which define a set ofoutcomesX = X1 × · · · ×
Xn. The preferences of a user, on whose behalf decisions
are made, are captured by autility functionu : X 7→ R. A
utility function can viewed as reflecting (qualitative) pref-



erences overlotteries (distributions over outcomes) [10],
with one lottery preferred to another iff its expected utility
is greater. Let〈p,x>; 1 − p,x⊥〉 denote the lottery where
the best outcomex> is realized with probabilityp, and
the worst outcomex⊥ with probability1 − p; we refer to
best and worst outcomes asanchoroutcomes. Since utility
functions are unique up to positive affine transformations,
it is customary to set the utility of the best outcomex> to
1, and the utility of the worst outcomex⊥ to 0. If a user
is indifferent between some outcomex and thestandard
gamble〈p,x>; 1 − p,x⊥〉, thenu(x) = p.

2.1 Additive utilities

Since the size of outcome space is exponential in the num-
ber of attributes, specifying the utility of each outcome
is infeasible in many practical applications. Most prefer-
ences, however, exhibit internal structure that can be used
to expressu concisely.Additive independence[10] is com-
monly assumed in practice, whereu can be written as a
sum of single-attributesubutility functions:1

u(x) =
n∑

i=1

ui(xi) =
n∑

i=1

λivi(xi).

The subutility functionsui(xi) = λivi(xi) can be defined
as a product oflocal value functions (LVFs)vi and scal-
ing constantsλi. This simple factorization allows us to
separate the representation of preferences into two com-
ponents: “local” and “global.” Significantly, LVFs can be
defined using “local” lotteries that involve only a single at-
tribute: vi(xi) = p, wherep is the probability at which
the user is indifferent between two local outcomesxi and
〈p, x>

i ; 1 − p, x⊥
i 〉, ceteris paribus.2 Since we can define

value functions independently of other attributes, we can
also assessthem independently using queries only about
values of attributei. This focus on preferences over indi-
vidual attributes has tremendous practical significance, be-
cause people have difficulty taking into account more than
five or six attributes at a time [9].

The scaling constantsλi are “global” and are required to
properly calibrate LVFs across attributes. To define the
scaling constants, we first introduce a notion of areference
(or default) outcome, denoted byx0 = (x0

1, x
0
2, . . . , x

0
n).

The reference outcome is an arbitrary outcome, though it is
common to choose the worst outcomex⊥ asx0 (more gen-
erally, anysalient outcome, such as an “incumbent” will
prove useful in this role). Letx>i be a full outcome where
the ith attribute is set to its best level whereas other at-
tributes are fixed at their reference levels;x⊥i is defined
similarly. Then,λi = u(x>i) − u(x⊥i). To assess scaling

1This decomposition is possible iff a user is indifferent be-
tween lotteries with the same marginals on each attribute.

2x>
i andx⊥

i are the best and worst levels of attributei. With-
out loss of generality, we assumevi(x

>
i ) = 1, vi(x

⊥
i ) = 0.

constantsλi, one must ask queries about2n global out-
comesx>i and x⊥i for each attributei.3 These global
outcomes are special because they involve varying only a
single feature from the reference outcome. This ease of as-
sessment makes additive utility the model of choice in most
practical applications.

2.2 Generalized additive utilities

Simple additive models, although very popular in practice,
are quite restrictive in their assumptions of attribute inde-
pendence. A more general utility decomposition, based
on generalized additive independence(GAI), has recently
gained more attention because of its additional flexibility
[1, 3, 8, 4, 6]. It can model “flat” utility functions with no
internal structure as well as linear additive models. Most
realistic problems arguably fall somewhere between these
two extremes.

GAI models [7, 1] additively decompose a utility function
over (possibly overlapping)subsetsof attributes. Formally,
assume a given collection{I1, . . . , Im} of possibly inter-
secting attribute (index) sets, orfactors. Given an index set
I ⊆ {1, . . . , n}, we defineXI = ×i∈IXi to be the set of
partial outcomes(orsuboutcomes) restricted to attributes in
I. For a factorj, xIj , or simplyxj , is a particular instan-
tiation of attributes in factorj. The factors aregeneralized
additively independentif and only if the user is indifferent
between any two lotteries with the same marginals on each
set of attributes [7]. Furthermore, if GAI holds, the utility
function can be written as a sum ofsubutilityfunctions [7]:

u(x) = u1(xI1 ) + . . . + um(xIm ).

