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Abstract 

Function inlining has been considered an important optimization method for compiled 

languages.  In this thesis, we especially study the inlining benefits and present an object-

oriented implementation of a source-level C language inliner.  Various parsing and 

inlining topics, such as: message driven system, design patterns, parse-tree and symbol-

table organizations, memory management strategy, program standardization and 

function-inlining steps are carefully presented. 

For efficiency and ease of implementation, many optimizing compilers implicitly impose 

an “inlining-decision algorithm” to restrict the conditions under which a function 

invocation could be inlined.  Source-level inlining, profile-guided inlining, cache issues 

and the version issue have lead to various conflicting decision algorithms.  To overcome 

previous inlining work, an ambitious inlining-decision algorithm combined these 

techniques, which creates an automatic C inliner. 
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Chapte r  1   

Introduction 

In recent years, various studies [5,7,10,13] have been undertaken to determine the 

efficiency of a compiler’s optimizations.  As part of a compiler’s back end, optimizations 

are always considered a necessary and important part of the language implementation.  

The optimization techniques generally include inlining, common-subexpression 

elimination, dead-code elimination, loop motion, tail-recursion removal, and so forth 

[21,22].  Results of various studies have shown that current optimization techniques are 

indeed worthwhile for general-purpose programming languages [13].  Most compilers’ 

individual optimizations have a fairly small effect, and generally range from 4% to 12% 

[7,10,22,26].  This makes their cumulative effect important.  Previous research [6,10,12] 

showed that the inlining optimization could improve program execution speed up to 6%, 

a significant contribution.  As one of the important optimization techniques, inlining is 

generally applied first in the sequence of compiler optimizations [7,10].  This implies that 

a source-to-source inliner that applies the optimization even before compilation is thus 

similar.  In this thesis, we describe the details of how to effectively inline C programs and 

demonstrate the benefits that could be gained from better inlining. 
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1.1 Overview of  Inlining 

The function-inlining optimization (in short, inlining) involves the replacement of a 

callsite by the code of the called function, with suitable substitutions for parameters and 

conflicting identifiers [6].  Expanding functions inline has a number of advantages.  The 

technique has been used for improving the execution speed of software [5,6,21], since it 

eliminates unnecessary and expensive function-call-and-return overhead.  Surprisingly, 

this technique may also improve the space efficiency, depending on the number of times 

the function is invoked, the size of the function and the size of possible invocation 

overhead saved.  Further, inlining allows and encourages programmers to use functions 

for software-engineering purposes, such as clarity, modularity and maintainability, 

without making the program suffer from execution slowdown. 

The goal of our thesis is to build an automatic C inliner.  We carefully study the details of 

inlining and its effect on program size and execution efficiency.  Moreover, we implement 

a source-to-source inliner that reads in a C source program and produces the inlined C 

source code for compilation and execution.  To serve as a stand-alone inlining tool, the 

inliner strictly follows the ANSI C [4] standards with some GCC [24] extensions1.  The 

system discussed in this thesis is pattern-directed, message-driven and object-oriented.  It 

consists of around 20,000 lines of C++ source code and currently supports both Win95 

and Linux [25] platforms.  Portability is achieved by use of the ANSI C++ 2.1 standard 

only, without any implicit use of machine-specific information or compiler-dependent 

class libraries. 

                                                 
1 This includes nested struct/union declarations, macros left after C preprocessing (#line directives, #pragma, etc) and 

gcc extended keywords such as __inline__, __const__, __absolute__, and so forth. 
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1.2 Inlining at Different Levels 

Inlining can be done in several different ways.  One is to inline a source program and 

produce a modified source program.  This is superficially similar to textual replacement.   

An alternative is to apply inlining on the intermediate code that many compilers use when 

optimizing.  It can even be done on the executable by the loader of the operating system.  

We next analyze each technique and give an explanation for our choice.  

 

1.2.1 Source-Level Inlining vs. Textual Replacement 

From the description of inlining, one might think that source-level inlining is as simple as 

textual replacement, where functions’ definitions are recorded from source code and the 

textual replacement happens at the callsites accordingly.  An example where this over-

simplified idea works is given in Fig.  1.1. 

It is acceptable to do textual replacement in this particular example, because the function 

callsite is in a standalone statement (not nested in another construct), plus the function’s 

definition has neither parameters nor return value.  However, things are not always this 

easy. 

Consider another example, where a function callsite happens to appear inside an 

if_then_else conditional construct, as shown in Fig.  1.2.  This time, the invoked function 

has parameters and a return value.  In this situation, it is impossible to do inlining by just 

making textual replacement at the callsite, because ANSI C [4] syntax does not allow 

curly brackets and commands in expressions.  Curly brackets can only appear in 
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compound statements and array initializations.  More sophisticated compiler work is 

required. 

 

 

 

 

 

 
FIG. 1.1 INLINING VS. TEXTUAL REPLACEMENT 
 

 

 

 

 

 

 

FIG. 1.2 FAILURE OF TEXTUAL REPLACEMENT 
 

1.2.2 Object-Level Inlining 

Object-level inlining replaces a callsite with the corresponding function’s intermediate 

code or object code and thus all possible adjustments for conflicts also must be made at 

the intermediate level.  Gcc [24] uses this approach for its limited inlining and so did an 

earlier version of EQUALS [11,23].  However, this inlining technique requires that 

intermediate code must be available.  It is also impossible to make a general intermediate-

… 
A( ); /* callsite of A */ 
… 
void A(void){ 
  /* body of function A’s 
definition */ 
} 

… 
{ /* textual duplicated body of 
function A’s definition  
 */ 
} 
… 
void A (void){  
/* body of function A’s 
definition */  
} 

textual 
replace
-ment 

… 
if (f(x) < 10) /*callsite f */ 
… 
int f(int t){ 
  /* definition body for 
function f 
*/ } 

… 
if( { /* duplicated 
definition body for function 
f */ } 
     < 10) 
 … 
 int f(int t){ 
/* definition body for 
function f 

Simplistic 
inlining on 
non-
standardize
d callsite 



 

 

5 
level inlining tool that everybody could use, because the intermediate-code specification is 

not standardized.  For this reason, object-level inlining is out of the scope of the thesis.   

1.3 Issues in Inlining 
There are several issues directly related with inlining, such as callsite structure, inlining 

steps and inlining decisions.  We next give each an introduction.   

 

1.3.1 Structural Standardization 

Due to the nature of the C programming language, a callsite can appear almost anywhere 

in the source code.  It could be a standalone callsite, not nested in any statement.  It could 

be nested in an expression or other function callsites.  Moreover, it could be part of a 

complex expression controlling a conditional evaluation or part of a loop control 

expression or a part of an expression with short-cut operators.  Effort must be made to 

convert all callsites into a standalone format, which is the only possible form suited for 

inlining.   

 

1.3.2 Inlining Adjustments 

A source-level inlining technique replaces the selected function callsites with its 

corresponding function definition.  Necessary adjustments must be made to parameters 

and identifiers of the duplicated function body.  This usually includes simulating 

parameter passing, detecting and renaming parameter-name conflicts, simulating return 

statements, relabeling function and recording return values.  The adjustments guarantee 
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that the inlined program is both syntactically valid and semantically equivalent to the code 

before inlining.   

1.3.3 Inlining-Decision Algorithm 

The inlining-decision algorithm is used to decide which callsite should be inlined and 

when the inlining should stop.  It is important to realize that not every callsite is inlineable.  

Moreover, not every inlineable callsite should actually be inlined.  Since inlining replaces 

the callsite with the called function’s body, it makes a trade-off between the program size 

and the actual number of instructions executed.  Before inlining is done to the 

standardized callsites, decisions must be made about which callsites should actually be 

inlined and which should not.  After consideration of several previous researchers’ work, 

a greedy inlining-decision algorithm is introduced.  It combines several previously 

proposed techniques that have not been used together before.  This inliner is ambitiously 

designed to overcome all previous inliners’ achievements. 

 

1.4 Structure of  the Thesis 
The entire thesis is structured as following. 

In Chapter 2, some background information on related inlining work, such as 

descriptions of source-level inlining steps, is introduced. 

In Chapter 3, we discuss the design and implementation details of an object-oriented 

parser.  This includes the design of parse-node classes, development of a message-driven 

system, use of design patterns and description of miscellaneous parsing techniques. 

In Chapter 4, we discuss the implementation of inlining techniques in detail.  This 

includes the callsite-standardization process and the actual step-by-step inlining work 
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applied for each selected individual callsite.  Some of this expands on techniques sketched 

first in Chapter 2. 

In Chapter 5, we present the implementation of a greedy inlining-decision algorithm that 

considers versions, profile information, code expansion, cache behavior and 

specialization opportunities. 

In Chapter 6, we conclude the thesis work and discuss some possible future 

enhancements. 
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Chapte r  2  

Background and Related Work 

Inlining is the technique to substitute a function callsite with its corresponding function’s 

body, with necessary adjustments to make it syntactically valid and semantically correct.  

This chapter introduces related work and previous researchers’ achievements and 

considers how one inlining system might combine these different achievements. 

 

2.1 Parsing 

Lexical analysis and parsing involves reading the source code, rejecting programs that are 

syntactically invalid, recognizing syntactically correct statements and constructing a parse 

tree.  Sometimes, one distinguishes between concrete syntax and abstract syntax.  The syntax 

specified by a conventional context-free grammar is called a concrete syntax, because it 

describes the exact syntactic structure of a program and its phrase structures.  Abstract 

syntax is only concerned with the hierarchical relationships of forms and phrases, which 

are used to categorize the syntactic structures that exist.  It need not worry about the 

exact details of program representation or how substructures interact.  We will give 

details in Chapter 3 to see how to build a parser using concrete syntax to represent the 

ANSI C grammar.   
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2.2 Inlining at the Source Level 

Davidson and Holler [5,6] described the details of source-level inlining for the C 

programming language.  They implemented a source-to-source filter that accepted a C 

source program as input and produced inlined C source code after processing.  An easy 

example of inlining is given in Fig. 2.1 and originally appeared in [5].  It demonstrates 

most of the inlining technique details they presented. 

As shown, there are several necessary issues that need to be discussed.  First, the 

function’s called body is duplicated and the original callsite is removed.  Note that the 

code expanded in place of a specific callsite is a duplicate of the callee’s body, which can 

be obtained from the source program.  It serves as the starting point for all the following 

techniques and adjustments. 

 

 

 

 

 

 

 

 

 

 

FIG. 2.1 SOURCE-LEVEL INLINING 
 

… 
t = strlen(s); /* callsite */ 
… 
int strlen(char * s){ 
/* function strlen definition 
*/ 
  char * p; 
  int i = 0; 
  p = s; 
  while (p++) 
    i++; 
  return i;  
} 

… 
{ { int AA00001; /* return value */ 
      char * temp_s = s;  
       /* parameter simulation */ 
       char * p; 
       int i = 0; 
       p = temp_s; 
      while (p++) 
          i++; 
      { AA00001 = i;  
       /* “return” statement simulation    
             */ 
       goto exit_01; 
       } 
  } 
   exit_01: t = AA00001; 
  } 
… 
 int strlen (char * s){ 
 /* definition of strlen */  } 

inlining
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Second, the optional return variable is created.  If the function happens to have a non-void 

return type, the return value must be recorded no matter whether the original callsite’s 

return value is recorded in the source code, because the return value needs to be recorded 

when replacing the return statement.  If the function’s return value is recorded in source 

code, then return it.  Otherwise, it is simply ignored.  A variable (shown in the figure 

above, “AA00001”) is created with the same return type as the function and a distinct 

name controlled by a global counter is created and serves to record the function’s return 

value. 

Third, parameter passing is simulated.  In order to execute a function call, the compiler 

needs to generate code to construct an activation record and pass all parameters into the 

record before calling the function.  In the inlined case, there is actually no need to 

construct the activation record and pass parameters, but the parameter passing needs to 

be properly simulated by local-variable assignment.  Each actual argument appearing at 

the callsite must be assigned to a local variable inside of the cloned function body.  This 

simulation needs to take place earlier than the occurrence of the function’s local variables 

to maintain the original order of evaluation and hence guarantee that data dependencies 

are properly maintained.   

Fourth, identifier-name conflicts are detected and renaming is applied.  There is a 

possibility that an actual argument has the same name as one of the local-variable names 

used in the cloned function body.  A name-conflict detection and renaming method is 

necessary.  Unlike Davidson and Holler [5], we do not use a method to explicitly check 

for such name conflicts.  A simpler idea is used to deal with it instead, and details will be 

given in Section 4.7.   
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Fifth, return statements are replaced.  Clearly, it is impossible to have any return 

statement inside the cloned function body after inlining, because we do not want the 

callee’s cloned return statements to cause an immediate exit from the caller.  All return 

statements in the cloned function body must be removed and replaced with an 

assignment statement, followed by a “goto” statement.  These statements are used to 

write the actual returned value into the return variable and jump to the exit point of the 

cloned function body, which properly simulates the behavior of the function’s return 

operation. 

Sixth, an exit label is created.  Theoretically speaking, every function must return, no 

matter whether the function actually returns a value or not.  This implies that every 

cloned function’s body must have an exit point to properly simulate the function’s return 

and this exit point always appears at the very end of the cloned function’s body.  This 

creation is done by automatically generating a distinct label and inserting it at the very end 

of the cloned function body. 

Seventh, the return value is optionally recorded by the original caller.  If it is recorded, an 

assignment statement must be inserted after the exit label, and it puts the return value 

calculated by the callee into the variable that actually holds the return value in the caller.  

(As shown in Fig. 2.1, return variable “AA000001” is assigned to variable “t”, which 

holds the actual return value for the caller.) Otherwise, the return value is ignored.   

Davidson and Holler [5,6] showed several detailed steps for source-to-source inlining.  

However, they did not describe some important techniques, such as function-body 

relabeling, which will prohibit recursive inlining if not properly handled.  Further, they 

failed to discuss the situations under which callsites could be inlined and the possible 
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complications arising from attempting to inline recursive calls.  This thesis addresses 

these issues in Chapter 4 by defining standard callsite formats and describing the process 

of callsite standardization.   

 

2.3 Increasing Opportunities for Optimizations 

After one inlining step, there might be some optimization opportunities created across 

former function boundaries because inlining overcomes the syntactical independence of 

functions.  An example is given in Fig. 2.2.  As shown in Fig. 2.2(b), due to inlining, there 

is a constant expression created (“AA00001 = 3 * 15 + 1”).  This enables a compile-time 

evaluation that optimizes the constant expression into its corresponding value, 46, as 

shown in Fig. 2.2(c). 

 

2.4 Considering Cache Effects 

McFarling [12] did some valuable research on cache-performance considerations when 

making inlining decisions.  He considered program structure (especially loop structures), 

cache-miss penalty, cache size and cache-replacement policies.  Different cases, related to 

the placement of callsites within loops, were carefully studied and an inlining-decision 

algorithm based on cache issues was also given.  After careful analysis of possible cache 

effects, we decided that our inlining-decision algorithm would only adopt a few basic 

ideas from this work, as explained in Chapter 5.  
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FIG. 2.2 INCREASED OPTIMIZATION OPPORTUNITY BY INLINING 
 

 

2.5 Profiling to Guide Decisions 

Several researchers [7,10,11,13] found that profile information helps to make better 

inlining decisions.  The general idea of profile-guided inlining is to give the frequently 

executed callsites a higher priority when deciding what to inline, because they would lead 

to more instructions removed, hence shorter execution time and better efficiency.  Most 

… 
t = A(15); /* callsite */ 
… 
 
 
int A(int i){ 
 return 3 * i + 1; 
} 
 

… 
{ int temp_i = 15; 
    int AA00001; 
   { AA00001 = 3 * 15 + 1; 
       goto exit_01; 
    } 
  exit_01: t = AA00001; 
 } 
… 
int a(int i){ 
  return 3 * i + 1; 
} 

Inlinin

… 
{ int temp_i = 15; 
    int AA00001; 
   { AA00001 = 46; 
       goto exit_01; 
    } 
  exit_01: t = AA00001; 
 } 
… 
int a(int i){ 
  return 3 * i + 1;  } 

Fig. 2.2(a) program before inlining
Fig. 2.2(b) program after inlining 

Fig. 2.2(c) program after inlining and 
constant-merging optimization 
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previous researchers made an assumption that the function callsites considered for 

inlining are not recursive.  However, recursion is present in many practical programs.   

Hwu and Chang [7,10] began to discuss recursion.  However, they treated recursive 

functions the same way as non-recursive ones, except discussing some hazardous 

situations that might negatively affect the benefits of inlining (one such hazardous 

situation is seen in Fig. 2.3).  The hazardous situation occurs if we inline a function f with 

a large number of local variables into a recursive function g.  If the compiler allocates all 

local variables on the activation record, the large activation record might overflow the 

stack.  Hwu and Chang concentrated more on inliner integration, profile-guided inlining 

and hazardous-situation detection.  Many of their techniques have been successfully 

integrated into our greedy algorithm. 

Scheifler [13] allowed recursion in his object-level inliner, but he assumed that there were 

no extremely large functions and he did not consider the hazardous situation of local 

stack explosion.  An example of such an explosion is shown in Fig. 2.3.   

 

 

 

 

 

 

 

FIG. 2.3 EXAMPLE OF LOCAL-STACK EXPLOSION AFTER INLINING 

… 
A(i); /* callsite */ 
… 
void A(int r){ 
 int p[1000000]; 
 /* body of function A */ 
A(j); 
/* body of function A */ 
} 

… 
{ int temp_r = i; 
   int p[1000000]; 
   /* duplicated body of A */ 
  } 
… 
void A(int r){ 
 int [1000000]; 
/* body of function A */ 
A(j); 
/* body of function A */ 
} 

Local stack 
explosion 
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As shown in the figure above, in case the inlined callsite is to a function that declares 

many bytes of local variables (allocated on the stack), these variables will be transformed 

to local variables with limited effective scope in the inlined code.  Things will become 

worse if the inlined function happens to be recursive, since the stack size might increase 

greatly in the inlined program.  This disastrous situation will occur if the compiler insists 

on allocating the array’s space when it constructs the activation record, rather than on 

entering into the nested scope.  It greatly increases the run-time cache misses, disrupts 

program locality, and may exhaust virtual-memory swap space.  The benefit gained from 

inlining and the cost of increased stack use should be carefully balanced.   

Kaser and Ramakrishnan [11] especially studied inlining of recursive functions and 

estimated the effect of one inlining step, extending Scheifler’s work.  Consideration was 

also given to the version issue (discussed in Section 5.4.5) and putting limits on code 

expansion.  Detailed derivations of formulas to estimate the effects of a single inlining 

step were also given.  Our greedy inlining-decision algorithm is primarily based on this 

paper.   

