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Abstract 

Spam identification is crucial in implementing an 
effective email filtering system, while spam 
recognization has different properties comparing with 
normal text recognization. In this paper, we present 
three different classifiers with detailed analysis on 
various training data set of the given spam database. 
We then combine these classifiers into a mixture of 
expert system which yields overall better performance 
than any of individual contributors. We also give 
instructions for further improvements on classifiers as 
well as its requirement on spam databases.  

 
1. Introduction 
Email spam appears with the introduction of email system. Its volume and popularity 
increases with the adoption of email as a major communication mechanism. Despite its 
un-wanted nature, spam, or unsolicited email message, does not only waste precious 
working time, but also generates considerable amount of network traffic. Recently added 
natures include virus attachments and spyware agents, which make the situation worse. 
Commercial companies and research groups have started working on spam identification 
and removal long time ago, but with only limited success. Most of them use methods 
such as authentication, authorization, explicit blacklist, etc. In most cases, they will 
tentatively mark an email message as a possible spam candidate and it would be up the 
users to justify.  
Spam identification could be considered as a special case of text identification and 
recognization. In this paper, we are more interested in the statistical aspects of spam. We 
list its comparative properties as following. 
a. The definition of spam is vague. People have different opinions on whether a 

particular email is spam. Thus, even for the same email, it could be spam in one 
case and non-spam in another. Thus, we need some clearly pre-defined spam and 
non-spam data rather than only relying on a general classifier as the filer. 

b. Email mis-labeling has different side-effects. False-Negative (FN) is generally ok, 
as a spam marked as non-spam will cause the user to read through it and delete it. 
However, false-Positive (FP) will mark a non-spam email as spam, which usually 
follow the sequence of automatic deletion, causing user to lose important 
information.  



K-Nearest Neighbors (KNN) and Classical Gaussian are both well-known algorithms in 
Machine Learning. However, their effects on progressively changing training set’ size is 
not studied previously. Boosting is a powerful method to supercharge a mediocre 
algorithm into an excellent learning algorithm, but the effectiveness of comparative 
results of such supercharged algorithm with classically well-known algorithms are not 
clear neither. Further, we implement a Mixture of Experts (MOE) system which takes 
inputs from KNN, Gaussian and Boosting, gives a predictive result based on each 
expert’s past behaviors.  
 
The goals of this paper are three fold. (1) Analyzing classical algorithms, under the 
condition of varying training set size. (2) Comparing prediction accuracy of best classical 
algorithm with boosting a mediocre algorithm. (3) Analyzing prediction accuracy for a 
MOE system with classical algorithms and boosting algorithm as inputs.  
 
The remainder of the paper is organized as the following. Section 2 describes dataset’s 
representation and experimental setup. Section 3 describes the three methods (KNN, 
Gaussian, Boosting), and then combines them as inputs into the MOE. Changes on 
training set size and predication accuracy are analyzed. Section 4 gives some suggestions 
for further improvements, and section 6 concludes the paper. 
 
2. Data representation and Experimental Setup 
 
We use the spam email database from UCI1’s machine learning data repository2. It was 
generated in Jul. 1999 and donated from HP Labs. There are totally 4601 emails in the 
Spambase, among which 1813 (39.4%) are spam. Each email in the Spambase is 
represented as a vector of 57 real values, called feature space. 47 of such features are 
word frequencies, which is the occurring frequency of some specific words. 6 of the 
remaining features are character frequencies, such as the occurrence of frequency of 
some specific characters in the email. The remaining 3 are statistics of capital letters, as 
the longest, average and sum of the length of continuous capital letters. 
 
We initially partition the spam space into 2 parts: 3000 cases for training data (among 
which the 1st 1000 are fixed training data and 1000-3000 are dynamic training data) and 
the remainings are test data. For each algorithm, we perform the experiments on static 
partition, as well as with various sizes of training data (1000 - 3000, with increment of 
200 each). For each algorithm, we also use 4-fold cross validation on the training set only. 
 
False Positive (FP) and False Negative (FN) are described in section 1. We give out their 
definitions in the following. 
 
 

                                                 
1 University of California at Irvine. http://www.uci.edu 
2 Spambase is located at: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/spambase/, 
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3. Existing Algorithms and Evaluations 
 
We evaluate three algorithms individually this section. K-Nearest Neighbor (KNN) 
Classical Gaussian (CG) and Boosting with Multi-Layer Perceptron (MLP). Further, we 
build a MOE based on the three individual algorithms to achieve higher prediction 
accuracy. 
 