The key difference between additive and GAI models with
regard to elicitation (rather than representation) lies in the
semanticsof subutility functionsui. In additive models, the
quantitiesui(xi) = λivi(xi) have a very clear decision-
theoretic meaning.4 In contrast, GAI subutility functions
are not uniqueand, in the absence of further qualifica-
tions, do not have a well-defined semantic interpretation.
This makes elicitation of GAI model parameters problem-
atic. Intuitively, since utility can “flow” from one subutility
factor to another through shared attributes, the values of
subutility uj do not directly represent the local preference
relation among the attributes in factorj.

For effective elicitation we therefore need a representa-
tion of GAI utilities such that: 1) all GAI model param-
eters have a sound semantic interpretation; and, 2) the GAI
structure is reflected by separating the parameters intolocal
andglobalgroups, in a way analogous to additive models.
Building on the foundational work of Fishburn [7], we [6]

3Only n outcomes if the reference outcome is also the worst.
4In additive utility models, the LVFvi(xi) is simply the

probability p at which the user is indifferent betweenxi and
〈p, x>

i ; 1 − p, x⊥
i 〉, ceteris paribus, andλi is u(x>i) − u(x⊥i).



demonstrate that the followingcanonicalrepresentation of
GAI utilities achieves both goals:

u(x) =
m∑

j=1

uj(xj) =
m∑

j=1

λj ūj(xj). (1)

Here, similar to additive models,λj is a scaling constant,
andūj is anunscaledsubutility function, which itself is a
sum of the values of a functionvj (to be defined later) at
certain suboutcomes related toxj :

ūj(xj) = vj(xj) +

j−1X
k=1

(−1)k
X

1≤i1<···ik<j

vj(xj [
k\

s=1

Iis∩Ij ]).

(2)
The sum in the equation is only over non-empty inter-

sections
⋂k

s=1 Iis ∩ Ij . For anyx, x[I] is an outcome
where attributes not inI are set to the reference value (i.e.,
Xi = xi if i ∈ I, andXi = x0

i if i /∈ I). For further
details, we refer to [6].

Our key result [6] shows that the functionvj in Eq. 2 gen-
eralizes LVFs defined earlier for additive models. Let the
conditioning setKj of factor j be the set of all attributes
that share GAI factors with attributes inj. Intuitively,
fixing the attributes in the conditioning set to any value
“blocks” the influence of other factors on factorj. In a
manner similar to additive models, the local valuevj(xj)
of suboutcomexj is simplyp, the probability that induces
indifference betweenxj and the local standard gamble
〈p,x>

j ; 1 − p,x⊥
j 〉, given that attributes in the condition-

ing setKj are fixed at reference levels, ceteris paribus. We
refer to the setting of attributes inKj to their reference val-
ues (ceteris paribus) as thelocal value condition. Herex>

j

andx⊥
j are the best and worst suboutcomes in factorj as-

suming the local value condition; by definition, the LVFs
are normalized, sovj(x>

j ) = 1 and vj(x⊥
j ) = 0. We

see, then, that LVFs have a very clear semantic interpre-
tation; they calibrate local preferences relative to the best
and worst factor suboutcomes under the local value con-
dition. Thus LVFs arelocal, involving only attributes in
single factors and their (usually small) conditioning sets.

The global scaling constantsλj are defined in a way analo-
gous to the additive utility case. Letx>j andx⊥j be the
best and the worst (full) outcomes, given that attributes
not in factor j are set to their reference levels. Then,
λj = u(x>j ) − u(x⊥j ) = u>

j − u⊥
j . We will refer to

u>
j andu⊥

j asanchor utilitiesfor factorj.

To compute the unscaled subutility functionūj(xj), one
needs to know which local suboutcomes are involved (in
the formxj [

⋂k
s=1 Iis ∩Ij ]) on the right-hand side of Eq. 2;

this amounts to finding all nonempty sets
⋂k

s=1 Iis ∩ Ij

and recording the sign(+/−) for the corresponding LVFs.
We refer to this procedure as computing thedependency
structureof a GAI model. An efficient graphical search
algorithm for computing such dependencies among LVFs
was first described in [6].