In our implementation, the inliner needs accurate profile information to make better 

decisions.  This is done by compiling the standardized program, running the executable, 

invoking the proper profiler and analyzing the profile data.  Note that only callsite 

frequency and the number of times each function was entered are necessary, and thus 

collected.  All other profile information is ignored. 
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2.6 Benefiting from Inlining 

Inlining a callsite affects performance by reducing the number of instructions executed 

and increasing opportunities to optimize across function boundaries.  As Davidson and 

Holler [5,6] as well as McFarling [12] discussed, the benefits fall into three categories. 

• Removal of instructions 

Every inlined callsite directly leads to the elimination of one pair of call-return 

instructions.  This benefit can accumulate if a callsite inside a loop is inlined.  Because the 

call and return instructions are usually expensive [10] and they are some of the most 

frequently executed ones.  (Hwu and Chang [10] did some analysis and found that call 

and return accounted for about 4.5~6.5% of the instructions executed in some 

commercial programs.)  The benefit gained from instruction removal is significant. 

• Removal of loads and stores of parameters 

When a callsite is eliminated, it is unnecessary to generate code to construct activation 

records, or pass parameters into the record or load and store different registers for 

parameters passing before calling the subprogram.  The need to destroy the activation 

record before control returns is also removed.  This benefit varies, depending on the 

number of parameters being passed in and the type of each parameter.  Detailed timing 

analysis can be found in [6]. 

• Removal of Barriers to Optimization 

Most of the optimization opportunities gained by inlining come from the possibility to 

optimize across former function boundaries.  (Many compilers [8,19,20] do not attempt 

inter-function optimization, or do not do them well.)  Constant propagation and its 
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corresponding compile-time evaluation [17] will be introduced in Chapter 4 and are often 

considered very important. 

 

2.7 Combining Techniques 

A major special contribution of the thesis is a complete implementation of a multi-

technique inlining-decision algorithm that is used to promote execution efficiency under 

acceptable code expansion.  Some techniques have not been used together before, so it 

was important to see how they would interact.  Some of the techniques that needed to be 

combined include 

i). techniques to estimate the behavior of recursive function after inlining 

ii). techniques to let the inliner choose between different versions of the callee 

iii). techniques to collect profile information and guide inlining decisions 

iv). techniques to predict cache behavior 

v). techniques to implement constant propagation during inlining. 

The combined technique tries to balance conflicts among individual techniques.  One of 

the possible conflicts is given in Fig. 2.3. 

As shown, different considerations lead to contradictory decisions about whether to inline 

callsites inside a loop.  From the usual profile-based point of view [5,6], both callsites of A 

should definitely be inlined, because the inlined code would avoid many expensive call 

and return instructions.  

 

 



 

 

18 
 

 

 

 

 

 

 
FIG. 2.4 CONFLICTS IN COMBINED TECHNIQUES 
                                                                 
 
However, consideration of cache performance [12] will not confirm this decision, 

because the expanded code will have many more cache misses.  It remains for our greedy 

decision algorithm to combine these results and decide which callsites we should actually 

be inlined. 

The decision algorithm tries to work automatically on the source program.  None of our 

tested compilers2 perform implicit inlining optimization, but a few do conduct inlining 

after the programmer’s explicit specification3.  However, all tested compilers give no 

control on the specific callsites that can be inlined.  (A programmer can specify a function 

definition to be inlineable, so that the compiler tries to inline every callsite invoking the 

function).  Our inliner will automatically consider each callsite in the source program 

without the programmer’s specification and do the actual inlining after the algorithm has 

made its decisions. 

                                                 
2 Borland C++ 5.02 for Win95/NT, Microsoft Visual C++ 5.00 for Win95/NT, Watcom C++ 10.0 for Win95 and 

Gnu g++ 2.7.2.1 for PC-Linux. 

3 Either on function definition or compiling switch. 

… 
 for(i=0;i<1000;i++){ 
     A (i); 
     A (i); 
  } 
… 
void A(int index){ 
 /* size of function A is about 80% of cache size */ 
} 
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The decision algorithm heavily uses profile information to guide its decisions.  Our inliner 

will compile, execute and profile source code implicitly as part of the overall inlining 

system.  Accurate profile information is then generated and directly used to form better 

inlining decisions. 

Our overall inlining system must also convert programs from textual source code to an 

internal parse-tree form.  Front-end processing – lexical analysis and parsing – is 

unavoidable.  In the next chapter, we will introduce the design and implementation of our 

lexical analyzer, parser, parse-node class hierarchy and the various techniques used in the 

part of the overall system that does the front-end processing. 
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Chapte r  3   

Parsing Techniques 

3.1 Introduction 

Using a flex [1] generated lexical analyzer and a byacc [2] generated ANSI C parser, the C 

source program is converted into a parse-tree structure.  The lexical analyzer (also called 

scanner) is used to partition the input stream into tokens and feed them to the parser, 

while a parser is built to accept a specified grammar and construct parse trees.  Since all 

inlining techniques will later be applied on the parse tree, a good parse-tree data-structure 

design is relatively important. 

The traditional way to build a parser is by writing the language’s grammar in a form 

suitable for a parser-generator tool.  Actions are designed to generate an in-memory 

abstract syntax tree and symbol tables during parsing.  For efficiency reasons, a union is 

often used to record recognized syntactical constructs and merge different types of data.  

In our implementation, the parser was built by adding actions to construct our parse trees 

into an existing byacc-compatible ANSI C grammar [4].  This guarantees that the syntax is 

ANSI C standard and the most up-to-date grammar4 is used.  

                                                 
4 ANSI C standard was published in 1984 -- ANSI/NISO Z39.48-1984. A revision is available on ANSI/NISO Z39.48-

1992. (National Information Standards Series, ISSN 1041-5653). Transaction Publisher, New Brunswick, 1993 
(©1992). ISBN 0-88738-932-5. 
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The parser requires that proper parse-tree data be initialized in each recognized action.   

Several object-oriented design patterns are used to guide the parse-node design.  We will 

first consider the class hierarchy that the design patterns lead to.  Then the parse-tree 

details and three different dynamic arrays for parse trees used in the implementation will 

be introduced, followed by a discussion of the design patterns selected.  At the end of the 

chapter, the message system, memory-management strategy, the standard interfaces and 

reparsing will be presented. 

 

3.2 Class Design 

The class design is to construct the class architecture in such a way that the byacc actions 

can instantiate an object of the appropriate subclass when the parser has recognized a 

syntactically valid structure.  The entire class architecture is developed with the help of 

C++ design patterns, whose details will be discussed later. 

 

3.2.1 Class Hierarchy 

The complete class hierarchy contains 38 parse-node classes and is shown in Fig. 3.1, 

using the UML5 notation.  (By talking about “parse-node class”, we refer those leaf 

classes in the class hierarchy that are derived from class Node.  They are instantiated when 

building parse trees.)  In the figure, there are three types of symbols: all leaf descendents 

of class Node represent general parse-tree nodes, all final descendents of class 

                                                 
5 Unified Modeling Language. Details and standards can be found in [27]. 
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DynamicNode represent non-terminal leaf-node classes and all final classes BasicTypeNode 

represent terminal leaf-node classes.   

 

FIG. 3.1 COMPLETE CLASS HIERARCHY 
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In our design, the terms “terminal” and “non-terminal” indicate whether a specific class 

has internal subtree pointers and whether messages arriving need to be redirected.  The 

“leaf” and “non-leaf” refer to positions in the inheritance hierarchy.  Details about the 

message system will be discussed in Section 3.4.2. 

Recall that the class hierarchy is developed under C++ design patterns and this leads to 

several desirable features that are achieved by this design.  First, every C construct 

corresponds to exactly one class, which is a descendent of class Node.  Second, only leaf 

classes are instantiated, all others are abstract classes.  Then, only descendents of 

BasicTypeNode can be terminal nodes, which terminate message broadcasting.  

Furthermore, all classes are derived from one root class –ZObject – and thus form a 

single-inheritance tree. Finally, no multiple inheritance is used.  This class design 

simplifies coding and debugging of the entire project.  Two simple C fragments and their 

corresponding parse trees are shown in Fig. 3.2 and Fig. 3.3.  The complete data-

dependency relationship that shows the contents of each parse-node class is given in 

Appendix 1. 

The C code in Fig. 3.2 has an if_then_else construct, where both then and else 

statements are not empty.  This construct is directly mapped to an IfThenElse parse node, 

where the three subtrees (condition, then statement and else statement) are represented 

by Tree pointers in the IfThenElse node.  Also, we see that every parse node has one 

pointer, its self-containing pointer, which points to its own Tree node.  Details will be 

discussed later. 
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3.2.2 Symbol-Table Organization 

The traditional compiler symbol table is an array-like structure, whose entries contain 

symbol type, name and possible initialization information.  This inliner does not use this 

traditional design, since the inliner’s symbol table is a dynamic array of pointers, where 

each entry points to the root of a local parse tree representing a local-variable declaration.  

Fig. 3.3 shows the parse-tree representation of a local symbol table.  In every BracketNode, 

the first pointer is reserved for the local symbol table. 

A limitation of this traditional symbol-table design is that the design becomes more 

complicated unless one assumes that each function has only one local symbol table and 

all variables need to be declared at the beginning of the function definition.  This leads 

to some complications when local variables are declared in the beginning of a local 

scope (for example, variables may be declared following an arbitrary curly bracket).  Our 

design arises because both the declarations and the statements are to be parsed and 

processed in the same way.  Thus, it is easier to maintain and manage Tree pointers in 

symbol tables than analyze and record information in the conventional way. 
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 FIG. 3.2 EXAMPLE OF C PARSE TREE 
 

 

… 
if( x < 3)   x = 5; 
         else  f(x-2); 
… 

Fig. 3.2(a) C source code for C Parse Tree 

Fig. 3.2(b) C Parse Tree of a if_then_else construct

If_then_else construct : 
IfThenElseNode

Binary construct1 
: BinaryNode

Binary construct2 
: BinaryNode

function callsite1 : 
FunctionCallSiteNode

'x' : String
Node

'<' : String
Node

3 : Integer
Node

'x' : String
Node

'=' : String
Node

5 : Integer
Node

'f' : String
Node

binary construct3 
: BinaryNode

'x' : String
Node

'-' : String
Node

2 : Integer
Node
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3.3. Micro-Architecture and Message System 

The class micro-architecture describes common features of the parse-node class design 

that are required for a message system.  The message system requires that each parse-

node class have the ability to process (process, propagate or ignore) messages.  The class 

micro-architecture reflects these requirements and it supports the message channel that 

exists in each class and a set of class-specific message response routines that will actually 

do the parsing and inlining work.  All parse-node classes are involved with the message 

system.  

All parse-node classes have a similar micro architecture, which is shown in Fig. 3.4.  

NameOfClass identifies the specific class.  Punctuation flag pairs include parenthesis, 

curly bracket, square bracket, comma, semi-colon and new line.  They are used to write 

proper punctuations to the output stream to maintain valid C syntax.  For instance, 

within the declaration int i,j;, there is a comma after ‘i’ and a semicolon after the current 

declaration.  Only the comma flag of symbol ‘i’ and the semicolon flag of the entire 

declaration are active.  All others neither have active flags nor need to output anything.  

The proper punctuation flags are directly written into parse nodes when parsing.  

Also note that by storing the punctuation flags, the parser constructs somewhat literal 

concrete parse trees (rather than abstract ones).  Because the inliner will not do as much 

analysis as traditional C compilers do, it is relatively easy to store necessary punctuation 

flags and thus avoid having to regenerate them when restoring from the parse tree to a C 

source program. 
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 FIG. 3.3 EXAMPLE OF PARSE-TREE STRUCTURE WITH LOCAL SYMBOL TABLE 
 

 

{  int   i; 
    long j; /* local symbols */ 
    i = 0;  
… 
} 

Fig 3.3(b) Example of Parse Tree Structure with Local Symbol Table 

Fig. 3.3(a) C source code with local symbol table

bracket1 : 
BracketNode

binary1 : 
BinaryNode

binary2 : 
BinaryNode

binary3 : 
BinaryNode

binary4 : 
BinaryNode

'i' : String
Node

'=' : String
Node

0 : Integer
Node

'int' : Type
Node

'i' : String
Node

'long' : Type
Node

'j' : String
Node
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 FIG. 3.4 PARSE-NODE MICRO-CLASS ARCHITECTURE 

 

Class-specific information is, of course, different for each class.  For an instance, a node 

of class IfThenElse has three Tree pointers that point to its if condition, then statement 

and else statement subtrees.  However, the FunctionCallSite node has two tree pointers 

that point to the function name and its parameter list.  The full description of parse-node 

classes is in Appendix 1.  Containing-Tree pointer is used to reference the specific Tree 

object with which the node associates. 

The Tree class is designed to have only one data element, a Node pointer.  Each Tree 

object has a one-to-one relationship with a Node object, and all messages are broadcast 

through the Tree pointer and then redirected to its associated Node pointer.  As well, 

memory sharing is achieved by using a reference counter that is a data member in class 

Node.  Message broadcasting is described in Section 3.4.2 and memory-sharing details 

will be given in Section 3.5. 

Node

char * Name_of_Class
Boolean Punctuation Switches
Tree * Class_Specific_Data
Tree * Containing Tree Pointer

void Clone()
void Equal()
int GetSize()
Class_Specific_Message_Response_Routines()
void DefaultMessageProc()
void MessageFilter()

(from Complete Parse
T )

Class Data
Member

Message
Filter
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The actual work each parse-node class does is performed by the message filter that exists 

in each parse-node micro-architecture.  It will process a message whenever it arrives.  For 

every class, it supports the following four methods. 

• Class-specific equal – check whether two objects contain exactly the same information.  

This recursively checks all subtree pointers to see whether they have exactly the same 

node information.  

• Class-specific clone – explicitly clone an object without using memory sharing.  The 

clone message is broadcast to the Node pointer and all its possible subtrees, which will 

duplicate the node itself and recursively clone every subtree of the node. 

• Class-specific getSize – get the approximated parse-node size at run time.  It is required 

to approximate function size when making inlining decision.  Details will be given in 

Chapter 5. 

• Default processing – use a default method to process messages that are irrelevant to the 

class.  Since the inliner generates many messages when standardizing the parse tree (see 

Chapter 4 for detail) and performing inlining, it is relatively easy to activate only 

appropriate classes on a certain message and ask the other classes to ignore it.  The 

message-system design makes the classes implicitly pass the messages to their internal 

subtrees instead of making the programmer write similar code several times.  In this 

design, every parse-node class has default mechanisms to process messages, and the main 

message filter is used to check whether the incoming message is relevant to the class.  If 

so, appropriate methods will be invoked to process it.  Otherwise, the message will either 

stop or be recursively broadcast, depending on the type of the message and the specific 

parse-node class that is processing the message. 
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3.4 OO Design Techniques 

Object-oriented systems have many built-in desirable features, such as reuse, extensibility, 

modularity and performance.  Reuse of a successful class “architecture” is often achieved 

by using design patterns [3], which help to build a successful application in our particular 

domain – parsing and inlining.  One of the key architectural components that the patterns 

enable in our application is the message system.  After discussing the five applicable 

patterns used, the details of the message system will be given. 

 

3.4.1 Design Patterns 

Object-oriented design patterns are the solutions that experts use to solve problems.   

When they face a new problem, they usually recall a similar one that they have already 

successfully solved and reuse the essence of the solution instead of creating a complete 

distinct solution.  There are five types of design patterns used in our inliner’s 

implementation.  We will discuss each in detail. 

• the singleton pattern – create one object instance only.  This is particularly useful for 

collecting and maintaining different versions of parse trees and it also is used for 

decision-making data structures. 

• the builder pattern – incrementally build complicated classes.  All parse-node classes are 

incrementally built by inheriting from class Node.  The class hierarchy greatly simplifies 

the message-response routines. 
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• the facade pattern – provide simple and similar interfaces for subclasses.  There is much 

similarity among the parse-node classes’ declarations (e.g. their clone and equal messages), 

even though the implementation parts are completely different. 

• the proxy pattern – let one object simulate another.  In our inliner, every parse node 

can freely be used to dynamically simulate any other parse node once at inlining time.  

This is achieved by maintaining a redundant Tree pointer in each parse-node object and 

redirecting all class behaviors to this redundant Tree pointer whenever the object is 

marked “dirty”.  For example, the FunctionCallSiteNode can be used to simulate the 

function body, and this provides the kernel of the inliner.  Details will be introduced in 

Chapter 4. 

• the bridge pattern – provide a message-broadcasting mechanism.  All messages are 

broadcast to a Tree pointer and propagate to its associated Node’s subtrees.  The general 

idea of the Bridge pattern is to support the construction of an abstraction hierarchy 

(parse-node class definitions) parallel to implementation hierarchy (parse-node class 

implementations) and to avoid permanent binding between the abstractions and the 

implementations, and hence to reduce dependency among software components.6  The 

bridge pattern is used to connect the Tree pointer with all kinds of parse-node classes.  

The actual class to which the bridge connects will be determined at run time.  Thus, each 

parse-node class is required to have similar interface with the Tree bridge.  The class-

dependent distinct implementations successfully separate the permanent bindings 

                                                 
6 In our implementation, every necessary action is passed through Tree bridge and the class methods involved are fully 

determined by message – no class method will be directly invoked at any time. 
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between Tree pointer and the parse-node, and it is easy to transparently change parse-

node implementations without modifying the parser. 

The Bridge pattern is implemented by the design of the Tree class (discussed in Section 

3.4).  Every Tree node has a Node pointer and every possible message broadcaster (a 

method in Tree class that is used to send out a specific message).  The Node pointer is 

instantiated to a certain parse-node object, and so a message could be broadcast to the 

specific parse-tree object by sending the message to its Containing-Tree pointer.  The 

message broadcasters are used to send different messages to the Node’s Containing-Tree 

pointer.  Every message conceptually has one message broadcaster and the Tree class 

encapsulates the details of message broadcasting.  As an example, a parse tree is 

presented in Fig. 3.5 with UML notation for class representation.  We see the parse tree 

for the C statement t = 2.  There are four Tree pointers in this figure, each associates with 

a Node pointer instantiated to a specific parse-node: BinaryNode, StringNode, 

StringNode and IntegerNode, respectively.  When a message is sent to r, the root of a 

subtree (e.g., the message to do a local replacement of string “i” with “local_i”), it is 

broadcast to every node in the parse tree beneath r.  Only the interested nodes (the 

StringNode whose data name is i) will process it.  Others either propagate (non-terminal 

nodes) the message or simply ignore the message (terminal nodes). 

3.4.2 Message System 

While the current design uses a message system, the original design used a completely 

different one.  Before discussing the message system, we should examine the original 

design and show the reason why it is desirable to introduce the message system. 
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The original design extensively used virtual methods as follows.  Before a new method 

can be inserted into a leaf-node class, the same virtual method would have been placed 

into the Node class and all other parse-node classes, which do nothing but pass the 

message to their subtrees.  This involves a lot of redundant code and an example is 

shown in Fig. 3.6. 