3.1 K-Nearest Neighbor (KNN) 
 
KNN is a relatively simple but very efficient algorithm. It can achieve very good 
performance on relatively small training set. The idea of KNN is that in order to classify 
a test point, the algorithm chooses the most common classes among its K-nearest 
neighbors in training set. This K (usually an odd number) neighbors will then vote to 
decide the test point’s label on their majority.  Below is KNN’s representation. 
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id  is the test point, jX  belongs to the class of kC on all the comparisons with training 
data. ( )iy d  is the class label with largest number of votes among jX . 
 
Training 
size 

1000 1200 1400 1600 1800 2000 

FP 0.208 0.192 0.188 0.190 0.182 0.180
FN 0.251 0.233 0.237 0.226 0.209 0.201
Training 
size 

2200 2400 2600 2800 3000 

FP 0.177 0.181 0.174 0.171 0.169
FN 0.199 0.193 0.188 0.184 0.188

 

Table-1 Error Rate for KNN (K = 3) 
 
 1 2 3 4 
CV error rate 0.192 0.187 0.181 0.198 

Table-2 Error rate of up to 4-fold cross-validation (K = 3) for KNN 
 
It is clear from the table that with training set size increases, the KNN error rate decreases 
gradually. FP is usually smaller than FN. For cross-validations, error rate gradually 
reduces. The open parameter is K which value is assigned statically3 in our testing. This 
value of K is also optimal when considering efficiency and performance.  

                                                 
3 K = 3 is the optimal KNN size (yields lowest error rate) when evaluating the static partition with tracing K between 2 
and 25. 



3.2 Conditional Gaussian 
Conditional Gaussian (CG) is one of the well-studied classifiers in Machine Learning. 
Despite its computational expense, it usually generates very good result (if not the best) 
given relatively large training set. The idea behind Gaussian is that assuming inputs are 
uncorrelated and distributions of different classes differ only in mean values, training the 
model towards maximum average log likelihood. Below is Gaussian’s representation. 
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D  is the number of dimensionality of the matrix, ku  is the mean of the matrix and K∑ is 

the covariance of the matrix.  
 
Training 
size 

1000 1200 1400 1600 1800 2000 

Error 
rate 

0.133 0.112 0.113 0.110 0.104 0.098

Training 
size 

2200 2400 2600 2800 3000 

Error 
Rate 

0.081 0.073 0.055 0.051 0.044

 

Table-3 Error Rate for Conditional Gaussian 
 
 1 2 3 4 
CV error rate 0.046 0.044 0.045 0.043 

Table-2 Error rate of up to 4-fold cross-validation for Gaussian 
 
We notice that with the increased training set size, Gaussian performs exceptionally well, 
with error rate well below the best rate produced by KNN. We also notice that 4-fold 
cross validation does not work effectively for Gaussian. The reason is that when training 
set size reaches over 3000, Gaussian cannot find any further independently distributed 
data. Data reusing in cross validation won’t improve Gaussian’s accuracy any further.   
 
 
3.3 Boosting 
 
The goal of boosting is to find a highly accurate classifier based on one or a few “weak” 
classifiers. Boosting works by repetitively applying the “weak” algorithms. “At each 
iteration, it increases the weight on those samples that the last classifier got wrong. 
Overtime, it focuses on the examples that are consistently difficult and forgets the ones 
that are consistently easy.”4  After a certain number of iterations, boosting needs to 
combine many “weak” rules into a single “strong” rule, and hoping this “strong” rule 
                                                 
4 Prof. Sam Roweis’s Machine Learning class notes, Lecture 12. 



would yield more accurate results. In our experiments, we use multilayer perceptron 
(MLP) neural network as the “weak” classifier. Testing results are given in the following.  
 
Training 
size 

1000 1200 1400 1600 1800 2000 

FP 0.068 0.061 0.057 0.049 0.051 0.044
FN 0.144 0.141 0.137 0.133 0.130 0.129
Training 
size 

2200 2400 2600 2800 3000 

FP 0.040 0.042 0.044 0.040 0.038
FN 0.122 0.124 0.117 0.109 0.102

 

Table-5 Error Rate for Boosting (MLP) 
 
 1 2 3 4 
CV error rate 0.061 0.067 0.064 0.060 

Table-6 Error rate of up to 4-fold cross-validation for Boosting (MLP) 
 
Size of the training set is affecting the accuracy of boosting. As shown in Table-5, 
increased training set size will improve accuracy. Cross validation error rate seems to be 
in-sensitive, it might be due to boosting’s dynamic adjustments. Also, number of hidden 
variables directly affects boosting in terms of accuracy and performance. We find 
numbers between 7 and 13 are good candidates. 
 