Knowing the dependency structure, Eq. 2 can be simplified
by introducing the following notation. LetNj be the num-
ber of local configurations (settings of attributes) in factor
j (e.g., with 3 boolean attributes,Nj = 8). The LVF vj

can be expressed byNj parametersv1
j , . . . , v

Nj

j such that
vi

j = vj(xj), wherei is the index of the local configuration
xj . Then, Eq. 2 can be rewritten as

ūj(xj) =
∑

i∈1..Nj

Ci
xj

vi
j , (3)

where theCi
xj

are integer coefficients precomputed using
the dependency structure (most of these are zero).
Thus, a GAI model, similar to simple additive utility func-
tions, is additively decomposed into factors that are a prod-
uct of scaling constants, orweights, λj = u>

j − u⊥
j , and a

linear combination of LVF parameters:

u(x) =
X

j

2
4(u>

j − u⊥
j )

X
i∈1..Nj

Ci
xj

vi
j

3
5 . (4)

This representation of GAI utilities achieves the goals de-
scribed above: the representation is unique, all parameters
have a well-defined semantics, and they are grouped into
local (LVFs) and global (anchor utilities) parameters. The
next section introduces appropriate queries for assessing
these GAI model parameters. (The GAI modelstructure
is represented by parametersCi

xj
.)

3 Elicitation queries

In general, eliciting complete preference information is
costly and, in most cases, unnecessary for making an opti-
mal decision. Instead, elicitation and decision making can
be viewed as a single process whose goal is to achieve the
right tradeoff between the costs of interaction, potential im-
provements of decision quality due to additional preference
information, and the value of a terminal decision [2].

The types of queries one considers is an integral part of
the preference elicitation problem. Some queries are easy
to answer, but do not provide much information, while
more informative queries are often costly. Computing or
estimating the value of information can vary considerably
for different query types. Finally, allowable queries de-
fine the nature of constraints on the feasible utility set. We
broadly distinguishglobal queriesover full outcomes from
local queriesover subsets of outcomes. In most multiat-
tribute problems, people can meaningfully compare out-
comes with no more than five or six attributes [9]. There-
fore, we propose local counterparts to global queries that
apply to a subset of attributes.

From Eq. 4, we can see that a GAI utility function can be
fully assessed by eliciting the LVF parametersvi

j and the
anchor utilitiesu>

j andu⊥
j . The LVF parameters can be



determined by posinglocal queries; such queries do not
require a user to consider the values of all attributes. In ad-
dition, to achieve the right calibration of the LVFs, we need
to elicit utilities of a fewfull outcomes: for each factor, we
must know the utility of the best and the worst outcomes
given that attributes inother factors are set to their refer-
ence levels (i.e., elicit the valuesu>

j andu⊥
j ).

We will consider four types of queries for elicitation. The
following queries are well-defined semantically, relatively
simple, and easy to explain to non-expert users.

Local bound queries An LVF calibrates utilities of par-
tial outcomes with respect to partial “anchor” outcomesx>

j

andx⊥
j , given that the attributes in conditioning setKj are

fixed at their reference levels. Alocal bound (LB)query on
parametervx

j is as follows: “Assume that the attributes in
Kj are fixed at reference levels. Would you prefer the par-
tial outcomexj to a lottery〈x>

j , p;x⊥
j , 1 − p〉, assuming

that the remaining attributes are fixed at same levels (ce-
teris paribus)?” If the answer is “yes”,vx

j ≥ p; if “no”,
thenvx

j < p. By definition, the local value parametersvx
j

lie in [0,1]. This binary (yes/no) query differs from a direct
(local) standard gamble query since we do not ask the user
to choosethe indifference levelp, only bound it.

Local comparison queries Local comparisons are nat-
ural and easy to answer. Alocal comparison (LC)query
asks a user to compare two partial outcomes: “Assume that
the attributes inKj are fixed at reference levels. Would
you prefer partial outcomexj to partial outcomex′

j , ce-

teris paribus?” If the answer is “yes”,vx
j ≥ vx′

j ; if “no”,

thenvx
j < vx′

j .

Anchor bound queries The scaling constant, or weight,
for a subutility functionūj is λj = u>

j − u⊥
j , where

u>
j is the global utility of the outcome in which thejth

factor is set to its best value, and all the other attributes
are fixed at reference levels. Similarly,u⊥

j is the util-
ity of the “bottom anchor” of factorj. Utilities of an-
chor levelsu>

1 , u⊥
1 , . . . , u>

m, u⊥
m must be obtained using

global queries. However, we need only ask2m direct util-
ity queries over full outcomes; this is thesame number
of global queriesrequired for scaling in the additive case
(considering each attribute as a factor).

Instead of eliciting exact anchor utilities directly, we pro-
pose global queries that are easier to answer. Ananchor
bound (AB)query asks: “Consider a full outcomex>j ,
where attributes in factorj are set to their best values, and
other attributes are fixed at reference levels. Do you prefer
x>j to a lottery〈x>, p; x⊥, 1 − p〉?” A “yes” response
givesu>

j ≥ p; and “no”,u>
j < p (assuming, without loss

of generality, thatu(x>) = 1 andu(x⊥) = 0). An analo-
gous query exists for the “bottom” anchorx⊥j .