 

 

 

 

 

 

 

 

 FIG. 3.5 EXAMPLE OF MESSAGE BROADCASTING SYSTEM 
 

In the example shown in Fig. 3.6, a GetName(  ) method is being added to get the actual 

variable name from an array variable, a pointer variable or a string variable.  A pure virtual 

method with the same name is inserted into the Node class first.  This guarantees that the 

required method could be obtained directly through the Node class.  Then different 

implementations of the same method have to be inserted into each relevant parse-node 

class.  Even worse, sometimes the programmer would have to rewrite the method in 

irrelevant parse-node classes, just to propagate the message. 

Tree1 :
Tree

node1 : Binar
yNode

node2 ='j' :
StringNode

Tree3 :
Tree

node3 = '=' :
StringNode

Tree4 :
Tree

node4 = '2' :
IntegerNode

Tree2 :
Tree

1:

2:
3:

4:

5: 6: 7:
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The message system was developed to avoid these difficulties.  The message class is a 

data structure that contains message type, id, parameter and return value and an example 

message structure is shown in Fig. 3.7.  The necessary message is generated and broadcast 

to the parse-tree nodes through their Containing-Tree pointers.  

A message broadcaster is a method in the Tree class, which generates the message, 

broadcasts it out and takes the return values if necessary.  It is different from the parse-

node message-response routines, which actually do the work the message system desires.  

Message and message broadcaster have a one-to-one relationship, while message and 

message-response routines have a one-to-many relationship. 

The message life cycle consists of message generation, 

broadcasting/propagating/processing and termination.  First, a message is generated 

when performing a specific function whose data or result cannot be obtained directly 

from Tree pointers at parsing or inlining time, as shown in Fig. 3.7.  This is done by 

constructing a CMessage structure.  Then, the message is broadcast to the parse tree 

through the message channel, by passing the CMessage structure as the parameter in all 

message broadcasters and message-response routines.  The message is initially directed to 

a Tree pointer, which could be any node in the current parse tree, and then is usually 

propagated top-down to the entire local parse tree.  The message propagation terminates 

when the message reaches a terminal node, where it is either processed or ignored.  Note 

that every subtree could serve as a place where a message broadcast could begin. 
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 FIG. 3.6 EXAMPLE OF VIRTUAL METHOD MAPPING 
 

 

 

 

 

 

 
 FIG. 3.7 EXAMPLE SHOWING MESSAGE BROADCASTING IN PARSING 
 

Tree * ArrayNode:: 
GetName( ){ 
 return 
ArrayName->GetName( ); 
} 

Tree * PointerNode::
GetName( ){ 
  if(not_nested_pointer) 
  return PointerName; 
else 
  return  
PointerName->GetName( ); 
} 

Tree * StringNode:: 
GetName( ){ 
   return StringName; 
} 

func_declaration: fun_type fun_name ‘(‘ param_list ‘)’  fun_body { 
      Tree * nowfun = new tree(“funcnode”); 
      nowfun->setfunreturntype($1); 
      nowfun->setfunname($2); 
      nowfun->setfunparam($4); 
      nowfun->setfunbody($6); 
      $$ = nowfun;   
  } 

Fig 3.6(a) Class Hierarchy for Virtual Method Mapping

Fig 3.6(b) Pseudo-code for Virtual Method Mapping 

Node

virtual void GetName()

(from Complete Class Hierarchy)

ArrayNode

void GetName()

(from Complete Class Hierarchy)
PointerNode

viod GetName()

(from Complete Class Hierarchy)
StringNode

void GetName()

(from Complete Class Hierarchy)
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The example in Fig. 3.7 shows a situation where a series of messages are generated and 

broadcast when the parser recognizes a function definition.  Now that the parser has 

function return type, name, parameter list and the function body’s parse-tree pointer in 

variable $1, $2, $4 and $6 respectively, it is necessary to record them into a Tree pointer, 

nowfun, which has instantiated a FunctionCallSiteNode at the place of its Node pointer.  

However, nowfun is just a Tree pointer and it has no idea that its Node pointer contains a 

FunctionNode.  A series of messages are generated and broadcast to nowfun Tree pointer, 

to properly record the necessary information.  This is also a case where a parse-node class 

will only be interested in relevant messages.  For example, if the same sequence of 

messages is broadcast to a Tree pointer that contains a string value, this parse node will 

simply ignore any message it receives in this case and no information will be recorded.  

 

 

 

 

 

 

 FIG. 3.8 EXAMPLE OF MESSAGE BROADCASTING IN PARSING 
 

Another parsing example is given in Fig. 3.8, which shows what happens when the parser 

recognizes a binary operation and generates a sequence of messages that are used to 

record the left, operation and right subtrees.  It is easy to see that the message sequence 

in BinaryNode recognition is completely different from that used to record 

expr_stmt: expression operator expression { 
   Tree * Result; 
   Result = new Tree(“binnode”); 
   Result->SetBinLeft($1); 
   Result->SetBinOperator($2); 
   Result->SetBinRight($3); 
   $$ = Result; 
   } 
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FunctionNode information.  However, if this sequence of messages is broadcast to a 

Tree pointer that has a function callsite instantiated, all messages will also be ignored.   

Note that every parse-node class has a different set of methods that is only related to its 

specific class.  Even methods with the same name but located in different classes will 

have different implementations and behaviors. 

 
3.4.3 Message Composition 

The composition of the CMessage class is presented in Fig. 3.9, showing all the necessary 

data this class needs to have.  This includes 

• Message Type – identifies whether the message should be broadcast up or down in the 

parse tree.  Most of the time, the message needs to go down in the parse tree, in the 

techniques required for inlining.  In special cases, for instance, to get the function return 

type from within the current function body, the message will go up in the parse tree. 

 

 

 

 

 

 

 FIG. 3.9 CMESSAGE 
 

• Message Id – indicates the message type.  Every message has a predefined integer value 

for its Id.  By checking the message Id in the class message filter, a class realizes 

CMessage

int Message_Type;
int Message_Id;
Tree * Message_Data

CMessage()
void ~CMessage()
operator =()

(from Complete Class Hierarchy)

CMessage 
Data

CMessage 
Methods
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immediately whether this message is relevant and thus whether it should process the 

message or invoke the default message processor. 

• Message Data – contains the incoming parameters and the outgoing return values.  This 

includes a set of variables for each basic type and three Tree pointers, because different 

messages could return different types and numbers of results.  Our experience with the 

inliner is that this message data is sufficient. 

 

3.4.4 Message-Design Evaluation 

Fig. 3.10 presents three methods in pseudo-code: a general message broadcaster, a 

message processor and the message connector that ties the Tree pointer with its associate 

parse-node data.  The message is built by constructing a CMessage, which is then 

broadcast to the appropriate Tree pointer.  Then the Tree pointer redirects the message 

to its current parse node.  Note that whenever a message is broadcast, it must start at a 

Tree pointer, so that message propagation could begin.  The response routines in the 

parse node then process a message whenever it reaches a parse node.  The result is passed 

back in the CMessage structure and returned from the message broadcaster.  Every parse-

node class has a default message processor, which captures the messages and checks its 

message id.  All irrelevant messages are processed by the default mechanism, which does 

nothing but either propagate or ignore them.  The default message filter invokes the 

appropriate method to process the message if it determines the message is relevant to the 

specific class. 
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There are some advantages to the message system.  First, it provides a standard interface 

for message response routines.  Their standard format is: void 

ClassName::RoutineName(CMessage &).  Second, it passes messages implicitly.  Every 

parse node has a default message-processing routine called DefMessageProc, which is 

responsible for redirecting all the irrelevant messages to its subtrees.  This is different for 

every class, as presented in Fig. 3.10. 

The design goal of the message system is to reduce the programming complexity and 

avoid code explosion.  Under this design, it is unnecessary to specify the processing of 

irrelevant messages.  All irrelevant messages will be processed by the class’s default 

method, which passes messages implicitly to the class-specific subtrees. 

 

 

 

 

 

 

 

 

 

 

FIG. 3.10 EXAMPLE OF MESSAGE-BROADCASTING SYSTEM 
 

Tree * Tree:: 
HandlerName(Parameters){ 
     Tree * Result = NULL; 
     CMessage Msg; 
     Msg.Id    = Identification; 
     Msg.Type = Type_of_message; 
     Msg.Param = Parameters; 
     BroadCastMessage(Msg); 
     Result = Msg.Result; 
     Msg.Clean(); 
     return Result; } 

3.10(a) A general message broadcaster

void 
ParseNode::BroadCastMessage(CMessage 
& Msg){ 
  switch(Msg.Id){ 
           … 
  case Type_of_message: 
      ProcMsg(Msg); 
      break; 
       …   
   default: 
       DefMessageProc(Msg);   
       break;  }  
  } 

3.10(b) A general message processor 

void Tree:::BroadCastMessage(CMessage  &Msg){ 
      if(node_ != NULL) 
         node_->BroadcastMessage (Msg); 
   } 

3.10(c) Tree to parse-node message connector
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However, there is an apparent disadvantage of the message-system design – the large 

number of messages.  There are currently about 200 messages in the current 

implementation (Appendix 4 shows the most important 60 of them).  Theoretically 

speaking, each message will have a message broadcaster, which makes the Tree class very 

fat in that it has many methods.  Some tricks are used to shrink the number of message 

broadcasters to around 13. 

 

 

 

 

 

 

 
 FIG. 3.11 EXAMPLE FOR DEFAULT MESSAGE PROCESSOR 
 

3.5 Memory-Management Strategy – Sharing + Cloning 

Since C++ does not provide automatic memory management and the object-oriented 

parser has high memory consumption, memory management has been carefully 

considered for parsing and inlining.  The smallest parse node is IntegerNode, whose size 

is 44 bytes.  On the opposite extreme, one FunctionCallSiteNode requires 130 bytes.  

void BinaryNode:: 
DefMessageProc(CMessage 
&msg){  
if(msg.Type == SYS_UP) 
Parent->BroadCastMessage(msg); 
else { 
  if(Left != NULL) 
   Left>BroadcastMsg(msg); 
 if(Operation != NULL)           
  Operation->BroadcastMsg(msg); 
 if(Right != NULL) 
   Right->BroadcastMsg(msg); 
    } 
} 

void FunctionNode:: 
DefMessageProc(CMessage 
&msg){ 
if(msg.Type == SYS_UP) 
 Parent->BroadCastMessage (msg); 
else { 
 if(FName != NULL) 
 FName->BroadcastMsg(msg); 
 if(Param != NULL) 
 Param->BroadcastMsg(msg);        
        } 
} 

Fig 3.11(a) Default message 
processor for BinaryNode 

Fig 3.11(b) Default message 
processor for Function Node 



 

 

41 
Because of the big node problem caused by parse nodes, we will discuss memory sharing 

that reduces the high memory consumption without harming the advantages we achieved 

from the design. 

 

3.5.1 Memory Sharing 

The memory management is controlled by NEW and delete operators where C++ will 

allocate and free memory to a specific structure.  However, C++ has an implicit 

limitation on overloading the memory allocation operator NEW.  

As shown in Fig. 3.12, the overloaded C++ NEW operator must have a size_t parameter 

first.  This makes it impossible for an overloaded NEW operator to accept the Tree 

pointer as its first and only parameter.  

 

 

 

 FIG. 3.12 OPERATOR NEW OVERLOADING 
 

Due to this limitation, a NEW operator was created and explicitly used for Tree pointer 

sharing.  By introducing a reference counter and overloading the memory management 

operators, a relatively easy strategy was developed to make efficient use of memory – 

sharing.  Both NEW and delete operators are overloaded to make the implicit memory 

sharing possible.  An example is shown in Fig. 3.13. 

Because all the parse node memory operations are manipulated directly through Tree 

pointers, it is sufficient enough to overload memory management operators (NEW and 

void * operator new (size_t size, …){ 
 /* actual work overloaded new will do */ 
} 
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delete) for the Tree class only.  However, in some special cases (e.g. duplication of the 

inlined function’s body), shared copies cannot be used and explicit cloning is unavoidable. 

 

 

 

 

 

 

 

 

 

 

FIG. 3.13 MEMORY MANAGEMENT OPERATOR OVERLOADING 
 

3.5.2 Cloning 

Memory cloning is supported as one of the four necessary methods in each class’s 

message response routines.  Every parse node has a clone method to duplicate itself and all 

its subtrees, and this method is implemented by explicit recursive duplication of the 

memory’s contents.  An example is presented in Fig. 3.14. 

Because the parser does not implicitly perform memory sharing (exactly duplicates of 

constructs in the source code will generate different parse trees, rather then a shared 

copy), all sharing is created in the function-callsite analysis when making inlining 

Fig 3.13(a) Example of NEW operator overloading 

void Tree * NEW (Tree * InitTree){ 
 if (InitTree) { 
   InitTree->node_->ReferenceCounter++;
   return InitTree;  } 
 else   return NULL; 
} 

void operator delete (void *p){ 
   if (--((Tree *)p)->node_ 
         ->ReferenceCounter) 
        return; 
    else   ::operator delete (p); 
 } 

Fig 3.13(b) Example of delete operator overloading



 

 

43 
decisions.  The ReferenceCounter is not cloned when performing the function 

duplication.  Details on the use of sharing with the call graph will be given in Chapter 5. 

 

 

 

 

 FIG. 3.14 EXAMPLE OF MEMORY CLONING 
 

3.6 Parse-Tree Structure 

Recall that a parser usually reads valid syntactical structures and constructs the parse tree 

to enable the code generation phase.  Although we are not going to generate intermediate 

code, we still need this internal syntax representation to do our inlining work.  The 

following will give some examples to show the way the inliner internally represents and 

manipulates the source program after parsing. 

 

3.6.1 Collections of  Parse Trees 

From a global point of view, the entire “parse tree” is actually a disconnected forest, with 

three trees. 

• GST List – Global Symbol Table List.  The GST List contains all global-level 

declarations, such as constants, line directives, variables, arrays, struct and unions, 

enumerations, etc.  Fig. 3.15 shows several simple global declarations and the 

corresponding GST List. 

Source Memory 
Contents 

Reference Counter 

Cloned Memory 
Contents 

UnCloned Reference 
Counter 

Clone request  
message 
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All global declarations are collected into the GST structure, which functions like a 

dynamic array of Tree pointers.  The array is ordered the same way as the parser 

generates it – a declaration that appears early when parsing will have an early index in the 

dynamic array. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 3.15 EXAMPLE OF GLOBAL SYMBOL TABLE 
 

… 
int i; 
long j; 
#line “gram.y” 333 
… 

Fig 3.15(a) C code with global declarations

Fig 3.15(b) Example of Global Symbol Table for C code shown in Fig 3.15(a) 

GST : LocalSymbol
TableNode

binarynode1 : 
BinaryNode

binarynode2 : 
BinaryNode

macro1 : 
MacroNode

'int' : Type
Node

'i' : String
Node

'long' : Type
Node

'j' : String
Node

'gram.y' : 
StringNode

'333' : Integer
Node
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• Function-Prototype List – This contains all declared function prototypes.  As required 

by ANSI C, every function needs a prototype declaration before either the function 

definition or a callsite may appear. 

Note that it is possible to merge the Function-Prototype List into the GST List since we 

can consider that function prototype is a kind of global declaration and all global 

declarations should be maintained the same way.  However, it seems better to maintain 

the global function-prototype declarations in a different list, for reasons that will be 

introduced. 

• Function List – this collects all user-defined functions. 

All three parse-tree lists are arranged and managed in the same way and are similar data 

structures – dynamic arrays of Tree pointers.  Note that the source-code line number is 

not kept in any of the parse-tree nodes except the “#line” directives whose specified line 

number must be recorded. 

 

3.6.2. Reparsing 

Reparsing refers to writing part or all of the current parse tree into source-code files, 

destroying the parse tree and regenerating it from the files.  It is chosen to keep the entire 

parse tree consistent and always updated and it improves robustness and simplicity at the 

cost of efficiency.  

There are two types of reparsing – global reparsing and local reparsing.  Global reparsing 

will destroy the entire parse tree and regenerate everything.  This usually will be applied 

after one inlining step, because after inlining once, one carefully chosen callsite will have 
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been inlined.  Thus the parse-tree structure has been changed, new call sites might have 

been created and updating the entire parse tree will have become necessary. 

However, global reparsing is not always necessary.  After each of the internal swapping 

and splitting (details in Chapter 4) operations, only a small portion of parse tree needs to 

be regenerated.  This motivates local reparsing, which only updates a necessary subset of 

the entire parse tree (usually a function or an expression).  The reparsing steps are the 

same. 

 

3.7.  Miscellaneous Parsing Techniques 

Besides the parsing techniques introduced above, there are many minor ones used in 

parser design.  A few will be examined that lead to a better overall understanding of the 

inliner. 

 

3.7.1 Swapping and Splitting 

A certain number of “swapping” and “splitting” operations will be applied on the parse 

tree to standardize function callsites (details will be given in Chapter 4).  When carrying 

out one of these operations, we will scan the entire parse tree once, searching for 

occurrence of a pattern to be replaced with some other patterns.  The way we rewrite the 

if_then_else construct is illustrated in Fig. 3.16(a), the abstraction of parse-tree 

representation and the pseudo-code description are given in Fig. 3.16(b), Fig. 3.16(c), Fig. 

3.16(d) and Fig. 3.16(e). 
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if (condition) 
  then_statement; 
 else 
  else_statement; 

{ temp01 = condition; 
   if (temp01) 
   then_statement; 
   else 
   else_statement; } 

Conditional 
swapping 

Fig 3.16(a) General rule for if_then_else construct swapping 

void GlobalOptions::SwapAndSplit(void){ 
 … 
  Root->SendMessage(ck_SwapIfCond); 
/* Root is the root of the entire parse tree */ 
… 
/* Other messages to standardize parse tree */ 
} 

Fig 3.16(b) Pseudo-code for if_then_else construct swapping 

 
                       if(condition) 
 
 
 
      
 
then_statement    else_statement

 
Tree List 

 
            
            ‘=’                     if(temp1) 
 
 
temp1  condition  then        else       
                      statement statement 
 

Fig 3.16(c) Compressed parse-tree representation for 
if_then_else construct swapping 

Swap
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FIG. 3.16 EXAMPLE FOR IF_THEN_ELSE CONSTRUCT SWAPPING 

 

Note that there is exactly one message for each swapping/splitting process and one 

swapping/splitting step will finish before the message returns.  All message details could 

be found in Appendix 4.  In each standardization process, a swapping/splitting message 

is sent directly to the parse tree root and propagated to the entire parse tree.  Every C 

syntactical construct will receive this message, but only those that fall into that specific 

swapping/splitting category (in this case, the IfThenElseNode) will perform the actual 

standardization. 

 

void IfThenElseNode::BroadCastMessage(CMessage &Msg){ 
        Switch(Msg.Id){ 
         … 
        case ck_SwapIfCond: 
                SwapIfCond(Msg);  
                break; 
              … } // end of switch 
  … } // end of message filter 

Fig 3.16(d) Pseudo-code for if_then_else message filter in IfThenElse class 

void IfThenElseNode::SwapIfCond(CMessage &Msg){ 
  /* Code to do the real if_then_else conditional construct 
swapping */ 
  } 

3.16(e) Pseudo-code for if_then_else conditional swapping
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3.7.2 Standard Interfaces 

Providing standard interfaces is another direct advantage of the chosen design patterns.  

