
Compiler-Based Checkpointing and the Potential for Tolerating
Delinquent Loads

Chuck (Chengyan) Zhao, Greg Steffan, and Cristiana Amza
{czhao,steffan,amza}@eecg.toronto.edu

Dept of Computer and Electrical Engineering, University ofToronto
Toronto, Ontario, Canada, M5S 3G

UT EECG Technical Report
Number UT-EECG-TR-2009-0017
April 2009

Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario, Canada M5S 3G4
URL: http://www.ece.toronto.edu

Compiler-Based Checkpointing and the Potential for Tolerating
Delinquent Loads

Chuck (Chengyan) Zhao, Greg Steffan, and Cristiana Amza
{czhao,steffan,amza}@eecg.toronto.edu

Dept of Computer and Electrical Engineering, University ofToronto
Toronto, Ontario, Canada, M5S 3G

University of Toronto, Dept. of ECE, UT EECG TR-2009-0017

April 2009

Abstract

With processor vendors pursuing multicore products, oftenat the expense of the complexity and aggressiveness of
individual processors, we are motivated to explore ways that compilers can instead support more aggressive execution.
In this paper we propose support for fine-grained compiler-based checkpointing that operates at the level of individual
variables, potentially providing low-overhead software-only support for speculative execution. As an initial attempt
to exploit this checkpointing support to improve the performance of sequential programs, we investigate the potential
for using speculative execution to tolerate the latency ofdelinquent loadsthat frequently miss in the second-level (last
level on-chip) cache. After demonstrating that delinquentloads are persistent across different cache architecturesand
program inputs for several SpecINT2000 benchmarks, we propose and evaluate both data and control speculation
methods for hiding delinquent load latency. Through an initial study of the delinquent loads in the MCF benchmark
we find that our ability to improve performance via such speculation is limited by (i) the unpredictability of delinquent
load result values, and (ii) the limited amount of computation on which to speculate.

1 Introduction

While today’s computer hardware is characterized by the abundance of processor cores in multicore chips, the individ-
ual processors themselves are generally not much more aggressively speculative or out-of-order than previous designs.
Instead the primary technique to cope with mounting latencyto off-chip memory is multithreading, such as Intel’s Hy-
perthreading and SUN’s multithreaded Niagara processor: in these designs the long latency of an off-chip load miss
can be tolerated by executing another thread for the duration of the miss. However, there is a dearth of threaded
software—especially for desktop computing—which will limit the impact of solutions that depend on multithreading
alone.

Prefetching is also a well-studied technique for addressing memory latency, via both hardware and compiler tech-
niques. However, prefetching for irregular data accesses can be difficult, since irregular data accesses are difficult
to predict and since there is a close trade-off between tolerating latency and increasing overhead and traffic. This
environment underlines the importance of selective compiler techniques for tolerating memory latency.

One way to be more selective is to focus ondelinquent loads(DLs) [9, 36]. A DL is a particular memory load
in a program that frequently misses in a cache—typically thelast-level cache on-chip. In other words, for many
applications a small number of DLs contribute a large fraction of all last-level cache load misses. Hence DLs, should
they be reasonably persistent across target architectures, may be a good focal point for compiler optimization.

1.1 Tolerating DLs with Compiler-Based Checkpointing

We propose a software-only method for checkpointing program execution that is implemented in a compiler. In
particular, our transformations implement checkpointingat the level ofindividual variables, as opposed to previous

1

annotated

source

base

transformations

checkpointing

optimizations

convert

back to

C

SUIF frontend

base checkpointing transformations

hoisting-based optimizations

aggregation-based optimizations

redundancy elimination-based optimizations

…

inlining

SUIF backend

POWER

xlc
C

code

x86

gcc/icc/

…

C SUIF C

Figure 1: Checkpointing system overview

work that checkpoints entire ranges of memory or entire objects. The intuition is that such fine-grained checkpointing
can (i) provide many opportunities for optimizations that reduce redundancy and increase efficiency, and (ii) facilitate
uses of checkpointing that demand minimal overhead, such astolerating DL latency. Subsequently we demonstrate
that DLs in several SpecINT2000 benchmarks are indeed persistent across a wide range of second-level (L2) cache
sizes and architectures, and that modern compilers and processors do not alleviate them. Finally, we propose and
evaluate two methods of tolerating DL latency that exploit compiler-based fine-grained checkpointing to implement
software-only control and data speculation.

2 Support for Compiler-based Fine-grained Checkpointing

Checkpointing [13, 20, 21, 40, 48, 49] is the process of taking a snapshot of program execution so that we can
rewind to that snapshot later if desired. Checkpointing hasa wide range of uses and includes both hardware and
software implementations. While proposed hardware-basedsolutions [3, 30] can perform well, they have yet to be
adopted broadly in commercial systems. Software-only checkpointing solutions [20, 21, 37, 49] are therefore more
immediately practical, although their inherent overheadscan be prohibitive. In contrast with past work on coarse-
granularity checkpointing based on copying large memory regions or cloning objects, in this section we propose a
relatively lightweight compiler-based approach to checkpointing that operates at the level of individual variables.