Anchor comparison queries We can also ask a user
to compare anchor outcomes from different factors: “Do
you prefer global outcomex>k to x⊥l”? If “yes”, then
u>

k ≥ u⊥
l ; if “no”, then u>

k < u⊥
l . Suchanchor compar-

ison (AC)queries are usually much easier to answer than
anchor bound queries.

4 Minimax regret calculation

In our model, the uncertainty over user utility functions is
defined by (linear) constraints on utility function parame-
ters, specifically, those induced by responses to queries of
the form above. Without distributional information w.r.t.
possible utility functions, theminimax regretdecision cri-
terion is especially suitable. It requires that we recommend
a feasible outcomex∗ that minimizesmaximum regretwith
respect to all possible realizations of the user’s utility func-
tion [3, 12, 4]. This guarantees worst-case bounds on the
quality of the decision made under the type of strict un-
certainty induced by the queries above [14, 4, 5]. In case
further preference information is available, a regret-based
elicitation policy can be employed to reduce utility uncer-
tainty and minimize interaction costs to the extent where
an (approximately) optimal decision can be recommended
(see Sec. 5).

Let U be the set of feasible utility functions, defined by
constraints—induced by user responses to queries—on the
values of factor anchorsu>

j , u⊥
j (for each factorj), and

constraints on the LVF parametersvi
j . Let Feas(X) ⊆ X

be the set offeasibleoutcomes (e.g., defined by a set of hard
constraintsH). We define minimax regret in three stages
(following [4]). Thepairwise regretof choosingx instead
of x′ w.r.t.U is R(x,x′,U) = maxu∈U u(x′)−u(x). The
maximum regretof choosing outcomex is MR(x,U) =
maxx′∈Feas(X) R(x,x′,U). Finally, the outcome that
minimizes max regret is theminimax optimal decision:
MMR(U) = minx∈Feas(X) MR(x,U). We develop
tractable formulations of these definitions for GAI models.

Pairwise regret Given a GAI model, thepairwise regret
of x w.r.t.x′ overU is:

R(x,x′,U) = max
u∈U

u(x′) − u(x) (5)

= max
u∈U

X
j

[uj(x
′
j) − uj(xj)]

= max
{u>

j ,u⊥
j ,vi

j}

X
j

(u>
j − u⊥

j )(ūj(x
′
j) − ūj(xj))

= max
{u>

j ,u⊥
j ,vi

j}

X
j

2
4(u>

j − u⊥
j )

X
i∈1..Nj

(Ci
x′

j
− Ci

xj
) vi

j

3
5 .

In general, when constraints on utility space tie together
parameters from different factors, regret computation has a
quadratic objective. Such constraints might arise, for ex-
ample, from global comparison queries. With linear con-
straints, this becomes a quadratic program.



Since factors reflect intrinsic independencies among at-
tributes, it is natural to assume that utility constraints in-
volve only parameterswithin the same factor. The con-
straints induced bylocal comparison or bound queries, for
instance, have this form. We call constraints involving pa-
rameters within a single factorlocal. This allows modeling
regret computation linearly as we discuss below.

If the constraints on local value parametersvi
j are local then

Eq. 5 can be simplified by pushing one “max” inward. This
is made possible by the fact that the scaling factorsu>

j −u⊥
j

arealways positive: R(x,x′,U) =

= max
{u>

j ,u⊥
j ,vi

j}

X
j

2
4(u>

j − u⊥
j )

X
i∈1..Nj

(Ci
x′

j
− Ci

xj
) vi

j

3
5

= max
{u>

j ,u⊥
j }

X
j

2
4(u>

j − u⊥
j ) max

{vi
j}

X
i∈1..Nj

(Ci
x′

j
− Ci

xj
) vi

j

3
5

= max
{u>

j ,u⊥
j }

X
j

(u>
j − u⊥

j ) r̄x,x′
j , (6)

where (unscaled) “local regret”

r̄x,x′
j = max

{vi
j}

∑

i∈1..Nj

(Ci
x′

j
− Ci

xj
) vi

j (7)

can be precomputed by solving a small linear program
(whose size is bounded by the factor size).
If constraints on LVF parameters are bound constraints
only, and therefore independent of each other, we can do
without linear programming when computing the local re-
gret r̄x,x′

j (by pushing the max within the sum):

r̄x,x′
j =

X
i∈1..Nj

max
{vi

j}
(Ci

x′
j
− Ci

xj
) vi

j ,

wheremax{vi
j} (Ci

x′
j
− Ci

xj
) vi

j =

(
(Ci

x′
j
− Ci

xj
) max(vi

j), if Ci
x′

j
− Ci

xj
≥ 0,

(Ci
x′

j
− Ci

xj
) min(vi

j), if Ci
x′

j
− Ci

xj
< 0.