This separates the parse-node implementation details from its definitions, keeps the 

parser concise and enables it to process large number of different messages.  Because 

every action is performed through the message system, there is no need to invoke parse-

node methods directly from the byacc actions.  The parser will just send a message or a 

sequence of messages to a local parse-tree root, and the message system will connect to 

the appropriate message response routines and take care of the rest.  This enables the 

transparent modifications and transplantation7 of the parse-node implementation without 

modifying the parser.  Two examples are given in Fig. 3.17(a) and Fig. 3.17(b).   

The first is the interface between the parser and parse-node data structure.  It shows the 

way the parser allocates a Tree pointer and connects an appropriate parse-node instance 

to it.  This is used to keep the parser skeleton simple, maintaining the understandability 

during the project’s development.  This code is class independent and could appear 

anywhere in the parser.  Note that the string “parse-node-type” represents the name of a 

parse-node class that needs to be instantiated.  All parse-node names and data structure 

details are listed in Appendix 1. 

The second standard interface is between the Tree class and all the parse-node classes, 

and is used when instantiating a Tree pointer.  It ensures that every Tree node connects 

to only one appropriate parse-node.  All the messages broadcast to this Tree pointer will 

be automatically redirected to its associated parse-node. 

                                                 
7 A parse-node class could be replaced by another parse-node class without modifying the parser and message system by 

just redirecting the message to the new parse-node class. 
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 FIG. 3.17 EXAMPLE OF STANDARD INTERFACE 
 

3.7.3 Parse-Tree Adjustment 

The parser generates the local symbol table as defined by the ANSI C grammar and an 

example is given in Fig. 3.18.  However, this kind of deeply nested BinaryNode parse tree 

is not suitable for inlining processing, especially when the inliner wants to take out one 

particular declaration and process it (e.g. renaming).  Thus, the parser performs an 

internal scan, which converts all the deeply nested BinaryNode declarations to a flat 

array-like width-first declaration.  An example is also given in Fig. 3.19. 

 

 

 

 

… 
Tree * DataName; 
DataName = new Tree(“parse-node-type”); 
… 

Fig 3.17(a) Interface between parser and parse-node classes

Fig 3.17(b) Interface between Tree class and Parse-node classes 

Tree * Tree::Tree(char  * parse-node-type){ 
      switch (parse-node-type){ 
      … 
      node = new ParseNodeName(this); 
      … } 
     return this; 
} 
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FIG. 3.18 EXAMPLE OF PARSER-GENERATED LOCAL SYMBOL TABLE 
 

bracketnode : 
BracketNode

binarynode1 : 
BinaryNode

binarynode2 : 
BinaryNode binarynode3 : 

BinaryNode

'int' : Type
Node

'i' : String
Node

binarynode4 : 
BinaryNode

binarynode5 : 
BinaryNode

'long' : Type
Node

'f' : String
Node

'char' : Type
Node

'c' : Char
Node

… {int i; 
       long f; 
       char c; …} 

Fig 3.18(a) C source code for local symbol table
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 FIG. 3.19 IDEAL LOCAL SYMBOL TABLE  
 

LST : LocalSymbol
TableNode

binarynode1 : 
BinaryNode

binarynode2 : 
BinaryNode

binarynode3 : 
BinaryNode

'int' : Type
Node

'i' : String
Node

'long' : Type
Node

'f' : String
Node

'char' : Type
Node

'c' : String
Node
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Chapte r  4   

Inlining Techniques 

4.1 Top View 

The inlining technique has two parts: standardization of each function callsite and 

inlining of candidates that have been selected by the decision algorithm.  The top 

view of the entire processing is shown in Fig. 4.1 and consists of eight processing 

steps. 

1. C Preprocessing 

The C preprocessor is invoked at the very beginning, so that all macros are expanded and 

#include directives are processed.  Every invocation that appears to be a function call, 

but is actually a macro invocation, is uncovered.  This process generates a temporary file 

that is ready to be parsed, and the original file is unchanged. 

2. Parsing  

The second step is to parse the temporary file, using the lexical analyzer and parser 

introduced in Chapter 3, to construct the parse tree.  Every valid C construct is recorded 

in its corresponding parse-node.  All line directives (“#line xxxx”) are recognized and 

recorded as global or local variable declarations in the parse tree. 
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3. Swapping and Splitting 

Then the parse-tree information is fed to the swapping and splitting module in the third 

step.  This scans the entire parse tree, rewriting and reparsing it several times.  All 

function callsites are converted into a standard format that will be discussed in Section 

4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.1 ENTIRE INLINE PROCESSING 
 

 

 

C 
Source 
Code 

C 
Preprocessing 

Parsing C 

Swapping and 
Splitting 

Collecting 
Profile 
Information 

Parse tree 

Making 
Inlining 
Decision  

Inlining 
Selected function 
callsite to be 
inlined 

Adjusting and 
Regenerating 

Incremental inlining

Creating the 
Final Result

Parse tree 

Standardized 
parse tree 

Parse tree

Done inlining 
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4. Collecting Profile Information 

In the fourth step, profile information needs to be collected for the standardized parse 

tree.  A modified version of the standardized parse tree is generated by cloning the 

original one and creating dummy functions at each callsite.  It is then used to generate C 

source code that is compiled, executed and profiled.  Accurate callsite frequencies and the 

number of times each function is entered are recorded and used for inlining decisions. 

5. Making Inlining Decisions 

The fifth step is one of the most important parts of the thesis work, since it makes the 

inlining decisions about which callsites should be inlined.  To do this, all uninlineable 

callsites are removed from the list of inlineable candidate and routine sizes are 

approximated.  Some complicated analyses are based on version issues and limited code 

expansion, and will be introduced in Chapter 5. 

6. Inlining 

Function inlining substitutes the selected callsite with the corresponding function body in 

the sixth step.  Details involve duplicating of function body, simulating proper parameter 

passing, removing the callsite, rewriting labels and eliminating return statements.  As well, 

identifier conflicts must be solved.  These issues were discussed in Chapter 2 and will be 

expanded in Section 4.7. 

7. Adjusting and Regenerating 

After one inlining step, new callsites might have been created that could make the parse 

tree become inaccurate.  Rather than incrementally adjust all data structures, we choose to 

reparse the inlined program or function in the seventh step.  Re-profiling may also be 
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done.  This has already been discussed in Section 3.6.2, and further details will be given in 

Section 4.8. 

 

8. Creating the Final Result 

When the decision algorithm finds that there is no inlineable callsite worth inlining, we do 

the final step, the clean-up stage.  The inlined C source code is generated from the parse 

tree into a file.  Then the parse-tree structure is destroyed and the entire inlining process 

terminates. 

 

4.2. Standardizing Callsite 

Davidson and Holler [5] provided details of techniques for source-to-source inlining, but 

they neither showed the way to inline deeply nested callsites nor discussed the situations 

under which source-to-source inlining techniques could be applied to callsites.  In this 

thesis, two standard callsite formats are developed to address this issue.  Each format is a 

statement, and thus no rewritten callsites can be nested inside an expression.  All 

inlineable function callsites are to be rewritten to one of the following standard formats 

and this greatly simplifies later inlining. 

The two standard formats are 

1. f(x);  

f  is the function name and x is a parameter list that does not contain any inlineable 

function callsites.  This is the standard format for a callsite invoking a function whose 

return type is void or whose non-void return value is simply ignored. 
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2. y = f(x); 

y is a simple variable name, ‘=’’ is one of the assignment8 operators, f  is the function 

name and x is a parameter list that does not have any function callsites.  This is the 

standard format for all function calls whose return results have to be recorded.  

Callsites can appear in various forms in the source code and cannot be used for inlining 

before they have been converted into the standard formats, as introduced in Chapter 2.  

Swapping and splitting are the methods used to standardize each callsite, and they are 

introduced next. 

 

4.3 Swapping 

The swapping process lifts all function callsites out from within conditional control 

expressions, loop control constructs, declarations and return statements.  For each such 

site, it creates a temporary variable, assigns the variable with the callsite swapped out and 

puts a copy of the variable’s name in the callsite’s original place.  Details are now given to 

show how we swap various C constructs without changing the program’s semantics. 

 

4.3.1 Swapping Conditional Controls 

Since function callsites within control expressions cannot be inlined directly, swapping is 

used to process these sites first.  There are five types of statements to consider.  They are 

if_then_else, switch_case, while, do_while and for-loop, and we next consider each case 

                                                 
8 Other assignment-type operators include +=, -=, *=, /=, &=, |=, ~=, %=, >>=, and <<=. 
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in more detail.  After this control-statement swapping, there are no inlineable function 

callsites within a conditional-control or loop-control expression. 

• if_then_else condition 

Swapping the if_then_else construct is shown in Fig. 4.2.  Whenever a function callsite is 

detected to be inside the if_then_else’s condition expression, the expression is swapped 

out and evaluated separately.  The result is written into an integer temporary variable, 

which then takes the place of the original if_then_else condition.  A specific example of 

swapping the if_then_else’s condition is shown in Fig. 4.3. 

Note that there is an integer variable named “temp01” in the swapped program.  Actually, 

it is a kind of “fresh” temporary variable whose name is controlled by a global counter.  

Whenever a temporary variable name is required and generated, the counter increases, 

thus guaranteeing that no duplicate names appear.  This idea is frequently used through 

the entire thesis. 

 

 

 

 

 

 

 FIG. 4.2 GENERAL RULE FOR SWAPPING AN IF_THEN_ELSE CONDITION 
 

 

 

if(condition) 
   then_statement 
else 
  else_statement 
 

{ int temp01; 
temp01 = condition; 
if(temp01)  
  then_statement; 
else 
  else_statement;  } 

Swap 
if_then_else 
condition 
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 FIG. 4.3 EXAMPLE FOR SWAPPING IF_THEN_ELSE CONDITION 
 

 

 

 

 

 FIG. 4.4 GENERAL RULE FOR SWAPPING SWITCH_CASE CONDITION 
 

•switch_case expression 

Swapping the switch_case construct is shown in Fig. 4.4, whenever a function callsite is 

found within the expression part of the construct.  Swapping for the construct is done in 

much the same way as for the if_then_else construct. 

• while condition 

While-condition swapping is performed when there is a function callsite in the condition 

part.  C semantics require that a while’s body keeps on looping whenever the while-

condition is true at the beginning of each iteration.  This implies that the while-

condition needs to be evaluated before every iteration.  This in turn implies that the new 

assignment statement cannot be outside of the loop after swapping, thus this evaluation is 

switch(condition) 
    labeled_statement; 
… 

{ 
  int temp01; 
  temp01 = condition; 
  switch(temp01) 
       labeled_statement; 
} 
…

Swap 
switch_case 
condition

if( t == f(x)) 
    { b = 10; a++} 
else 
  { 
  t += 10; 
  r = f(x) – 5; 
  } 

{ int temp01; 
   temp01 = (t == 
f(x)); 
   if(temp01) 
       { b = 10; a++;} 
   else { 
    t += 10; r = f(x) – 5;   
         }

Swap 
if_then_else 
condition
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earlier than the evaluation of loop-body.  By moving the while-condition into the loop 

body and using a constant value “1” instead, the standard while-loop is converted to an 

unconditional while-loop, with an if_then_else construct in the body, as shown in Fig. 4.5.  

Then the if_then_else construct is standardized as introduced before.  This guarantees 

that the original while-condition is evaluated before every iteration and the entire loop 

terminates when the condition becomes false.  A specific example for while-loop 

swapping is presented in Fig. 4.6. 

  

 

 

 

 

 FIG. 4.5 GENERAL RULE FOR WHILE-LOOP SWAPPING 
 

 

 

 

 

 

 FIG. 4.6 EXAMPLE FOR SWAPPING WHILE-LOOP 
 

 

 

 

while (condition) 
  loopbody; 

while (1){ 
  if(condition) 
   loopbody; 
 else 
   break; 
} 

while(1){ 
  temp01 = condition; 
  if(temp01) 
      loopbody; 
  else 
      break;  } 

while(f(i) < 10){ 
  i++; 
  f(i); 
} 

while(1){ 
  if(f(i) < 10) { 
   i++; 
   f(i); 
  } 
else 
   break;  } 

while(1){ 
   int temp01; 
   temp01 = f(i); 
    if(temp01){ 
        i++; 
         f(i);  } 
    else break; } 
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 FIG. 4.7 GENERAL RULE FOR SWAPPING DO_WHILE CONSTRUCT 
 

• do_while condition 

The rule for swapping the condition from a do_while loop is illustrated in Fig. 4.7.  It is 

very similar to the rule for swapping the while-loop’s condition. 

• for-loop condition 

A for-loop will be swapped if a callsite is detected in any of the three looping-control 

parts.  The for-loop’s swapping is shown in Fig. 4.8 and Fig. 4.9.  As shown, for-loop 

swapping is complicated.  First, the for-loop is converted into a standard while-loop with 

the initializer swapped out of the loop and the modifier moved into the loop.  Second, 

the standard while-loop is processed as before. 

 

 

 

 

 FIG. 4.8 GENERAL RULE FOR SWAPPING FOR-LOOP 
 

Note that after each for-loop swapping, the corresponding “for” construct has been 

completely replaced by an equivalent while loop construct.  This significantly changes the 

parse tree, but does not affect semantics and should not affect efficiency.  

do { 
loopbody; 
} 
while 
(condition); 

do{ 
loopbody; 
if(!condition) 
break; 
} 
while (1); 

do{ int temp01; 
loopbody; 
temp01 = condition; 
if( !temp01) break;   
} 
while (1); 

for(initializer; 
      condition;
      modifier) 
  loopbody; 
 
       

initializer; 
while(condition)
{ 
  loopbody; 
  modifier; 
} 

initializer; 
while(1){  
int temp01; 
temp01=condition; 
if (! temp01) break; 
  loopbody; 
  modifier; } 

Step 1 Step 2
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FIG. 4.9 EXAMPLE FOR FOR-LOOP SWAPPING 
 

 

4.3.2 Swapping Return Statements 

Return statements also need to be swapped if the return expression contains a function 

callsite.  The original return statement is replaced by one assignment statement followed 

with a jump statement, as shown in Fig. 4.10 and Fig. 4.11.  The function_type is the 

current function’s return type, which is easily obtained from the parse tree9. 

 

 

 

 

 
FIG. 4.10 GENERAL RULE FOR RETURN-STATEMENT SWAPPING, ASSUMING THAT THE EXPRESSION 

CONTAINS A CALLSITE 
 

 

 

 

                                                 
9 This is a case where an “upward” broadcast introduced in Chapter 3 is useful. 

for(i=0; 
    i<f (10); 
    i++){ 
printf (“%d”,i); 
} 
 

i = 0; 
while (i<f(10)){ 
 printf (“%d”,i); 
 i++; 
} 

i = 0; 
while (1){ 
   int temp01; 
   temp01=(i<f (10)); 
   if(!temp01) break; 
   printf (“%d”,i); 
   i++;  } 

Step1 
Step2

… 
return expression; 
…  

… 
function_type temp01; 
temp01 = expression; 
return temp01; 
…

Swap return 
statement 



 

 

63 
 

 

 

 

 

 FIG. 4.11 EXAMPLE FOR RETURN-STATEMENT SWAPPING 
 

4.3.3 Swapping Callsites in Declarations 

C allows variables to be assigned initial values at declaration time.  If callsites are 

contained in an initializing statement, they cannot be inlined directly and thus need to be 

swapped.  The rule about how to swap function callsites between declarations and 

statements and an example are presented in Fig. 4.12 and Fig. 4.13 respectively.  As 

shown, a simple algorithm is used.  A scan is made over the entire parse tree, trying to 

find variables initialized at declaration time.  We then retain the declaration of the variable 

name, but remove the initialization and put it into a FIFO queue of parse trees.  When 

finished scanning the current declaration block, we insert the queue’s contents at the very 

beginning of the current statement block.  This guarantees the evaluation order is correct 

and all data dependencies are properly maintained. 

Note that whenever a variable declaration has an initialization expression containing a 

callsite, the entire current declaration block must be swapped as introduced above.  In case 

we try to swap only those variables with callsites in their initializations and ignore others, 

data dependencies may be violated.  The example in Fig. 4.14 illustrates this. 

 

int f(…){ 
… 
return f1( ) +9; 
… } 

int f(…){ 
  … 
  {function_type temp01; 
    temp01 = f1( )+9; 
    return temp01; 
   } 
…  } 

Swap 
return 
statement 
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FIG. 4.12 GENERAL RULE FOR SWAPPING VARIABLE DECLARATIONS THAT HAVE INITIALIZATIONS 
 

 

 

 

 

 

FIG. 4.13 EXAMPLE OF SWAPPING VARIABLE DECLARATIONS THAT HAVE INITIALIZATIONS 
 

 

 

 

 

FIG. 4.14 EXAMPLE OF INCORRECT SWAPPING OF INITIALIZATIONS 
 

As shown above, on the left, t is assigned the value of “j+i” before swapping, where j has 

the value of f(x).  But if we swap only the variables with function calls in their 

initialization, as shown on the right, t is assigned the value of “j+i”, where j is not 

initialized and thus has an unknown value.  This swapping will break the data dependency 

and must be avoided. 

 

{ 
int i = 3, j = 1 +f(x), b; 
… 
i = i +1; … 
} 

{ int i, j, b; 
   … 
   i = 3; 
   j = 1+f(x); 
   i = i + 1; … 
 … } 

Swap 
declaration 
to 
statement 

{decl_type decl1=expr1,  
    decl2 = expr2, …,      
    decln = exprn; 
 … 
 statements; 
} 

{ decl_type decl1, decl2, … decln; 
    … 
    decl1 = expr1; 
    decl2 = expr2; …; 
    decln = exprn; 
    statements; } 

Swap 
between 
declaration 
and 
statement 

{ 
 int i=10, j= f(x), t = j +i; 
 … 
 } 

{ 
 int i = 10, j, t =j + i; 
 … 
 j = f (x); … 
 } 

Swap variables  
with callsite  
assignment only 
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This concludes the description of swapping.  When all these forms of swapping finish, it 

is impossible to find an inlineable callsite inside any conditional expression, a loop control 

expression, a return statement or a declaration.  We are left with the possibility that a 

callsite might be nested inside an expression, and how this is handled is discussed next. 

 

4.4 Splitting 

Splitting is used to rewrite an expression containing inlineable callsites into a series of 

standard form statements, where all callsites appear to be in the standard formats.  It is 

difficult to do this properly.  There are six types of splitting to consider. 

 

4.4.1 Removing Comma Operators 

It is valid C to join a series of expressions with comma operators.  Whenever a function 

callsite is detected to be in one of the comma expressions, the entire comma expression 

must be split, as presented in Fig. 4.15. 