 
3.4 Mixture of Experts 
 
Any expert system needs to have a number of experts and a gate. Each of the experts can 
produce independent and sensible outputs based on the given data, and the gate needs to 
decide which expert to be called upon for a particular set of inputs. For our MOE, each of 
the previous three individual algorithms is an expert. The gate keeps a record for each 
expert’s past behavior. It penalizes the experts who make higher number of wrong 
predictions by reducing its weight. This will result in a dynamic adjustment of the 
weights at the gate. This adjustment makes the system focus more on the experts who has 
a history of high prediction accuracy. The algorithm used by the gate is illustrated as 
following.  
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y is the output of the expert system. jg is the independent output expert j produced. 

jkw is the weight of expert j based on its past k behavior(s).  
 
 
 
 



Testing on MOE is shown in Table-7. 
 
Training 
size 

1000 1200 1400 1600 1800 2000 

FP 0.068 0.066 0.062 0.058 0.059 0.051
FN 0.172 0.170 0.166 0.149 0.133 0.122
Training 
size 

2200 2400 2600 2800 3000 

FP 0.044 0.047 0.041 0.043 0.039
FN 0.120 0.113 0.106 0.100 0.092

 

Table-7 Error Rate for Mixture of experts 
 
3.5 Comparison and Analysis 
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Fig-1 Comparison and Analysis of all models (number of y-axis is error rate) 
 
Fig-1 shows a synthetic comparison, with each of the individual classifier and the mixture 
of expert system.  
 
First, the overall trend is that the error rate will decrease when the size of training data set 
increases. Three of the classifiers (Gaussian, Boosting with MLP and MOE) converge 
almost to the same lowest error rate. Also notice that Boosting and Mixture of experts are 
relatively in-sensible to the size changes of training data set. 
 
Second, Boosting performs exceptionally well. In many cases, its performance is 
comparable to MOE. In other cases, it performs even slightly better than MOE. The 
reason behind could be that mixture of experts will suffer from current mis-predictions as 
it started with optimistic assumptions on each individual expert. This penalization will 



show up when training set size increases. On the other hand, boosting does not have this 
delaying behavior. It can fully explore the given dataset and tune the number of its hidden 
variables 
. 
Third, the lower the curve (error rate), the higher the computational expense. Different 
classifiers have trade-offs in terms of accuracy vs. efficiency (performance). KNN 
finishes quickly, but has highest error rate. Boosting and MOE take much longer to run, 
but yields better error rates. Gaussian is in between. 
 
4. Conclusion and Future Work 
In this paper, we discussed the accuracy and computational expenses of three individual 
classifiers to filer spam emails. Based on these 3 classifiers, a mixture of expert system is 
introduced. We notice that Boosting is surprisingly effective, it could even out perform 
MOE in some given ranges of training data. We next give the directions for its related 
future work. 
 
4.1 Extending Models 
The current analysis is based on the spam data, assuming a normal distribution. However, 
we notice that that last few values5 in each email vector usually have a very large number. 
These numbers, apparently, won’t sum up to one. It would be interesting to see the result 
if normalization is performed before any testing is conducted. 
Due time and resource constrains, we limit the cross validation to 4 fold. It would be 
more convincing if we can increase this number. E.g. to make it 10 or 20 fold. The 
analysis would be more representative when validating these results of cross validation. 
 
4.2 Extending Spambase information 
In addition to the four classifiers introduced in section 3, we also tried Support Vector 
Machine (SVC). Unfortunately, SVC does not give us better error rate on top of Boosting 
or MOE6. We feel that most of the independence and variance in the given dataset have 
been explored, it would be hard for any further algorithm to give better performance on 
the same given data, no matter how complex or computational expensive this algorithm 
would be. More information, e.g., email arrival patterns, word’ correlation and 
dependencies, etc., in addition to only the word frequency counts, is needed. Once 
available, we can apply novel classifiers, e.g. Hidden Markov Model (KMM) on this 
enhanced spam data representations. We anticipate better predictions for this new spam 
data. 
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