Maximum regret The max regret of choosing x is
MR(x,U):

= max
x′∈F eas(X)

R(x,x′,U) (8)

= max
x′∈F eas(X),u∈U

u(x′) − u(x)

= max
x′∈F eas(X),{u>

j ,u⊥
j ,vi

j}

X
j

2
4(u>

j − u⊥
j )

X
i∈1..Nj

(Ci
x′

j
− Ci

xj
) vi

j

3
5

If local value constraints involve only local value param-
eters within their own factors, the max regret expression
above simplifies to:

MR(x,U) = max
x′∈F eas(X),{u>

j
,u⊥

j
}

X
j

(u>
j − u⊥

j ) r̄x,x′
j , (9)

where local regrets̄rx,x′
j can be precomputed beforehand

and treated as constants.
This optimization can be recast as a quadratic MIP:

MR(x,U) = max
x′∈F eas(X)

max
{u>

j ,u⊥
j }

X
j

(u>
j − u⊥

j ) r̄x,x′
j

= max
{Zx′

j ,u>
j ,u⊥

j }

X
j

X
x′

j

(u>
j − u⊥

j ) r̄x,x′
j Zx′

j ,

subject to constraintsA,H andU ,

whereA are state definition constraints tying binary indi-
catorsZx′

j with consistent attribute assignments, andH are
domain constraints defining feasible configurations. For
each factorj, only one of the indicatorsZx′

j = 1.

Using the “big-M” transformation, the quadratic opti-
mization above can be linearized by introducing variables
Y x′

j which can be thought of as representing the product

(u>
j − u⊥

j ) Zx′
j : 5

MR(x,U) = max
{Y x′

j ,Zx′
j ,u>

j ,u⊥
j }

X
j

X
x′

j

r̄x,x′
j Y x′

j , (10)

subject to

8><
>:

0 ≤ Y x′
j ≤ MjZ

x′
j , ∀j, x′

j ,P
x′

j
Y x′

j = u>
j − u⊥

j , ∀j,

A,H andU .

In the formulation above, the first constraint ensures that
Y x′

j = 0 wheneverZx′
j = 0. If Zx′

j is one,Y x′
j is bounded

by some constantMj ≥ u>
j −u⊥

j , and the second constraint

ensures thatY x′
j achieves the optimal value ofu>

j − u⊥
j .

TheY x′
j ≥ 0 constraint is included because the difference

u>
j − u⊥

j is by definition always positive. Since the objec-
tive is now linear, the problem is a linear MIP.

Minimax regret Our goal is to find a feasible configura-
tion x∗ that minimizes maximum regret

MMR(U) = min
x∈Feas(X)

MR(x,U).

We can express this optimization as (linear) MIP, too:

MMR(U) = min
{Zx

j ,m}
m, subject to (11)

8<
:

m ≥ P
j,xj

[(u>
j −u⊥

j )r̄x,x′
j ] Zx

j , ∀x′∈Feas(X), u>
j , u⊥

j ∈ Uv,

A,H andU ,

whereUv ⊂ U is a set of vertices of the polytope that
defines the feasible values of anchor utilitiesu>

j , u⊥
j . In

practice, we avoid the exponential number of constraints

5In practice, we need not introduce extra variables and con-
straints, instead placing attribute consistency constraintsA di-
rectly on continuous variablesY x′

j . However, the somewhat more
transparent formulation here is presented for clarity (and does not
perform significantly worse computationally).



(one for each feasible adversary configurationx′ and an-
chor utilitiesu>

j , u⊥
j ) using an iterative constraint genera-

tion procedure that generates the (small) set of active con-
straints at the optimal solution. This requires solving the
MIP in Eq. 11 with only a subset of constraints, generat-
ing the maximally violated constraint at the solution of this
relaxed MIP (by solving the max regret MIP in Eq. 10 for
the factor regrets(u>

j − u⊥
j )r̄x,x′

j ), and repeating until no
violated constraints are found (see [4] for details).