 

 

 

 

 

 

 

 

temp01 = expr1, expr2,   
               …,exprn; 

expr1; 
expr2; 
… 
temp01 = exprn; 

Comma operator 
removal 

Fig 4.15(b) Rule for removing comma operator

… 
expr[comma_expr…] 
… 

… 
temp01 = comma_expr; 
expr[temp01…] 
… 

Lift comma 
operator out 

Fig 4.15(a) Rule for lifting comma operator 
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 FIG. 4.15 COMMA-OPERATOR REMOVAL 

 

The expressions are separated with commas and it is the inliner’s responsibility to replace 

them with semicolons.  First, the comma operators nested in an expression are lifted out 

to the statement level.  Then, the comma operators will be standardized.  There are 

several places of actions in the parser where the parse-nodes will be marked inside 

comma-operators when they were created.  Note that this technique could only be 

applied within marked comma operator expressions where comma operators appear in a 

place as any other binary operators.  The commas separating variable declarations or 

function callsite parameter lists are not affected. 

 

4.4.2 Splitting Short-cut Operators 

Special approaches are needed when splitting two binary operators – logical-and (“&&”) 

and logical-or (“||”) and these approaches were introduced by [5].  Compared with all 

other binary operators, they have different properties and need to be considered 

separately. 

• Splitting logical-and (“&&”) operator 

… 
t = (f1(2), r = f(f(s)), l++);
… 

… 
f1(2); 
r = f(f(s)); 
t = (l++); 
…

Fig 4.15(c) Example for removing specific comma operator

Comma operator 
removal 
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As with comma operators, the shortcut operators also need to be lifted first, in case they 

are deeply nested in an expression.  The expression containing logical-and (“&&”) 

operators will then be split into a kind of nested if_then_else statement, as shown in Fig. 

4.16(a), Fig. 4.16(b) and Fig. 4.16(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.16 EXAMPLE FOR SPLITTING LOGICAL-AND OPERATOR 
 

t = (f1(x) && 
(f2(b)+10)); 
 

{ int temp01 = 0; 
   int temp02 = f1(x); 
   if(temp02){ 
     int temp03 = f2(b) + 10; 
       if(temp03) 
          temp01 = 1; } 
    t = temp01;   } 

Fig 4.16(c) Example for splitting logical-and operator 

Split logical-and 
shortcut operator

varname =  
expr1 && expr2; 

{ int temp01=0; 
   int temp02; 
   temp01 = expr1; 
   if (temp01){ 
      temp02 = expr2; 
   if (temp02)  
      temp01 = 1;  } 
   varname = temp01; 
} 

Split logical-and 
shortcut 
operator 

Fig 4.16(b) Rule for splitting logical-and operator

… 
expr(… (expr1 && 
expr2) …) 
… 

… 
{ 
int temp01; 
temp01 = (expr1 && expr2); 
expr(… temp01 …) 
} 
…

Lift ‘&&’ 
operator 

Fig 4.16(a) Rule for lifting logical-and operator
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ANSI C requires that shortcut evaluation be performed on logical-and operations strictly 

from left to right.  If the left operand evaluates to “false”, the result is false and it is 

unnecessary to evaluate the right operand.  The logical-and splitting technique properly 

mimics this evaluation. 

• Splitting logical-or (“||”) operator 

The rule for lifting logical-or (“||”) operator is exactly the same as that used in lifting 

logical-and (“&&”) operator.  The rule used to split logical-or operator is similar to that 

of logical-and splitting and is shown in Fig. 4.17. 

 

 

 

 

 
 FIG. 4.17 RULE FOR SPLITTING LOGICAL-OR OPERATOR 
 

Note that we only show the technique to split one shortcut operator here.  In case 

shortcut operators are nested, the same technique will be applied again, until all shortcut 

operators are removed.  Also note that if the final assignment expression does not exist 

(in Fig. 4.16, if t does not exist), the actual type the shortcut evaluation returns can be 

decided by applying the typeof operator, a GNU [14,24] extension, on the entire 

evaluation expression.  Since this extension is not portable (other C compilers do not 

support this feature) and this situation is expected to be unusual, plus there are no other 

situations where the inliner needs to perform type inference, the inliner actually does not 

process such callsites, marking them uninlineable. 

varname =  
expr1 || expr2; 

{ int temp01 =0; 
   int temp02; 
   temp01 = expr1; 
    if( !temp01){ 
        temp02 = expr2; 
        if(temp02) temp01 = 1;} 
    varname = temp01;       } 

Splitting logical-or 
shortcut operator 
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4.4.3 Splitting (condition) ? (expression) : (expression)  

The special conditional-evaluation construct (?:) could be converted into an if_then_else 

statement, if it is not nested in any other expression, as shown in Fig. 4.18.  However, 

compared to all the other kinds of splitting, the practical examples are a bit complicated, 

as presented in Fig. 4.19.  Whenever the special conditional evaluation is detected and it is 

found that there are function callsites within any of its structures, the entire construct will 

be split first, as shown in Step 1.  This separates the conditional construct from other 

nested structures, for instance, from within a nested expression.  Step 2 shows the way to 

rewrite the structure into the standard if_then_else construct.  Note that the if_then_else 

condition might also be swapped out at this stage, as introduced in if_then_else condition 

swapping section. 

 

 

 

 

 
 
 
 
 
 FIG. 4.18 GENERAL RULE FOR SPLITTING ?: OPERATOR 
 

 

 

 

(condition)? 
(then_statement): 
(else_statement); 

typeof 
((condition)?(then_statement): 
(else_statement)) temp01; 
if(condition) 
  temp01 = then_statement; 
 else 
  temp01 = else_statement; 

Swapping condition  
from ?: construct 
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 FIG. 4.19 EXAMPLE FOR SWAPPING ?: OPERATOR 
 

4.4.3 Splitting Expression 

All function callsites within an expression (except those nested in short-cut operators) 

should be split out if the expression is not in the standard format yet.  This is presented in 

Fig. 4.20 and Fig. 4.21.  

As shown in Fig. 4.20, every callsite within the expression needs to be swapped out and 

evaluated before the expression’s evaluation.  As well, a corresponding variable is written 

into the callsite’s place. 

 

 

  
 
FIG. 4.20 GENERAL RULE FOR SPLITTING EXPRESSION 

… 
expr(…callsite_1…     
         callsite_n); 
… 

… 
{ typeof_callsite_1 temp01; 
   … 
    typeof_callsite_n temp0n; 
    temp01 = callsite_1; … 
    temp0n = callsite_n; 
    expr(…temp01…temp0n); }… 

t =  
((f(x) == 1)? 
(f(x)) : (x++)) –10; 

{ type_of_t temp01; 
   temp01 = (f(x) ==1)?(f(b)):(x++); 
   t = temp01 – 10; 
  } 

{ type_of_t temp01; 
  { int temp02; 
     temp02 = (f(x) ==1); 
     if(temp02) 
        temp01 = (f(b)); 
      else 
        temp01 = (x++); 
   } 
   t = temp01 – 10;   } 

Original form Step 1

Step 2

Split 
expression 
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FIG. 4.21 EXAMPLE FOR SPLITTING EXPRESSION, ASSUMING THERE ARE CALLSITES IN THE EXPRESSION 
 

Also shown that the original expression is converted into a series of subexpressions 

where function callsites are split out and evaluated separately.  Note that the temporary 

variable’s return type is determined by the function being invoked and the necessary 

information is obtained easily by analyzing the parse tree.  However, there might be some 

unexpected side effects during this splitting, details will be discussed later. 

When this process finishes, it is guaranteed that there is no function callsite within any 

kind of expression (except nested callsites).  However, there still could be nested function 

callsites after this splitting. 

 

4.4.4 Split Nested Callsite 

All callsites nested within other callsites (except for those nested in short-cut operators) 

must be split in order to produce the standardized formats.  Examples are given in Fig. 

4.22 and Fig. 4.23.  When a C compiler generates instructions to evaluate callsites, the 

processing order is leftmost innermost10.  Note that this evaluation order is not part of 

the ANSI C standard, but all compilers we tested used the same order to evaluate 

                                                 
10 Pick up a function callsite from left to right, with the deepest nested calls first. 

… 
r = f1(x) + f2(t) + 1; 
… 

…{ type_of_f1 temp01; 
       type_of_f2 temp02; 
       temp02 = f1(x); 
       temp02 = f2(t); 
       r = temp01 + temp02 + 1; 
     } 

Swapping 



 

 

72 
expressions and callsites’ parameters.  It is desirable to keep the same order when 

performing swapping and splitting, so that the standardized format could still produce the 

same result as the original program if it (erroneously) relies on the left-to-right evaluation 

order.  After this splitting, all nested callsites have been removed and thus standardized 

formats created. 

 

 

 

 

 FIG. 4.22 GENERAL RULE FOR SPLITTING NESTED CALLSITES 
 

 

 

 

 

 FIG. 4.23 EXAMPLE FOR SPLITTING NESTED CALLSITES 
 

This splitting specifically processes the nested callsites, no matter where they are swapped 

or split from.  Nested function callsites are broken and rewritten into a series of standard 

format callsites and dependent relationships are carefully maintained. 

 

 
s = f3 (f2(f1(10))); 

{  type_of_f1 temp01; 
    type_of_f2 temp02; 
    type_of_f3 temp03; 
    temp01 = f1(10); 
    temp02 = f2(temp01); 
    temp03 = f3(temp02); 
    s = temp03; 
} 

Specific splitting 
for nested callsite

callsite1(callsite2(calsite3(.. )));
/* all callsites are inlineable 
*/ 

temp01 = callsite3(..); 
temp02 = callsite2 (temp01); 
callsite1 (temp02); 
/* all callsites are in standard 
formats now */ 

Splitting nested 
callsites
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4.4.5 Splitting Deeply Nested Callsites 

It has been difficult to decide whether we should swap and split callsites that are deeply 

nested inside an expression, because both the evaluation order and the implicit effect on 

other callsites might actually make the swapping/splitting fail, as presented in Fig. 4.24. 

 

 

 

 

 

FIG. 4.24 EXAMPLE FOR INCORRECTLY SPLITTING DEEPLY NESTED CALLSITE IN EXPRESSION 
 

As shown in Fig. 4.24, the evaluation might produce incorrect results after splitting, 

because the original expression erroneously relies on the evaluation order (actually, relies 

on a specific compiler).  Since C standard does not specify the evaluation order11 for 

binary operators, it is a compiler implementation’s policy to decide the order of 

evaluation and any presumed order of evaluation should be avoided.  In this case, we 

make a simple check on the expression.  This checks whether any callsite argument 

appears more than once in the original expression.  This also checks whether there are 

multiple callsites in the expression.  If any of the checks work, we would assume that the 

                                                 
11 Except for logical-and (“&&”) and logical-or (“||”), whose order is specified strictly from left to right. 

… /* x is a global variable */ 
x = (3+ (t++) – f(t) + (t--)); 
… 
int f(int r){ 
  printf(“%d”,r);  return r;   
} 

… 
type_of_f temp01; 
temp01 = f(t); 
x = (3 + (t++) - temp01 + (t--)); 
… 
int f(int r){ 
  printf(“%d”,r);    return r;    } 

Splitting 
deeply nested 
callsites 
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callsite arguments might have been implicitly modified and any callsite inside such an 

expression should be avoided by swapping/splitting. 

4.4.6 Swapping/Splitting Order 

This ends the description of the swapping and splitting process.  After splitting, all 

callsites appear to be in the standard format as desired and are ready to be inlined.  

During the swapping and splitting process, the parse tree would be frequently locally 

reparsed as discussed in Section 3.7.2.  However, the order of swapping and splitting is 

especially important and needs to be specified separately. 

When applying these rules, we assume that all swapping is done first.  Each swapping 

process is only invoked once, and it scans the parse-tree and strictly follows the order as 

introduced in Section 4.3.  However, in some cases, the result of splitting is dependent on 

the order of splitting.  An example is given in Fig. 4.25. Thus the splitting processes the 

parse tree using a leftmost-outermost order.  Every possible structure in the parse tree is 

explicitly checked to see if one of the splitting rules applies.  Whenever a match is found, 

the corresponding technique will be applied and the parse tree will be rewritten.  This 

process will not stop until each callsite has been rewritten into its corresponding standard 

format. 

As shown in Fig. 4.25, the callsite printf is split by “one-level callsite parameter splitting” 

first, because it is the leftmost-outermost available splitting.  However, if we use different 

processing order, the final result is not easy to predict.  Our splitting order generates a 

series of expressions that contain other kinds of swapping/splitting constructs, such as 

short-cut operator, nested callsites, as shown in Fig. 4.25(b).  Thus the swapping/splitting 
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process will continue (shown in Fig. 4.25(c) for subtree ∂ which is a short-cut operation 

splitting and Fig. 4.25(d) for subtree • which is another one-level callsite splitting).  Note 

that if the function’s return type is not available12(e.g. type_of_printf), it is assumed to be 

integer as default.  Each rule will simplify the original or generated structure that it applies 

on, and processing will not stop until every callsite comes to be in its standard format. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
12 In pure ANSI C, a prototype is expected and recommended. However, it is still legal C program to invoke a function 

without its prototype declaration. 

printf(“…”,    
  f1(f2(…)&& b), 
  f2(printf(“…”))); 

{type_of_f1 temp01; 
  type_of_f2 temp02; 
  temp01 = (f2(…) && b); ∂ 
  temp02=  
     f2(printf(“…”));            • 
 printf(“…”,temp01,temp02); 
}

Order of 
splitting 

Fig 4.25(a) program before 
callsite standardization 

Fig 4.25(b) callsite standardization for 
source code. 

… 
{ int temp03 =0; 
   type_of_f2 temp04; 
   temp04 = f2(…); 
   if(temp04) { 
    if(b)) temp03 = 1; } 
   temp01 = temp3; 
} … 

… 
{ type_of_printf temp05; 
   temp05 = printf(“…”); 
   f2(temp05); 
 } 
… 
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 FIG. 4.25 ORDER OF SWAPPING AND SPLITTING PROCESS 
 

4.5 Inlining a Callsite 

Recall that inlining requires that a function callsite be replaced by a copy of the 

subprogram body, with parameter-passing simulation, return statement processing, 

identifier-conflict resolution, callsite removal etc. as introduced in Chapter 2.  We assume 

that each callsite is in one of the standard formats and examine each of the inlining 

requirements in detail. 

 

 

 

1. Body Duplication 

The selected callsite’s function body is duplicated by explicitly cloning the function’s 

definition as recorded by the Function List.  Details on function cloning and the message 

system can be found in Chapter 3. 

2. Parameter-Passing Simulation 

Parameters are passed to the duplicated function body by creating local variables in the 

cloned body and assigning actual callsite arguments to them.  Note that the simulated 

parameters are placed ahead of the local variables in the original function body. 

 
int i = 4; 
void f(int i, int t){  
/* f’s body */ 
} 
… 
f( 3,i );   /* callsite */ 
… 

… 
{  
int i = 3; 
int t = i; /* wrong i */ 
/* duplicated body */ 
 } 
… 

Fig 4.25 (c) callsite standardization 
for subtree ∂ 

Fig 4.25(d) callsite standardization 
for subtree •

Parameter 
passing 
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 FIG. 4.26 EXAMPLE FOR PARAMETER NAME CONFLICTS AND RENAMING 
 

 

 

 

 

 

 

 

FIG. 4.27 EXAMPLE FOR ONE-DIMENSIONAL ARRAY PASSING AND RENAMING 
 

3. Renaming 

… 
{ int temp01 = 3; 
   int temp02 = i; 
  /*propagated body 
with i renamed to 
temp01 and t to temp02 
*/ 
} … 

… 
f(s); /* call site, s is an array 
type parameter */ 
… 
void f(int a[ ]){ 
   … a[1] = 2; 
        t = a[5]; … } 

{int * temp01 = s; 
   … 
   temp01[1] = 2; 
   t = temp01[5];… 
} 
… 
void f(int a[ ]){… 
  a[1] = 2; t = a[5]; 
  … } 

Array type parameter 
passing simulation 

Parameter Renaming 
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There is a possibility that one of the callee’s parameters has the same name as a variable 

in the actual parameter used in the callsite or the callee’s local variable.  An example is 

given in Fig. 4.26.  Rather than detecting such a conflict and renaming it as in [5], it is 

easier and harmless to blindly perform formal-parameter renaming.  This involves 

creating a distinct local-variable name, assigning the local variable with this new name and 

propagating the new name throughout the duplicated function body.  However, some 

parameters have special properties and need more processing than just renaming.  Special 

efforts are thus made when passing array-type parameters. 

 • One-dimensional array 

When function’s formal parameter list is detected to have a one-dimensional array 

in its parameter list, the inliner will use a pointer with the same element type and 

initialize it with the address of the array parameter.  A local renaming and 

replacement follow this, as shown in Fig. 4.27. 

 

 • Multi-dimensional array 

 A multi-dimensional array is simulated by a pointer to an array that has one less 

dimension.  A case and its solution are illustrated in Fig. 4.28.  This mechanism 

uses a “typedef” operator to create an array type that has exactly one less 

dimension.  Then, it will use this type to declare a pointer variable and initialize it 

with the name of the array being passed.  All the multi-dimensional array accesses 

within the function body are thus redirected to this pointer, as with the single-

dimensional array. 

4. Return Simulation 
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To mark the exit point for the duplicated function body, a distinct label is always created 

and inserted at the very end of the duplicated body as described in Chapter 2.  All the 

return statements in the duplicated function body have to be replaced by an assignment 

statement followed by a goto statement, as shown in Fig. 4.29. 

 

 

 

 

 

 

 
 
FIG. 4.28 MULTI-DIMENSIONAL ARRAY PASSING SIMULATION  
 

 

 

 

 

 

 

 

 FIG. 4.29 EXAMPLE FOR RETURN-STATEMENT PROCESSING 
 

5. Label Renaming 

… 
 f(b);  /* callsite , b is 
int[10][50] type */ 
… 
void f(int a[10][50]){/* 
function */ … 
  a[1][1] = 1; 
  t = a[10][5]; 
 …} 

{typedef int temp01[50]; 
  temp01 * temp02 = b; 
  … 
  temp02[1][1] = 1; 
  t = temp02[10][5]; 
   … } … 
void f(int a[10][50]){/* 
function */ … 
  a[1][1] = 1; 
  t = a[10][5]; 
 …} 

int f(int t){ /* function */ 
   int i  = 5; 
   … 
   return i + t;   
} 
… 
RT_002 = f(25); /* callsite */ 
… 

{  /* inlined body */ 
  int temp01 = 25; // param 
  int RT_003; // return value 
  int i = 5;   // local variable 
  …  
 { RT_003 = i + temp01; 
    goto exit_01; 
  } 
  exit_01: RT_002 = RT_003; 
 } 

Multi-dimensional 
array parameter  
passing 
simulation

Return 
statement 
simulation 
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If there are labels in the function body and the function is directly recursive, there will be 

label-name conflicts after the recursive callsite is inlined, because C only allows distinct 

labels.  An example is given in Fig. 4.30.  A scan is performed on the cloned function 

body to do a blind local replacement of all labels.  This harmlessly removes the possibility 

of multiply defined labels. 

6. Specialization Opportunity 

If there is a constant value in the callsite parameter list and the corresponding formal 

argument happens not to be modified within the function body, there is an opportunity 

for the corresponding formal parameter to be replaced by the constant value.  This is an 

example of a specialization opportunity, and it enables some other compiler 

optimizations.  For instance, it enables constant merging: when an optimizing compiler 

finds that two constant operands are available for a binary operator, it performs a 

compile-time evaluation and replaces the original expression with the evaluated constant 

value. 

 

 

 

 

 

 

 

 

 

int f(int i){ 
 int result; 
 if(i == 0){ 
       result = 0; 
       goto outer; 
   } 
 else 
    result = f(i-1); 
 outer: return result; 
} 
… 
f (10); // inline here 
… 

{ int i = 10; 
   int result; 
   int RT_0001; 
   if( i == 0){ 
                result = 0;  
                goto outer; 
               } 
   else   
    result = f(10-1); 
   outer: { RT_0001 = result; 
               goto exit_01; 
           } 
  exit_01:  } 

Fig 4.30(a) Function definition 
and callsite 

Fig 4.30(b) One inlining step 
without label renaming 
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FIG. 4.30 EXAMPLE FOR LABEL RENAMING  
 

When a constant value is found in the callsite parameter list, a simple analysis is applied 

on the cloned function body, involving two steps: 

1. Check to see whether the formal parameter is modified directly.  This checks 

whether the parameter name appears on the left-hand side of an assignment 

operator or has an increment/decrement operator applied. 

2. Check to see whether the parameter address is fetched.  This checks whether 

the parameter appears immediately after the operator “&”. 

If both checks fail, the inliner will assume that the constant variable is not modified in the 

function body, and a local constant propagation will exploit the specialization opportunity, 

as presented in Fig. 4.31.  In this example, the analysis also finds that local variable i1 ’s 

address is fetched and local variable i2’’s value is modified directly, and thus both are 

removed from the constant-propagation candidate list and only variable i3 is constant 

{ int i = 10; 
   int result; 
   int RT_0001; 
   if( i == 0){ result = 0;  
                  goto exit_02; 
                  } 
   else  result = f(10-1); 
   exit_02: {   
      RT_0001=result;  
      goto exit_01; } 
  exit_01:  
…} 

Fig 4.30(c) One step inlining with label renaming
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propagated.  The current implementation does not finish the removal of the constant-

propagated local variables, although it could be done easily. 

Note that a pointer might just fetch the variable’s address but never modify its value.  

This still makes the inliner believe that the variable cannot be constant propagated.  The 

effect is slightly harmful to further optimizations, but does not affect inlining or semantic 

correctness, and thus can be ignored. 

 

 

 

 

 

 

 FIG. 4.31 EXAMPLE FOR SPECIALIZATION OPPORTUNITY FOR VARIABLE I3 
7. Callsite Removal 

After the cloned function body has been properly processed, it will be used to replace the 

callsite.  At the same time, the callsite is marked “inlined” and all further output is 

redirected to the substituted function body.  A detailed description can be found where 

the proxy pattern design discussed in Chapter 3. 

 

This ends the discussion of inlining techniques, which have been fully implemented in 

our inliner.  The problem of how to decide which callsite should be inlined still remains.  

In the next chapter, we give a detailed discussion of the inlining decision algorithm. 

int f(int i1, int i2,int i3){ 
  int * p = &i1; 
   i2++; 
   p++; 
  return (i1+i2+i3); 
} 
… 
  s = f(1,2,3); 

{ int i1 = 1; 
  int i2 = 2; 
  int i3 = 3; 
   int RT_0001; 
   int * p1 = & i1; 
   i2++; 
 { RT_0001 = i1 + i2 + 3; 
    goto exit_01;  } 
   exit_01:  s = RT_0001; 
  } 

Specialization 
opportunity  
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Chapte r  5   

Inlining Decision Algorithm 

This chapter covers the inlining-decision algorithm, which will be applied on the 

standardized parse tree.  First, removal of uninlineable callsites is discussed.  Second, 

special call-graph generation and profile-information collection is discussed.  Then, a 

multi-technique inlining-decision algorithm is introduced, along with discussions about 

code-size approximation and version issues.  Considerations are also given to cache and 

recursion issues.  Finally, experimental results are presented to illustrate the effectiveness 

of the algorithm. 

 

5.1 Uninlineable Callsite Elimination 

The inlining technique introduced in Chapter 4 has an obvious and necessary limitation: 

the function’s definition must be available at the time of inlining.  Initially, all callsites are 

placed into a list of possible candidate callsites for inlining.  In many programs, there are 

callsites whose callees’ definitions are not available or where the actual callee cannot be 

determined at compile time, and those callsites cannot be inlined.  These callsites include 

ones invoking library routines and ones using function pointers.  In such cases, the 

callsite must be removed from the list of possible inlining candidates. 
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5.1.1 Removal of  Library Routines 

The entire parse tree is scanned once to remove from the list all the callsites whose 

source code is not available – routines not explicitly defined within the source code.  This 

is achieved by scanning the Function List first, collecting all the function names whose 

definitions are available.  Then, for every callsite in the current parse tree, its callee’s name 

is compared with the function names collected from the Function List.  In case it is not 

found, the callsite will be marked uninlineable and permanently removed from the list of 

inlining candidates. 

 

5.1.2 Removal of  Function Pointers 

Callsites using function pointers cannot be inlined because the function really invoked by 

the callsite at run time cannot always be determined at compile time, as shown in Fig. 5.1.  

In this figure, we cannot tell whether f1( ) or f2( ) will actually execute at run time, even if 

both the functions’ definitions are available.  Thus callsite of p->r( ) cannot be inlined. 

 

 

 

 

 

 FIG. 5.1 EXAMPLE OF FUNCTION POINTER 
 

… 
if(i<10) p->r = & f1; 
 else      p->r = &f2; 
 p->r(10); 
… 
void f1(int a){/* body of f1 */ } 
void f2(int t){/* body of f2 */ } 
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The function-pointer elimination consists of one scan: function callsites appearing on the 

right hand side of a dereferencing operator (* and ->) will be permanently removed from 

the list of inlining candidates. 

 

5.2 Call-Graph Generation 

The program call graph is used to represent the functions and their callsites.  We do not 

use the parse tree because the inlining-decision algorithm is only concerned with callsites, 

while the parse tree has much more detailed information on program constructs that are 

not directly related to the decision algorithm.  A formal definition of call graph is given 

below. 

 

5.2.1 Program Size and Call Graph 

The call graph for a program P is a labeled, directed multi-graph, with a node for each 

function Pi.  Every arc a = (Pi, Pj) within the graph indicates an occurrence of a function 

callsite invoking Pj (callee) in function Pi (caller).  A SYSTEM (operating system and run-

time environment, modeled by another node) node is also introduced, which simulates 

the behavior of the invocation relationship between the operating system and user 

program.  Actually, we have less interest in the callsites that could be invoked by 

SYSTEM, because SYSTEM could implicitly invoke any function and these invocations 

cannot be inlined (for example, in any case, function “main” is likely to be invoked once 

and should not be inlined).  
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Consider inlining an arc a = (Pi, Pj): a new version of Pi is created, say P’

i.  The size of P’
i is 

generally less than size (Pi) + size (Pj), due to the elimination of space overhead in 

parameter passing and increased opportunities for optimization.  Moreover, if Pj is a leaf 

node and there is no other invocations for Pj in the program after inlining, Pj could be 

eliminated as dead code.  Hence, sometimes the code after inlining can, in reality, be 

smaller than it was before.  However, for simplicity, we pessimistically model the new 

code size of the caller as the sum of the caller’s size and the callee’s size, and we assume 

that no function is omitted after inlining. 

5.2.2 Call-Graph Generation 

From the call-graph introduction, we know that all uninlineable callsites will presumably 

not be considered for inlining, and thus they do not need to appear in the call graph.  Our 

form of call-graph is a two-dimensional dynamic array of Tree pointers.  The first 

dimension is for the functions whose definitions appear in the source program (including 

the main function).  The second dimension distinguishes between callsites in each 

function.  The array entries are actually shared pointers to the callsites in the parse tree 

and the callsites appear in the dynamic array according to their textual order in the 

original standardized program.  A simple program and its call graph are given in Fig. 5.2.   

As shown in the figure, there are three function definitions – main, f and f1.  So, there are 

three entries in the first-level call graph, shown on the right.  Similarly, there are two 

invocations in function main – f and f1, and the call graph properly represents this feature.  

Note that every node in the call graph is a shared Tree pointer whose contents are kept in 

the parse-tree.  Details could be found in Section 3.5.  

 



 

 

87 
 

 

 

 

 

 

 

 

 

 FIG. 5.2 EXAMPLE OF A STATIC COMPRESSED CALL GRAPH 
 

This call-graph design shares callsites between the parse tree and the call graph, and thus 

smoothly connects the call graph with the parse tree.  When applying the decision 

algorithm, it is easy to obtain information directly related to a specific callsite from the 

parse tree.  Therefore, we will use only the call graph for the description of inlining-

decision algorithm. 

 

5.3 Profile-Information Collection 

In order to get the accurate callsite profile information that the decision algorithm needs, 

the current standardized parse tree is duplicated, special dummy functions are inserted, 

and a source program is restored from the parse tree.  Then that program is compiled, 

executed and profiled.  The profiler tool, gprof [14], has a built-in limitation: it does not 

distinguish between two or more different callsites in Pi where Pj is called.  Fig. 5.3 shows 

main( ){  … f( ); … f1( ); …} 
 
f( ){ … printf( …); 
        f1( ); …} 
 
f1( ){      … f( ); …printf(…); 
        … f1( ); … } 

main 

   f 

 f1 

   f 

  f1 

  f1 

  f 

  f1 

Program Callsite Abstraction Call graph 
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this situation.  As illustrated in the figure, there are two f1( ) callsites invoking same 

function f( ) and they are invoked 15 times together.  However, the profiler cannot let us 

determine how many times each individual callsite is invoked. 

The solution is to insert distinct dummy functions.  A dummy callsite is inserted to 

immediately follow each callsite in the standardized source code.  An example is given in 

Fig. 5.4. 

 

 

 

 

 FIG. 5.3 BUILT-IN LIMITATION OF PROFILER 
 

Each dummy function has a distinct name, a void return type and an empty function 

body.  As shown in the figure, each function callsite is replaced by a block that contains 

the original callsite and a distinct dummy function.  By analyzing the invocation 

frequency of a callsite’s corresponding dummy function, accurate callsite-execution 

frequency is easily obtained from the profile and written into the call graph.  To enable 

this profiling approach, dummy-function prototypes and definition bodies are inserted 

into the Function-Prototype List and Function List respectively.  It is relatively easy to 

obtain the number of times each function was entered by analyzing the flat part of the 

gprof profile data. 

f( ){ … 
     f1( ); … 
     f1( ); … 
   } 

 … …          f 
 … 15 …     f1 
 … … 

Profile source 
program 

Source program Profile information 
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Note that the profiled program is expected to run more slowly than the original program.  

When the source code is compiled with profiling enabled13, the compiler will insert 

instructions to the executable, marking and timing each invocation [14].  Moreover, we 

have inserted calls of dummy functions to accurately profile callsites and these calls 

consume run-time resources.  However, in this inlining system, the program is being run 

internally for profile collection before inlining.  Profiling overhead will not occur in the 

execution of the final inlined program. 

 

 

 

 

 

 

 

 

 

 FIG. 5.4 ACCURATE CALLSITE FREQUENCY PROFILE ANALYSIS 
 

 

                                                 
13 -pg for gcc command line compiler. Borland, Microsoft and Watcom all have integrated development environment,  

where the user needs to check the “profile info into obj” button in compiler options. 

f(void){ … 
     f1( ); … 
     f1( ); … 
   } 

void Dummy01(void); 
void Dummy02(void); 
… 
f(void){… 
  { f1( ); 
     Dummy01( ); 
   } … 
   { f1( ); 
      Dummy02( ); 
    } … 
} 
… 
void Dummy01(void){ } 
void Dummy02(void){ } 

… …           f 
 … 15 …     f1 
 … 10 …     Dummy01 
 … 5   …     Dummy02 
 … … 

Fig 5.4(a) callsite abstraction

Fig 5.4(c) Dummy function profiling Fig 5.4(b) Dummy function insertion 
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5.4 Inlining Decision Algorithm 

The basic idea guiding our inlining decisions is to follow a greedy call-reduction approach, 

modified for cache effects and constant propagation.  Since prediction of code-size 

expansion requires the information about the sizes of the routines and since the 

algorithm is partially based on version issues, function-size approximation and the 

version issue will be introduced first.  The inlining-decision algorithm is then described, 

followed with an explanation of the algorithm and detailed discussion on modeling cache 

performance and dealing with recursive functions. 

 

5.4.1 Function-Size Approximation 

It is necessary to know the actual size of each function because this information is 

necessary for the inlining algorithm to make decisions.  The original plan was to analyze 

the compiler-generated object files, subtracting the function’s entry address from the 

function’s ending address.  This would lead to accurate function sizes, in byte.  However, 

this approach was eventually rejected for the following reasons. 

First, analyzing the object code format requires much more effort than expected.  

Although Intel Corporation [15,16] published both .obj object-file format and Unix  

executable language format (ELF) specifications, it is still not easy to obtain accurate 

routine sizes because of the formats’ complexity.  Second, it makes the system less 

portable.  To analyze object files explicitly and get the exact routine size for different 

platforms, machine-dependent code would need to be written.  This diminishes the 

portability that the project desires. 
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The solution is code-size approximation.  Every terminal node is assigned size “1”, and 

each non-terminal node’s size is the sum of all its subtrees’ sizes, plus a preassigned 

weight.  Two examples are presented in Fig. 5.5 and Fig. 5.6.  The complete table for 

parse-node size approximation is given in Appendix 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 5.5 PARSE-NODE SIZE APPROXIMATION 
 

As shown in the figure above, in the if condition, each part of the BinaryNode (t == 0) is 

a terminal node of size 1.  So the if condition’s size is 3.  The then statement and else 

statement are similar.  The if_then_else construct always has a default weight of 3, so the 

entire construct’s size is 12. 

if(t == 0) 
    r = 5; 
else 
    r = 10; 

condition size        :  3 
then statement size:  3 
else statement size :  3 
if_then_else weight:  3 + 
entire if_then_else  
size                         :  12 
 

Size 
approximation 

Fig 5.5 (b) Example of size approximation for an if_then_else statement 

if(condition) 
  then_statement; 
else 
  else_statement; 
 

condition size 
then_statement size 
else_statement size 
if_then_else weight       + 
     if_then_else size  

if_then_else size 
approximation 

Fig 5.5 (a) General rule for size approximation of the  if_then_else construct 
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Fig. 3.6 presents the size approximation for a simple function.  The function definition’s 

size is the sum of all its subtrees: return type, function name, parameter list and function 

body, plus a function definition weight of 5.  All separate parts’ sizes and the evaluated 

function size are presented in Fig. 5.6(b), giving an approximated function size of 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 5.6 FUNCTION-SIZE APPROXIMATION 
 

A non-terminal node’s weight is used to make some possible adjustments.  For example, 

by invoking a function, an activation record will be constructed and parameters will be 

passed.  This generally takes more time and instructions than calling a floating-point 

addition instruction, so a function weight (value 5) is assigned to each 

void sum (int t){ 
 if(t == 0)  
    return 10; 
 else 
 return  
    (t + sum (t-1)); 
} 

return type:           1 
function name:     1 
parameter list:       2 
if condition:          3 
if then statement:  2 
if else statement:   8 
function weight:    5   + 
total function size: 22 

Function size 
approximation 

Fig 5.6(b) Function definition size approximation

return_type 
fun_name(param_list) { 
  function_body; 
} 

return type size 
function name size 
parameter list size 
function body size 
function weight          + 
function size 

Function definition’s  
size approximation 

Fig 5.6 (a) function definition construct size approximation 
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FunctionCallSiteNode.  Actually, all terminal nodes also have weights (not size), which 

have been presumably assigned value 0 and need not appear in the size evaluation. 

The experience gained from our inliner implementation shows that this size 

approximation is good enough, because both the source-code size and the size of 

anticipated inlining growth are going to be approximated in the same way.  Accurate 

estimations are not critically important. 

5.4.2 The Version Issue 

There might be many versions of each function during inlining, but only one version will 

be used at a particular inlining step.  For instance, an arc a = (Pi,Pj) is to be inlined.  After 

inlining the callee Pj with its original version, the callsite is replaced with the duplicated 

function body and proper adjustments.  Theoretically speaking, it is semantically 

equivalent to replace callee Pj with any possible version of Pj when inlining, although they 

might have significant operational differences.  Actually, it is useful to distinguish two 

different versions of each function. 

• ov – original version 

The program before any inlining is made is used to duplicate function body. 

• cv – current version 

The current callee is used to duplicate function body. 

As described in [7,13], it is prohibitively expensive to maintain all versions as the inliner is 

progressing.  Thus, only the original version and current version of each function will be 

maintained during inlining.  Note also that the inlining of any function’s current version 

can be simulated by an appropriate sequence of original-version inlinings.  
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An important difference between cv-inlining and ov-inlining at a callsite is that ov-

inlining leads to smallest code expansion, but not always lead to fewer function calls.  Ov-

inlining minimizes code expansion because we assume inlining always makes functions 

larger and so the current version of the callee is never smaller than its original version. 

However, one ov-inlining might actually lead to more calls, as shown in Fig. 5.7.  Its left 

part shows some source code, and the right part shows the result after one ov-inlining 

step.  Next, there is a possibility that the callsite to f in main could be either ov-inlined or 

cv-inlined.  If it were ov-inlined, there would actually be 1000000 - 1 more calls, because 

all the calls to g in the original version of f come back in this situation.  

 

 

 

 

 

 

 

 

 FIG. 5.7 OPERATIONAL DIFFERENCE ON VERSION ISSUE 
 

On the other hand, one cv-inlining step could lead to fewer function calls at the expense 

of a larger code expansion. 

 

g( ){ 
  /* g’s work */ }; 
f( ){ 
    /* f’s work */ 
    a loop iterates 100000 times 
           call g( ); 
   } 
 main( ){ 
   call f( ); 
  } 

Source program before inlining 

g( ){ 
  /* g’s work */ } 
f( ){  
  /* f’s work */ 
  a loop iterates 100000 times 
  { /* inlined code for g( ) */ } 
    } 
 main( ){ 
       call f( ); 
 } 

ov-
inlining 
on 
callsite g 

ov-inlined program 
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5.4.3 Hybrid Inlining Strategy 

In this section, we describe a greedy strategy that aims to remove as many callsites as 

possible given a limited code expansion.  Knowing that ov-inlining always leads to smaller 

code expansion and cv-inlining always leads to fewer calls, our strategy considers both 

cases for each callsite.  The description of the hybrid algorithm is adapted from [11] and 

presented in Fig. 5.8.  Since this implementation modifies the algorithm to support 

multiple techniques, the calculation of benefit is significant. 