Multiattribute product databases The MIP formula-
tions above assume that the space of feasible configura-
tions is defined by a set of constraintsH specifying al-
lowable combinations of attributes. Alternatively, the set
of choices may be the elements of amultiattribute product
database, in which the set of feasible outcomes is spec-
ified explicitly, namely, as the set of all products in the
database. Preference-based search of, and choice from,
such a database can be effected using minimax regret as
well, but can in fact be somewhat simpler computationally.

For any two database itemsx and x′, pairwise regret
R(x,x′,U) can be computed using Eq. 6. The max re-
gret MR(x) of x is determined by considering its pair-
wise regret with each other item. To determine the opti-
mal product (i.e., with minimax regret), we compute the
MR(x) of each itemx and choose the one with least max
regret. This latter computation can be sped up considerably
by iteratively generating minimax optimal candidate prod-
ucts against a current set of “adversary” items and testing
their optimality. In practice, much like constraint genera-
tion, this speed up reduces the complexity of the algorithm
from quadratic to linear in the size of the database.

5 Elicitation strategies

Minimax regret allows one to bound the loss associated
with the recommended decision relative to the (unknown)
optimal. If this bound on utility loss is too high, more util-
ity information must be elicited. A decision support sys-
tem can query the user until minimax regret reaches some
acceptable level (possibly optimality), elicitation costs be-
come too high, or some other termination criterion is met.
We propose a generalization of thecurrent solution (CS)
elicitation strategy, first described in [4]. This strategy has
been shown empirically to be very effective in reducing
minimax regret with few queries in several domains [4, 5].
The CS strategy considers only parameters involved in
defining minimax regret (i.e., the current regret-minimizing
solutionx∗ and the adversary’s witnessxw), and asks a
query about the parameter that offers the largest potential
reduction in regret. We define below how wescorevarious
query types, and then define potential query strategies.

Local queries The pairwise regret of regret-minimizing
outcomex∗ and witnessxw (the current solution) is:

R(x∗,xw,U) = max
{u>

j ,u⊥
j }

(u>
j − u⊥

j )
X

j

X
i∈1..Nj

max
{vi

j}
Ci

j vi
j ,

=
X

j

(u̇>
j − u̇⊥

j )
X

i∈1..Nj

Ci
j v̇i

j ,

whereCi
j = Ci

xw
j
− Ci

x∗
j
, and{u̇>

j , u̇⊥
j , v̇i

j} are utility pa-
rameter values that maximize regret. A local bound query
adds a constraint on a local parametervi

j . We wish to find
the parametervi

j that offers the largestpotentialreduction
in the pairwise regretR(x∗,xw,U) at the current solution,
hence in the overall minimax regret. The linear constraints
on local parameters induce a polytope defining the feasible
space for the parametersfor each factor. Our elicitation
strategies use the bounding hyperrectangle of this polytope
as an approximation of this feasible region. This allows for
quick computation of query quality. (The bounding hyper-
rectangle can be computed by solving two very small LPs,
linear in factor size.) Letgapi

j = vi
j ↑ −vi

j ↓. If we ask
a bound query about the midpoint of the gap, the response
narrows the gap by half (either lowering the upper bound or
raising the lower bound). The impact of constrainingvi

j on
the pairwise regretR(x∗,xw,U) is mediated by the mag-
nitude of a constantCi

j and the current value of a scaling
factor(u̇>

j − u̇⊥
j ). We define the heuristicscorefor query-

ing parametervi
j , a measure of its potential for reducing

minimax regret, as:

S(vi
j) = (u̇>

j − u̇⊥
j ) abs(Ci

j) gapi
j/2

The best bound query is that with the highest score. Deter-
mining this is linear in the number of GAI parameters.

Scoring local comparison queries is a more complicated,
since it is more difficult to estimate the impact of adding a
linear constraint on minimax regret. We again approximate
the feasible local parameter space with a bounding hyper-
rectangle. Given the current solution, we consider a list of
all pairs{(vi

j, v
k
j )} such that: (a)Ci

j 6= 0 andCk
j 6= 0; (b)

vi
j↑≥ vk

j ↓ andvk
j ↑≥ vi

j↓; and (c) the relationship between
vi

j andvk
j is not known due to earlier queries. These condi-

tions severely limit the number of pairs one must consider
when determining the best local comparison query. The
first condition eliminates many parameters from consider-
ation because most coefficientsCi

j are zero. The second
checks the bounds for implied relationships. Finally, the re-
lationship between two parameters might already be known
beforehand due to prior constraints or transitive closure of
previous comparison constraints.