Symbols used in Fig. 5.8 include 

σov (P): original-version function-size of routine P 

σcv (P): current-version function-size of routine P 

 

5.4.4 Explanation 

The whole inlining processing consists of five main steps 

• Benefit Calculation 

For each callsite arc a = (Pi, Pj) in the current call graph, both ov-inlining and cv-inlining 

effects are calculated.  The details of the formulas used can be found in [11,13].  For each 

type of inlining, values need to be calculated such as cost, benefit and ratio, where ratio is 

defined as benefit over cost. 

• Inlining Decision 

The critical factor for the inlining decision is the cost/benefit ratio that determines which 

callsite is inlined and which form of inlining (cv-inlining or ov-inlining) is used.  The 

algorithm scans the entire call graph, trying to find the callsite to inline (which is recorded 
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by “best”).  After the scan, “best” indicates if there is a callsite that needs to be inlined, 

and “bestKind” records the inlining type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 5.8 PSEUDOCODE FOR AN INLINING-DECISION ALGORITHM, BASED ON FUNCTION-CALL 

REDUCTION 

currentExpansion = 0 
while (1) { /* find the best inlining operation */ 
   best = 0; 
   for each arc a = (Pi, Pj) in the current call graph 
   {  
        ovBenefit = reduction in calls, if a is ov-inlined 
        ovCost  = σov (Pj);  
        ovRatio = ovBenefit/ovCost; 
 
        cvBenefit = reduction in calls, if a is cv-inlined 
        cvCost  = σcv (Pj);    
        cvRatio = cvBenefit/cvCost; 
        if(constant propagation possible) { cvRatio = cvRatio * 1.1; 
                                                                ovRatio = ovRatio * 1.1; } 
        if(parallel callsites in the enclosing loop) { cvRatio = cvRatio * 0.5; 
                                                                          ovRatio = ovRatio * 0.5; } 
         if best < cvRatio then  { 
             best = cvRatio;  
             bestKind = cv;  
            } 
         if best < ovRatio then  { 
           best = ovRatio;  
           bestKind = ov;  
            } 
    } /* end of each callsite consideration */ 
 
      if (best # 0)                  exit program 
      if (bestKind == cv)     { currentExpansion = currentExpansion + σcv (Pj); 
                                              perform ov-inlining;  } 
                                 else    {  currentExpansion = currentExpansion + σov (Pj); 
                                              perform cv-inlining;   } 
        update σcv (Pi) 
        update parse tree and current call graph 
        update data structures used to calculate ovBenefit and cvBenefit 
      
 } /* end of infinite loop */ 
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• Inlining Work 

The actual inlining work then needs to be performed on the chosen callsite, using the 

code transformation techniques introduced in Chapter 4.  After inlining the selected 

callsite, it is necessary to update both the parse tree and the current call graph to reflect 

the current inlining effects.  

• Update Accompanying Data Structure 

“CurrentExpansion” is updated immediately after inlining to reflect the increased code 

size.  Since we model the inlined function’s size as the sum of caller’s size and callee’s size, 

“currentExpansion” is adjusted accordingly.  Note that not only the call graph and the 

parse tree, but also some accompanying data structures need to be updated.  These data 

structures permit efficient calculation of ov-benefit and cv-benefit, which is a determining 

factor for making inlining decisions.  The updating of the data structures is done exactly 

as described in [11] and hence details are omitted.  

• Inlining Termination 

Note that we quit inlining when “best” is non-positive.  This occurs when the decision 

algorithm scans the entire call graph and does not find any callsite worth inlining.  Thus 

the whole inlining process terminates. 

 

5.4.5 Cache Effects 

As discussed in [12], inlining plays a trade-off between cache size and cache misses.  On 

one hand, inlining always leads to removal of expensive call and return instructions and 

improves code locality, which is beneficial for cache performance.  On the other hand, it 
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also is possible that the expanded code could increase the chances of cache misses.  A 

significant negative behavior thus could appear if the increased misses were experienced 

in the body of a loop.  We next consider several cases and explain how our inlining 

decisions can be based on cache issues. 

• Single Callsite Outside of Loop 

If a callsite located in a function and statically outside of any loop is to be inlined, the 

callee’s function size is relatively unimportant.  If this size is smaller than the cache size, 

inlining will have a definite benefit: removal of a pair of expensive call-return instruction 

without increasing the cache misses.  However, if the function’s size is greater than the 

cache size, it is hard to say whether the inlined code would still improve cache 

performance except for the eliminated instructions, because both versions have cache 

misses.  Depending on the actual function size, cache characteristics and code 

replacement strategy, it is even harder to analyze which version (before inlining or after 

inlining) would have more misses.  Hence if the callsite is outside of any loop and 

recursion is not allowed, performance effect after inlining is negligible.  Previous research 

[6,12] shows that it is not guaranteed that cache misses would increase and it might be 

better to inline in this case. 

• Callsite Inside Loops 

Both statistical analysis of callsite locations and practical programs [7,10] show that it is 

very likely that a given callsite will be located inside a loop.  As McFarling [12] showed, 

inlining effects within loop are more complicated than the previous case.  An example is 
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given in Fig. 5.9, where circles represent loops, letters represent callsite names and arcs 

represent nesting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 5.9 CALLSITE INLINING IN LOOPS 
 

Fig. 5.9(a) shows a function called from a single site inside a loop.  The effect is similar to 

inlining a single callsite outside of any loop, a situation discussed earlier.  Fig. 5.9(b) 

shows the same function called from different sites in the same loop, one frequently 

called and the other rarely executed.  In case we need to inline a callsite in this situation, it 

seems to be more useful to inline the callsite with higher execution frequency because the 

higher reduction of call and return instructions could possibly compensate more for the 

A 

   (a) 

A 

0.1

(b)

A B

(c )

A B

B 

A  (e)  

(d) 
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increased misses.  However, after inlining of the first callsite, it seems that the second 

callsite can be inlined for free, because the copy of the caller can replace the callee itself in 

the cache.  This is one more benefit that inlining callsites in loop might have.  Consider a 

case where the size of the loop almost perfectly matches the size of cache (maybe the 

loop is a slightly smaller).  After inlining either of the callsites inside the loop, there might 

be increased cache misses in each iteration of the loop.  The increased misses could be 

important, depending on the loop size, free code-space left in cache, cache replacement 

algorithm, function’s dynamic behavior and the number of iterations the loop performs.  

If the accumulated cache misses happen to do more harm than the benefit gained from 

instruction removal, the inlining will actually make the program run slower.  This violates 

the goal of inlining and should be avoided.  

Fig. 5.9 (c) shows a situation where function A and B are both located in the same loop.  

The difference is that callsite A is invoked at two different sites and there is only one 

place to invoke function B.  From the former analysis of a single callsite inside a loop, we 

know it is better to inline callsite B first, due to the elimination of instructions and overall 

reduction on loop size.  Whether callsite A should be inlined depends on the size of callee 

function A and the space left in cache after inlining callsite B.  Apparently, if A is small 

enough that after inlining there will be still place left in cache, then callsite A should be 

inlined.  Otherwise, if A is relatively large and cache is already full, inlining should be 

avoided because the increment in loop size will cause more cache misses in each iteration.   

Fig. 5.9(d) shows the situation where several callsites invoke functions from different 

places inside a loop.  Inlining effects depend on the size of the function, the code space 
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left in cache and the original size of the loop.  It is usually beneficial to consider inlining 

small calls first. 

Fig. 5.8(e) shows a situation where callsite A is nested deeper than callsite B.   Apparently, 

if there is an opportunity that only one callsite could be inlined, callsite A should have 

higher priority, because deeply nested loops generally have more callsites (we could know 

this easily from profile information), hence more instructions removed after inlining.  

Similarly, whether or not callsite A or B could be actually inlined depends on the size of 

callee, the size of loop and the free space left in cache.  If the loop body could still fit into 

cache after inlining, the inlining will have a positive result, then callsite should be inlined.  

Otherwise, “the additional misses must be carefully weighted against the removal of 

instructions in the loop”[12].  It is generally a good suggestion not to inline any callsite 

under such a situation. 

According to the situations discussed above, there are three important factors to consider 

regarding cache issue. These functions are discussed, beginning with the most important. 

First, very small functions should be inlined.  There could be a small function whose 

body is even smaller than the cost of calling sequence.  Inlining such function callsites 

should always lead to benefit.  

Second, choose functions with the highest ratio of number of calls over function size.  

This is similar to the decision algorithm we described in Fig. 5.8.  The callsite with the 

highest ratio (ovRatio or cvRatio) will be inlined, until a threshold is reached.  This limits 

the code expansion to an acceptable level. 

Third, choose callsites that do not have any parallel calls in the call graph.  This is 

introduced in Fig. 5.9(a).  Inlining single callsites (inside a loop or outside of a loop) 
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reduce the number of instructions executed without clogging the cache with multiple 

copies of the same code. 

Even after analyzing the complex situations that callsites in loops might have, it is still not 

clear how to make accurate cache predictions.  We have the general idea that if the loop’s 

dynamic size is less than cache size after inlining, the inlined benefit is the removal of call 

and return instructions plus some reductions in cache misses.  On the other hand, if the 

routine size is greater than cache size, the inlined code still has cache misses because the 

original one already had them.  And it is hard to say whether the misses will increase or 

not after inlining.  Furthermore, whether the increased cache misses will compensate for 

the benefit gained from instruction elimination is difficult to predict. 

Davidson and Holler [5,6] found that “the size of an inlined program does not, in 

practice, prove to diminish the program’s performance”.  Their results were mainly based 

on testing a large set of programs and doing statistical analysis, rather than detailed 

theoretical analysis and proofs.  Richardson and Ganapathi [20,21] found similar results 

on different architectures.  Different machine architectures have difference cache systems.  

Considering cache would make the inliner optimize for a specific architecture thus would 

lose more on other architectures and break the idea of “generic inlining optimization”.  

Recall that the primary benefit of inlining is the removal of expensive call-return 

instructions.  Cache analysis does show that there are chances that combining cache 

factor in some ideal invocation (e.g. in loops) could benefit the inliner.  However, the 

time limitation on inliner implementation makes it impossible to carefully combine cache 

factors and successfully integrate into the inliner.  Based on this analysis, we believe that 

cache consideration is relatively unimportant in the inliner’s implementation. 
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5.4.6 Recursive Function Inlining 

Besides the label-renaming scan introduced in Chapter 4, recursive functions are treated 

the same way as non-recursive ones, except that the cvBenefit is evaluated differently, as 

described in [11,13].  Actually, for a recursive callsite, we are more likely to perform ov-

inlining.  This may lead to more call and return instructions removed, as shown in Fig. 

5.10, which is adapted from [11]. 

 

 

 

 

 

 

 FIG. 5.10 EXAMPLE OF MORE CALLSITES’ REMOVAL WITH OV-INLINING 
 

Consider the recursive function above.  Clearly if the original version of callsite f  is 

inlined twice, it leaves us the program where f(x) invokes f(x-3) with f now thrice its 

original size.  If this is the maximum code expansion permitted, cv-inlining is able to 

inline once at the recursive site, because a second cv inlining will leave f at quadruple size, 

which has exceeded the maximum expansion.  Thus ov-inlining removes 50% more calls 

than cv-inlining in this example. 

5.4.7 Decision on Constant Propagation 

The decision algorithm explicitly checks whether there is a constant-propagation 

opportunity for some callsites with constant parameters.  Details have been given in 

void f(int x){ 
  if (x == 1) return 0; 
  else {   y = f(x-1); 
             return 1 –y;   } 
   } 
… 
main( ){… 
    f (300); 
     …  } 
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Section 4.5.  If any constant-propagation opportunity is detected to be possible on a 

callsite, both the ovRatio and the cvRatio will increase by a small amount (we arbitrarily 

choose 10%).  This will give those callsites with constant propagation opportunities a 

higher priority to be selected for inlining. 

 

5.4.8 Cache and Recursion 

Another interesting issue is simultaneously considering cache and recursion.  Consider a 

simple case of a directive recursive function where there is only one callsite that appears 

in the definition, as shown in Fig. 5.11(a).  The execution behavior could be simulated as 

two while loops separated by an exit case, as shown in Fig. 5.11(b) and Fig. 5.11(c).  The 

first while loop simulates the behavior of recursion when it goes deep to find its “base 

case”.  In our case, all possible recursive callsites will appear in this while loop.  Whenever 

the recursion reaches its base case, the returned variable is assigned return value and the 

second loop actually deconstructs the recursive activation records and returns. 

Let us assume this is the case that a recursive callsite located inside a loop (pseudo loop), 

which fits into Fig. 5.11(c).  Now that we have theoretically converted the run-time 

behavior of a recursive callsite into a loop structure, the techniques introduced in Section 

5.4.5 could be directly used to discuss its inlining.  As described earlier, it is better to 

inline these callsites if the pseudo loop (the conditions before reaching the base case in 

the recursive definition) is not too big to fit into cache.  Some conditional analysis are 

presented in Section 5.4.5. 
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 FIG. 5.11 SIMULATION OF RECURSIVE CALLSITE 
 

5.7 Testing 

The experiments on some test programs demonstrate the possible effects on program 

performance of inlining, as shown in Table 5.2 and Table 5.3. 

Table 5.1 lists all of our 11 individual testing programs.  The testing programs range 

widely from Unix system code, to publicly available commercial program, to specific user 

… 
sum(4); /* callsite */ 
… 
int sum(int i){ 
 if(i ==0) return 0; 
  else 
  return i+ sum(i-1); 
} 

    sum(4) 
[4 + [sum(3)]] 
[4 + [3 + [sum(2)]]] 
[4 + [3 + [2 + [sum(1)]]]] 
[4 + [3 + [2 + [1 + [sum(0)]]]]] 
[4 + [3 + [2 + [1 + 0]]]] 
[4 + [3 + [2 + 1]]] 
[4 + [3 + 3]] 
[4 + 6] 
10 

…  
{ 
while (condition1) 
  go deeper nesting in recursion 
base case 
while (condition2) 
 return from deeply nested recursion 
} 
… 

Fig 5.11(a) Simple directly 
recursive function 

Fig 5.11(b) Example of recursive 
callsite trace, where […] are callsites 

Fig 5.11(c) Pseudo code simulation for runtime behavior of recursive callsite 
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code.  All testings are performed on a PentiumPro based machine, running PC-Linux 

kernel 2.0.2914. 

The testing consists of two parts.  First, we compare standardized programs’ run-time 

performance with that of non-standardized.  This is to see what kind of effects the 

function callsite standardization could have on the program’s execution behavior.  The 

results are presented in Table 5.2.  The second part of testing is to see the possible benefit 

of inlining to a program.  Both program run time and the number of calls removed are 

calculated and compared.  

Name Description Type 

uuencode Program encoding Unix system 

uudecode Program decoding Unix system 

chmod Source code for chmod command Unix system 

cp Source code for cp command Unix system 

mv Source code for mv command Unix system 

touch Source code for touch command Unix system 

strcpy Strcpy in loops User code 

nfib Recursive fibonacci function User code 

nq Recursive n queens problem User code 

 

Name Description Type 

tak Recursive tak function User code 

sumfrom Recursive sumfrom function User code 

 
 
 Table 5.1 Programs used in inlining experiments 
 

                                                 
14 Gcc 2.7.2.1 for Pc-linux. The command-line switch is: gcc –c source_file_name –fno-inline –o dest_file_name. 
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Testing 

program 

Size before 

standardiza-

tion (bytes) 

Run time  

before 

standardization

(sec) 

Size after  

standardization 

(bytes) 

Run time after 

standardization 

(sec) 

Performance 

change (%) 

uuencode 36832 0.048709 37140 0.049575 1.78 

uudecode 39079 0.040830 39287 0.041667 2.05 

chmod 92593 0.018346 92671 0.018583 1.29 

cp 140194 0.254754 141806 0.257933 1.43 

mv 111634 0.020815 112922 0.019754 -5.10 

touch 110958 0.185062 111218 0.18463 -0.24 

strcpy 4598 3.729231 4646 3.675381 -1.444 

 

 Table 5.2 Standardization Comparison 
 

From Table 5.2, we see that there is very little performance effect, comparing the run-

time performance of standardized programs with that of non-standardized ones 

(generally ranging from 1.29% to 2.05%).  The reason is simple.  By performing the 

function callsites’ standardization, there are variables mandatorily created.  These 

variables consume run-time resources.  Hopefully, the negative effects are so small that 

they could usually be ignored. 

Program Strcpy Nfib Nq Tak sumfrom 
Number of Calls 
before inlining 

130001 1664078 1875813 965432 4005001 

Number of calls 
after inlining 

120001 1149850 1079220 813139 2685683 

Number of calls 
removed 

10000 514228 796593 152293 1319318 

Percentage of 
callsites removed 

7.69 30.9 42.47 15.77 32.94 
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(%) 
Execution time 
before inlining 
(second) 

0.750922 0.761328 3.01811 0.407131 1.895180 

Execution time 
after inlining 
(second) 

0.723072 0.620637 2.67497 0.363899 1.567807 

Performance  
Improved (%)  

3.71 18.48 11.37 10.63 17.28 

 
 
 Table 5.3(a) Inlining Performance (20% code expansion) 
 

Program Strcpy nfib nq Tak sumfrom 
Number of Call 
before inlining 

130001 1664078 1875813 965432 4005001 

Number of Calls 
after inlining 

100001 832038 1010058 685946 1366365 

Number of calls 
removed 

30000 832040 865755 279486 2638636 

Percentage of 
callsites removed 
(%) 

23.07 50.00 46.15 28.95 65.88 

Execution time 
before inlining 
(sec) 

0.750922 0.761328 3.01811 0.407131 1.895180 

Execution time 
after inlining 
(sec) 

0.723181 0.591934 2.38779 0.327155 1.126171 

Performance 
improved (%) 

3.69 22.25 20.88 19.64 40.58 

 
 Table 5.3(b) Inlining Performance (50% code expansion) 
 

Program strcpy nfib nq Tak sumfrom 
Number of Calls 
before inlining 

130001 1664078 1875813 965432 4005001 

Number of Calls 
after inlining 

90001 542144 1013970 508640 1621620 

Number of calls 
removed 

40000 1121934 861843 456792 2383381 

Percentage of 
callsites removed 

30.77 67.42 45.95 47.31 59.51 
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(%) 
Execution time 
before inlining 
(sec) 

0.750922 0.761328 3.01811 0.407131 1.895180 

Execution time 
after inlining 
(sec) 

0.691493 0.562159 2.38538 0.275651 1.089123 

Performance 
improved (%) 

7.91 26.16 20.96 32.29 42.53 

 
 Table 5.3(c) Inlining Performance (100% code expansion) 
 

From Table 5.3, we see that a significant percentage of calls (8.33% ~ 67.42%) are 

removed after inlining.  Further, performance after inlining generally increases ranging 

from 3.69% ~ 42.53% on some heavily computational and recursive programs. 

From the experimental results, we see that the standardization process has an almost 

negligible effect on the program size and on the run-time efficiency.  Further, based on 

our testing results, we see that a relatively large number of callsites were removed and this 

leads to a large improvement in the programs’ execution efficiency after inlining.  This is 

mainly because that the selected testing programs are heavily computational oriented.  

They intensively used many callsites and involved heavy recursion.  For those programs 

that are input/output dominated or do not execute many calls, the performance 

improvements after inlining would be less substantial. 
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Chapte r  6  

Summary and Future Work 

This chapter summarizes the contribution of this thesis and gives possible directions for 

future work. 

6.1 Summary  

In this thesis, we have developed an inlining system containing a lexical analyzer and an 

object-oriented parser for the C programming language.  Every C construct corresponds 

to a parse-node class, which matches the syntactical characteristics of the construct.  We 

parse source code separately, generate our own abstract parse tree and manage the 

symbol tables in a non-traditional fashion – using a dynamic array of Tree pointers.  

Object-oriented design patterns are used to direct the parser design and help to do the 

work of inlining.  Most important, we have fully implemented a greedy hybrid inlining-

decision algorithm, and it considers multiple versions and limits on code expansion. 

In Chapter 3, we showed the detailed design of the object-oriented parser.  We presented 

the entire parse-node class hierarchy and the design patterns that helped to reduce coding 

complexity and improve program quality.  Important parsing and class-design techniques, 

such as the message system, class macro/micro architecture, reparsing and standard 

interfaces were also introduced. 
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In Chapter 4, we gave the details of the implementation of inlining.  Function callsite 

standardization was an important issue.  A series of standardization processes worked on 

parse tree in a leftmost-outermost order to convert any callsite into a standardized format.  

One important opportunity created by inlining was constant propagation, whose 

implementation details were also discussed. 

In Chapter 5, we presented the details of the hybrid inlining-decision algorithm.  Call-

graph generation, removal of invalid callsites, generation of profile information and 

approximation of functions’ sizes were introduced.  Detailed analysis and explanations 

were also given on cache issues.  After careful consideration of possible cache benefits 

and penalties, especially in loop situations, we showed that it was difficult to take cache 

characteristics into account and optimize the inlining decision algorithm on cache issue.  

Program-execution performance comparisons and analysis were also presented in this 

chapter. 

 

6.2 Conclusion 

In the thesis implementation, we have created an ambitious inliner – an automatic C 

inliner.  It has several features that, as far as we know, do not exist in other inliners. 

• Object-oriented parser.  

Based on the experience we gained from the parser design, an object-oriented parser is 

more suitable when the optimizations to be performed do not involve too much analysis.  

The parse-node class design describes the syntactical constructs better and clearly 

simulates the inlining optimization behavior.  However, compared with traditional parsers, 

the object-oriented parser has higher memory consumption and generally runs slower.  
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Its usage will be limited when the system is very sensitive to memory consumption, and it 

is not ideally suited to process huge programs. 

• Inlining Optimization 

Inlining and the optimization opportunities thus created are some of the important 

compiler optimization techniques and are carefully studied in the thesis.  Practical results 

demonstrate a relatively large number of calls removed and an acceptable performance 

increment.  As only one of the many optimization techniques, the performance 

increment does not need to be huge. 

• Use of Design Patterns 

Design patterns are powerful tools that could significantly simplify design and improve 

implementation quality.  However, if they are improperly analyzed and used, the result 

can be disastrous.  The careful selection and properly implementation of design patterns 

is important. 

 

6.3 Future Work 

There are a number of areas for possible future work that would extend the current thesis 

implementation. 

 

6.3.1 Multi-File Support 

Since most significant C programs consist more than one module (separated into several 

files), different naming and searching methods need to be used when constructing the 

parse tree and performing the function-name searching and function-body duplication.  
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Since file names will never be duplicated in the source program if the file name comes 

with its complete path name, they could be used as prefixes to generate distinct names for 

global variables and functions.  Details of how to handle certain items, such as static 

functions and external references, would have to be carefully considered. 

6.3.2 Pipeline Interlocks 

As shown in [20], there could be an unexpected side effect when inlining callsites under a 

special assignment condition, where a variable serves as both the parameter and the result.  

Even worse, the same variable could appear several times in arguments, where it 

mandatorily creates aliases, as shown in Fig. 6.1.  A certain data dependency created by 

alias will actually make the program run slower after inlining.  (E.g., in the inlined version 

of the Fig. 6.1 example, there will have many NOP instructions inserted after modifying 

the simulated callsite arguments that is to properly maintain the data dependency.)  The 

increased number of pipeline interlocks caused after inlining will compensate more than 

the benefit gained by inlining, thus inlining in this situation is not valuable.  This situation 

is generally common in some popular pipelined microprocessor systems and currently 

not considered in our thesis.  This hazardous situation should be carefully detected and 

callsites under this situation should be prohibited inlining. 

 

 

 

 

 FIG. 6.1 EXAMPLE OF PIPELINE INTERLOCKS 

… 
  a[10] = f(a[10],a[10]);  
 … 
int f(int i, int j){ 
 i++; j--;  /* code of function A */ 
return (i+j); 
} 
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6.3.3. Database in Inlining 

Dean and Chambers [9] considered inlining in an object-oriented language where there is 

a similarity based on callsites signatures (return type, callsite name, and type of parameter 

list, especially class types).  A database could be used to record the function signature, 

function-calling frequency and compiler-optimization opportunities obtained from one 

inlining step.  This could help to reduce the inlining-decision time and simplify the 

decision-making algorithm. 
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Appendix 

Appendix 1 Parse-Node Internal Data Structures 
 
Class Name C Construct Example            Internal Data Structure 
String node Character string “hello”, val1; char * StringValue; 
Double node Double value 3.1415926 double DoubleValue; 
Char node Character value ‘c’ char CharValue; 
Long node Long int value 100L long LongValue; 
Integer node Int value 123 int IntValue; 
 
 
 
 
Class Name C Construct Example Internal Data 

Structure 
BinaryNode Binary operations 

Unary operations 
1+b, c && t, 
t++ 

Tree * Left; 
Tree * Operation; 
Tree * Right; 

PointerNode Pointer operations r->s, r->hello( ); Tree * PointerName;
Tree * ReturnType; 
Tree * PtrInit; 

ArrayNode Array definition  
Array operations 

int a[100] = {0}; 
a[i] = a[i+1]; 

Tree * ArrayType; 
Tree * ArrayName; 
Tree * ArrayInit; 

EnumNode Enumerations enum color {red = 
1, green , blue  = 
3}; 

Tree * EnumName; 
Tree * EnumInit; 

Struct/Union 
Node 

Struct/union 
declarations 

struct { int i; 
              float r; 
 } mystruct; 

Tree * Name; 
Tree * Body; 
int      Type; 

JumpNode goto, return, break 
statements 

goto label_1; 
return a + f(x); 

int     JumpType; 
Tree * JumpExpr; 

SwitchCaseNode Switch_case control switch(f(x)){ 
    statement;} 

Tree * SwitchCond; 
Tree * SwitchStmt; 

 
 
 
 
 
 

Table 1-1 Terminal leaf nodes

Table 1-2. Non-terminal leaf nodes 
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Class Name C Construct Example Internal Data 

Structure 
IfNode if_then_else 

control 
if(condition)  
  then stmt; 
 else stmt; 

Tree * Condition; 
Tree * ThenTree; 
Tree * ElseTree; 

ForNode for conditional 
control loop 

for(i=0;i<10;i++) 
   printf(“%d\n”,i); 

Tree * Initializer; 
Tree * Finalizer; 
Tree * Modifier; 
Tree * LoopBody; 

 
Table 1-2 Non-terminal nodes (continue) 
 
 
Class Name C Structure Examples Internal Data 

structure 
DoWhileNode do_while conditional 

control loop 
do{ i++; 
} while (i< 100); 

Tree * LoopBody; 
Tree * Condition; 

WhileNode While conditional 
control loop 

while (i <= 100) 
  { i++; } 

Tree * Condition; 
Tree * LoopBody; 

LabelNode C labels Exit1: I = 5; Tree * Label; 
Tree * LabelStmt; 

BracketNode {  …  }  { int i;    … 
   i = 10; … } 

Tree * DeclTree; 
Tree * StmtTree; 

LST Local symbol table 
declarations 

int i; 
float j = f(i); 

Tree ** LSTChain 

FunctionCallSite 
Node 

Function call site f(x); 
f1(1+b); 

Tree * FunName; 
Tree * ParamList; 

FunctionNode Function declaration int f(int x){ … } Tree * ReturnType; 
Tree * Name; 
Tree * ParamList; 
Tree * FunBody; 

FunctionPrototype
Node 

Function prototype 
declaration 

int f(int,int,int); 
float sqr(float); 

Tree * ReturnType; 
Tree * Name; 
Tree * ParamList; 

CallSiteElement 
Node 

Function call site 
chain 

f(x) … 
f(1) … 
f(t) … 

Tree * 
CallSiteChain 

FunctionCallSiteList
Node 

function call site 
element chain 
(collection of all 
function call sites) 

f1(x)… f2(x)… 
f3(x)… 

Tree * 
CallListChain; 

 
Table 1-3 Complete Parse-Node Data Structure 
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Class Name C Structure Examples Internal Data 

structure 
TypeNode C predefined type 

declaration 
int, long, char, 
float, double, 
sizeof, static, 
extern, 
register, … 

int Type; 

MacroNode line directive 
declaration 

# line 333 
“gram.y” 

int linenumber; 
char * filename; 

 
Table 1-3 Complete Parse-Node Data Structure (continue) 
 
 
Appendix 2 Memory Consumption of Parse Nodes 
 
Class Name Memory Consumption (Bytes)
Integer Node 44 
Long Node 46 
Char Node 45 
Double Node 50 
String Node 56 
Type Node 44 
Binary Node 68 
Bracket Node 52 
Symbol Table Node 44 
LST 44 
Struct Union Node 56 
Enumeration Node 50 
Array Node 58 
IfThenElse Node 60 
SwitchCase Node 56 
For Loop Node 64 
While Node 56 
DoWhile Node 56 
Function Node 66 
FunctionPrototype Node 58 
FunctionCallSite Node 130 
Label Node 52 
CMessage  69 
Macro Node 46 
 
Appendix 3 Parse-Node Size Approximation 
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Class Name Weight Size Approximation 
String Node 0 1 
Integer Node 0 1 
Char Node 0 1 
Double Node 0 1 
Long Node 0 1 
Binary Node 0 Left Size + Operation Size + Right Size + 

Weight 
Pointer Node 0 Name Size + Content Size + Initialization Size 

+ Weight 
Array Node 0 Name Size + Index Size + Initialization Size + 

Weight 
Enumeration Node 0 Name Size + Enumeration List Size + Weight 
Struct Union Node 0 Name Size + Declaration Size + Weight 
Jump Node 0 Jump Expression Size + Weight 
SwitchCase Node 3 SwitchCase Condition Size + SwitchCase 

Body Size + Weight 
IfThenElse Node 3 IfThenElse Condition Size + Then Clause Size 

+ Else Clause Size + Weight 
For Node 3 Initializer Size + Finalizer Size + Modifier Size 

+ Loop Body Size + Weight 
While Node 3 While Condition Size + While Loop Body Size 

+ Weight 
Do While Node 3 Do While Condition Size + Do While Loop 

Body Size + Weight 
Label Node 0 Label Size + Label Expression Size + Weight 
Bracket Node 0 Declaration Size + Statement Size + Weight 
Local Symbol Table Node 0 Summary of Local Symbol Size + Weight 
Function Call Site Node 0 Function Name Size + Function Parameter 

List Size + Weight 
Function Node 5 Function Return Type Size + 

Function Name Size + 
Function Parameter List Size + 
Function Body Size + Weight 

Type Node 0 1 
Macro Node 0 2 
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Appendix 4 Message Details 
 
No Message Name Message 

Value 
Action Message Perform 

1 ck_SetEnumIdentifier ck_Class_Msg 
+ 2 

Set enumeration construct 
name 

2 ck_SetEnumList ck_Class_Msg 
+ 6 

Set enumeration content 
Tree pointer 

3 ck_SetStructUnionHead-
Name 

ck_Class_Msg 
+ 10 

Set struct/union definition 
name 

4 ck_SetStructUnionTail-Name ck_Class_Msg 
+ 12 

Set struct/union definition 
alias name 

5 ck_SetStructUnionBody ck_Class_Msg 
+ 14 

Set struct/union definition 
body content 

6 ck_SetArrayReturnType-
Name 

ck_Class_Msg 
+ 26 

Set array variable or 
definition return type 

7 ck_SetArrayName ck_Class_Msg 
+ 28 

Set array name 

8 ck_SetArrayIndex ck_Class_Msg 
+ 30 

Set array index 

9 ck_SetArrayInitialization ck_Class_Msg 
+ 32 

Set array initialization 

10 ck_SetPointerReturnTypeNa
me 

ck_Class_Msg 
+ 42 

Set pointer return type 

11 ck_SetPointerName ck_Class_Msg 
+ 44 

Set pointer (definition or 
variable) name 

12 ck_SetPointerInitialization ck_Class_Msg 
+ 46 

Set pointer initialization 

13 ck_SetLabelNodeLabel ck_Class_Msg 
+ 64 

Set label identifier 

14 ck_SetLabelNodeLabel-
Statement 

ck_Class_Msg 
+ 66 

Set label statement 

15 ck_SetIfThenElseCondition ck_Class_Msg 
+ 74 

Set if_then_else construct 
condition 

16 ck_SetIfThenElseThenTree ck_Class_Msg 
+ 78 

Set if_then_else construct 
then statement 

17 ck_SetIfThenElseElseTree ck_Class_Msg 
+ 82 

Set if_then_else construct 
else statement 

18 ck_SetSwitchCaseNode-
Condition 

ck_Class_Msg 
+ 86 

Set switch_case construct 
condition 

19 ck_SetSwitchCaseNode-
Expression 

ck_Class_Msg 
+ 90 

Set switch_case construct 
statement 

20 ck_SetWhileNodeCondition ck_Class_Msg 
+ 94 

Set while loop construct 
loop condition 
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21 ck_SetWhileNodeLoopBody ck_Class_Msg 

+ 98 
Set while construct loop 
body 

22 ck_SetDoWhileNode-
Condition 

ck_Class_Msg 
+ 102 

Set do_while construct 
loop condition 

23 ck_SetDoWhileNodeLoop-
Body 

ck_Class_Msg 
+ 104 

Set do_while construct 
loop body 

24 ck_SetForNodeCondition-
Initializer 

ck_Class_Msg 
+ 110 

Set for loop initializer 

25 ck_SetForNodeCondition-
Finalizer 

ck_Class_Msg 
+ 112 

Set for loop condition 

26 ck_SetForNodeCondition-
Modifier 

ck_Class_Msg 
+ 114 

Set for loop modifier 

27 ck_SetForNodeLoopBody ck_Class_Msg 
+ 116 

Set for loop body 

28 ck_SetFunctionPrototype-
ReturnTypeName 

ck_Class_Msg 
+ 158 

Set function prototype 
definition return type 

29 ck_SetFunctionPrototype-
Name 

ck_Class_Msg 
+ 162 

Set function prototype 
definition name 

30 ck_InsertPrototypeParam-
List 

ck_Class_Msg 
+ 170 

Set function prototype 
definition parameter list 

31 ck_SetFunctionReturnTypeN
ame 

ck_Class_Msg 
+ 178 

Set function definition 
function return type 

32 ck_SetFunctionName ck_Class_Msg 
+ 182 

Set function definition 
function name 

33 ck_SetFunctionParameter-
List 

ck_Class_Msg 
+ 186 

Set function definition 
parameter list 

34 ck_SetFunctionBody ck_Class_Msg 
+ 184 

Set function definition 
body context 

35 ck_SetFunctionCallSite-
FunctionName 

ck_Class_Msg 
+ 202 

Set function callsite name 

36 ck_SetFunctionCallSite-
ParameterList 

ck_Class_Msg 
+ 206 

Set function callsite 
parameter list 

37 ck_FunctionClone ck_Class_Msg 
+ 214 

Clone function definition 

38 ck_SetFunctionEqual ck_Class_Msg 
+ 216 

Check function equal 

39 ck_SetTypeNodeType ck_Class_Msg 
+ 224 

Set C predefined data type 

40 ck_SetParent ck_Class_Msg 
+ 226 

Set current Tree pointer’s 
parent Tree pointer 

41 ck_SetBracketNode-
DeclarationBlock 

ck_Class_Msg 
+ 252 

Set curly bracket 
declarations 

42 ck_SetBracketNode-
StatementBlock 

ck_Class_Msg 
+ 256 

Set curly bracket 
statements 
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43 ck_HasFunctionCallSite-

Node 
ck_INLINE 
+ 2 

Check if there is a callsite 
in the current construct 

44 ck_HasNestedFunction-
CallSite 
 

ck_INLINE 
+ 4 

Check if there are nested 
callsites in the current 
callsite 

45 ck_SetFunctionCallSiteInline
Able 

ck_INLINE 
+ 8 

Mark a callsite to be 
inlineable 

46 ck_SwapAvailConditionSite ck_INLINE 
+ 12 

Swap callsites in 
conditional control 
constructs 

47 ck_SwapAvailDeclSite ck_INLINE 
+ 13 

Swap between declarations 
and statements 

48 ck_SplitFunctionCallSite-
Node 

ck_INLINE 
+ 16 

Split nested callsites 

49 ck_SetFunctionCallSiteNodeS
plit 

ck_INLINE 
+ 20 

Split one-level callsite 
parameter 

50 ck_RemoveFromFunction-
CallList 

ck_INLINE 
+ 30 

Remove uninlineable 
callsite from callsite list 

51 ck_ReplaceCommas ck_INLINE 
+ 32 

Comma operator removal 

52 ck_DecideInlining ck_INLINE 
+ 40 

Inlining decision algorithm 

53 ck_DoRealInline ck_INLINE 
+ 42 

Performing Inlining 

54 ck_ProcessReturnClauseIn-
FunctionBody 

ck_INLINE 
+ 50 

Process return statement in 
duplicated function body 

55 ck_LocalVariablePropogate ck_INLINE 
+ 52 

Local variable renaming, 
Constant propagation 

56 ck_SplitAndExpression ck_INLINE 
+ 60 

Split AND expression 

57 ck_SplitOrExpression ck_INLINE 
+ 62 

Split OR expression 

58 ck_RenameLabels ck_INLINE 
+ 76 

Label renaming 

59 ck_CollectFunctionNames ck_INLINE 
+ 78 

Function callsite name 
collection (to build callsite 
candidate list) 

60 ck_GetNodeSize ck_INLINE 
+ 82 

Function size 
approximation 
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