For each pair (vi
j , v

k
j ) considered, we compute a heuristic

score as follows. First, we project the bounding hyperrect-
angle on the plane of the two parameters we are consid-
ering; the comparison constraint divides our 2-D rectangle
along the 45-degree line. Fig. 1 shows all four cases and
demonstrates that, after a response to a comparison query,



Figure 1: Four different ways to bisect a bounding rectangle.
In all cases, if the response to a comparison query eliminates the
part of the rectangle which contained the current solution point
(v̇i

j , v̇
k
j ) (marked with a circle), the new solution point (marked

with a square) is one of the two intersections of the diagonal and
the bounding rectangle. The shaded area approximates feasible
parameter space after a response to a comparison query.

the values of the parametersvi
j , v

k
j (as well as the current

level of regret) either remain the same, or they are pushed
to lie at one of the two intersections of the diagonal with
the bounding rectangle. In the latter case, the reduction in
local regret can be approximated by

ri,k
j = Ci

j v̇
i
j + Ck

j v̇k
j − max(Ci

jt1 + Ck
j t1, C

i
jt2 + Ck

j t2),

where(t1, t1), (t2, t2) are the coordinates of the two inter-
sections. The heuristic score for comparingxi

j to xk
j is:

S(xi
j ,x

k
j ) = (u̇>

j − u̇⊥
j ) ri,k

j .

The complexity of finding the best comparison query is
linear in the number factors and quadratic in the number of
local outcomes in each factor.

Global queries We use similar heuristic methods to com-
pute the score of global anchor queries. In this case, we
look at the impact of imposing constraints on anchor pa-
rametersu>

j , u⊥
j , while keeping local regrets

∑
i Ci

j v̇i
j

constant. The resulting heuristic scores for both local and
global queries are commensurable, allow comparison of
different query types during elicitation.

Combining different queries If all types of queries are
available, we can simply choose the next query to ask based
on the heuristic scoreS described above. However, in gen-
eral we want to consider not only the impact of a query in
reducing regret, but also its cost to a user. Global queries
are generally harder to answer than local queries; similarly,
most users will find comparing two outcomes easier than
dealing with bound queries (which require some numerical
calibration w.r.t. anchors). As such, the scores above are
viewed as ranking queries of aspecific typerelative to each
other. We can compare queries of different types by scal-
ing these scores by, for example, cost factors that penalize
different types of queries.6

6Queries of a single type could also be differentiated by vari-
ous means (e.g., the number of attributes involved, the number set
to non-reference levels, etc.).

Instead, we consider several strategies that combine dif-
ferent query types without explicitly differentiating for
cost; but we examine strategies that use only the “easi-
est” queries. TheLC strategyuses only local comparison
queries; when our heuristic cannot recommend a compari-
son query, a comparison query is then picked at random. If
instead of a random comparison query we select the best lo-
cal bound query, we get theLC(LB) strategy. TheLB strat-
egyuses only local bound queries. The remaining strate-
gies do not favor any query type, but simply recommend a
query from the set of allowed types with the highest score:
LC+LB combines local comparison and bound queries, and
AB+LC+LB andAB+LB mix global anchor bound queries
with local queries.

Experimental results We tested our CS elicitation strate-
gies on the car rental configuration problem from [4, 6]
and a small apartment rental database problem. The car-
rental problem is modeled with 26 attributes that specify
various attributes of a car relevant to typical rental deci-
sions. The domain sizes of the attributes range from two
to nine values, resulting in6.1 × 1010 possible configura-
tions. The GAI model consists of 13 local factors, each
defined on at most five variables; the model has 378 utility
parameters. There are ten hard constraints defining fea-
sible configurations. The apartment rental problem com-
prises a database of 186 apartments, described by eight at-
tributes, each having between two and 33 domain values.
The GAI model has five factors, and can be specified with
156 utility parameters. The implementation was in Python,
using CPLEX 9.1 to solve MIPs in the car-rental problem
(the apartment database requires no MIPs). Computing the
regret-minimizing solution, which has to updated after each
query, takes about 1 second; determining the next query for
any given strategy is even faster. Thus our approach admits
real-time interaction.

We evaluated the six query strategies described above.
Fig. 2 shows their performance on (a) the car rental con-
figuration problem, and (b) the apartment rental database
problem. The results are averaged over 20 random sam-
ples of the underlying user utilities as well as random prior
bounds on utility parameters. The upper anchor bounds
are drawn uniformly from [1,50], and lower bounds from
[-50,-1]. The LVF bounds are drawn uniformly from [0,1].

With the exception of the LC strategy, all strategies (includ-
ing those that use only local queries) exhibit a sharp initial
reduction in minimax regret (from .30 to .05 with less than
40 interactions in the car-rental case). This means that in
many cases we can either avoid costly global queries al-
together or use them only in situations where very strict
worst-case loss guarantees are required. Even though the
LC strategy does not perform as well as bound query strate-
gies, we note that comparison queries (which are gener-
ally less costly in terms of user effort, time and accu-
racy than bound queries) are very effective during the first



Figure 2: The performance of different query strategies on a) car rental configuration problem; b) apartment rental catalog problem.
After averaging over 20 random instantiations of user utilities, the LB strategy curve was virtually indistinguishable from LC+LB;
similarly, AB+LB was very close to AB+LC+LB. We omit these two curves for clarity.

ten or so interactions, and do not hinder the performance
of strategies in which they are used together with bound
queries. Not surprisingly, only strategies that use anchor
queries (AB+LC+LB and AB+LB) are able to reduce the
regret level to zero; however, the the performance of local-
queries-only strategies, such as LC(LB), LC+LB and LB is
very encouraging.

6 Conclusions

We have provided a semantically justifiable approach to
elicitation of utility functions in GAI models using the min-
imax regret decision criterion. The structure of a GAI
model facilitates both elicitation and decision making via
the semantically sound separation of local and global com-
ponents. We described suitable forms of local and global
queries and developed techniques for computing minimax
optimal decisions under strict utility uncertainty, captured
by linear constraints on the parameters of the GAI model.
Our elicitation strategies combine both local and global
queries and provide a practical way to make good decisions
while minimizing user interaction.

We are currently pursuing several extensions of this work.
We are: investigating techniques for the effective elicitation
of GAI utility structure (something we take as given in this
work); exploring the incorporation of probabilistic knowl-
edge of utility parameters to help guide elicitation (while
still considering regret in making final decisions [14]); and
experimenting with additional query types. Query strate-
gies that take into account explicit query costs are of inter-
est, too. Finally, experiments with human decision makers
will allow us to consider the impact of psychological and
behavioral issues—such as framing and ordering effects,
sensitivity analysis, and different modes of interaction—on
our normative model of elicitation.

References

[1] F. Bacchus and A. Grove. Graphical models for preference
and utility. InProc. of UAI-95, pp.3–10, Montreal, 1995.

[2] C. Boutilier. A POMDP formulation of preference elicita-
tion problems.AAAI-02, pp.239–246, Edmonton, 2002.

[3] C. Boutilier, F. Bacchus, and R. I. Brafman. UCP-Networks:
A directed graphical representation of conditional utilities.
In Proc. of UAI-01, pp.56–64, Seattle, 2001.

[4] C. Boutilier, R. Patrascu, P. Poupart, and D. Schuur-
mans. Constraint-based optimization and utility elicitation
using the minimax decision criterion.Artifical Intelligence,
170(8–9):686–713, 2006.

[5] C. Boutilier, T. Sandholm, and R. Shields. Eliciting bid taker
non-price preferences in (combinatorial) auctions. InProc.
of AAAI-04, pp.204–211, San Jose, CA, 2004.

[6] D. Braziunas and C. Boutilier. Local utility elicitation in
GAI models. InProc. of UAI-05, pp.42–49,Edinburgh,2005.

[7] P. C. Fishburn. Interdependence and additivity in multivari-
ate, unidimensional expected utility theory.International
Economic Review, 8:335–342, 1967.

[8] C. Gonzales and P. Perny. GAI networks for utility elicita-
tion. In Proc. of KR-04, pp.224–234, Whistler, BC, 2004.

[9] P. E. Green and V. Srinivasan. Conjoint analysis in con-
sumer research: Issues and outlook.Journal of Consumer
Research, 5(2):103–123, September 1978.

[10] R. L. Keeney and H. Raiffa.Decisions with Multiple Objec-
tives: Preferences and Value Trade-offs. Wiley, NY, 1976.

[11] P. Kouvelis and G. Yu.Robust Discrete Optimization and Its
Applications. Kluwer, Dordrecht, 1997.

[12] A. Salo and R. P. H¨amäläinen. Preference ratios in multiat-
tribute evaluation (PRIME)–elicitation and decision proce-
dures under incomplete information.IEEE Trans. on Sys-
tems, Man and Cybernetics, 31(6):533–545, 2001.

[13] L. Savage.The Foundations of Statistics. Wiley, NY, 1954.

[14] T. Wang and C. Boutilier. Incremental utility elicitation with
the minimax regret decision criterion. InProc. of IJCAI-03,
pp.309–316, Acapulco, 2003.