Overview Figure 1 presents a high-level overview of our checkpointing system. We take as input aC-based program,
with annotations that indicate where a checkpoint region begins and ends, as well as code that decides whether the
checkpoint should be committed or rewound. Our checkpointing transformations and optimizations are implemented
as passes in the SUIF [15, 4] compiler, which outputs transformedC code that we can then compile to target a number
of platforms (currently x86 viagcc and POWER via IBMxlc compilers). This source-to-source approach allows us
to capitalize on all of the optimizations of the back-end compilers.

Undo-Log vs Write-Buffer The most important design decision in a checkpointing scheme is the approach to buffer-
ing: whether it will be based onwrite-buffer[17, 26] or alternatively anundo-log[19, 31]. A write-buffer approach
buffers all writes from main memory, and therefore also requires that the write-buffer be searched on every read.
Should the checkpoint commit, the write-buffer must be committed to main memory; should the checkpoint fail, the
write-buffer can simply be discarded. Hence for a write-buffer approach the checkpointed code proceeds more slowly,
but with the benefit that parallel threads of execution can beeffectively checkpointed and isolated (e.g., for some forms
of optimistic transactional memory [17, 28]). An undo-log approach maintains a buffer of previous values of modified
memory locations, and allows the checkpointed code to otherwise read or write main memory directly. Should the

UT-EECG-TR-2009-0017 2

foo(){

int x, y, z;

init_ckpt();

…

backup(&x, sizeof(x));

x = …;

for(…){

…

backup(&z, sizeof(z));

z = …;

if(…) {

backup(&y, sizeof(y));

y = …;

}

…

} …

attempt_commit();

…

}// end of foo()

(a) code with ckpt enabled (b) hoisting optimization (c) aggregation optimization

foo(){

int x, y, z;

init_ckpt();

…

backup(&x, sizeof(x));

backup(&z, sizeof(z));

x = …;

for(…){

…

z = …;

if(…) {

backup(&y, sizeof(y));

y = …;

}

…

} …

attempt_commit();

…

}

foo(){

int x, z, y; // reordered

init_ckpt();

…

backup(&x,

sizeof(x) + sizeof(z));

x = …;

for(…){

…

z = …;

if(…) {

backup(&y, sizeof(y));

y = …;

}

…

}…

attempt_commit();

…

}

Figure 2: Fine-grain Checkpointing Optimizations

checkpoint commit, the undo-log is simply discarded; should the checkpoint fail, the undo-log must be used to rewind
main memory. Hence for an undo-log approach the checkpointed code can proceed much more quickly than a write-
buffer approach. For this work, since we are considering only a single thread of execution we focus on an undo-log
approach.

Base Transformation Given that we implement an undo-log based approach, the basepass of the checkpointing
framework is to precede all writes with code to back-up the write location into the undo-log. As illustrated in Fig-
ure 2(a), within the specified checkpoint region the variablesx, y, andz are all modified and hence preceded with
a backup() call. Thebackup() call takes as arguments a pointer to the variable to be backedup and its size in
bytes. Figure 3 illustrates our initial design of an undo-log, where we have divided the undo-log into two structures:
(i) a data buffer which is essentially a concatenation of allbacked-up data values, which can be of arbitrary size; and
(ii) a meta-data buffer which stores the length and startingaddress of each element. As an example, Figure 3(b) shows
the contents of an undo-log after threebackup() calls. When a checkpoint commits, we simply move the data and
meta buffer pointers back to the start of each buffer; when a checkpoint must be rewound, we use the meta buffer to
walk through the data buffer, writing each data element backto main memory. In future work we will more thoroughly
investigate possibilities and trade-offs in the implementation of the undo-log.

Optimizations Our base transformation for fine-grain checkpointing provides significant opportunity for optimiza-
tion. Given the initial code shown in Figure 2(a), we can perform several optimizations. For example, as illustrated in
Figure 2(b) ahoistingpass which will hoist the backup of any variable written unconditionally within a loop outside of
that loop (variablez in the example); note that such hoisting would not be performed by a normal hoisting pass since
the write to the variable is not necessarily loop invariant.Note also that we do not host variabley in the example since
it is only conditionally modified—whether to hoist such cases is actually a trade-off that will be studied. A second
optimization is to aggregatebackup() calls for variables which are adjacent in memory, potentially rearranging the
layout of the variables to ensure that they are adjacent.1. Aggregation reduces the overhead of managing adjacent
variables individually (variablesx andz in the example). We are also investigating redundancy optimizations to re-
move redundant and unnecessarybackup() calls, and have implemented an inlining pass so thatbackup() is not
actually implemented as a procedure call but instead consists only of the bare instructions for performing the back-up.

1Note that for a source-to-source transformation this isn’tnecessarily a safe optimization as the back-end compiler may further rearrange the
variable layout—an implementation in a single unified compiler would not have this problem.

UT-EECG-TR-2009-0017 3

…data buffer …

(a) checkpoint data buffer and checkpoint meta buffer

…meta buffer …

(b) checkpoint buffers at work

a … data buffer …127 31

char a = ‘a’;

int b = 127;

short c = 31;

…

backup(&a, sizeof(a));

backup(&b, sizeof(b));

backup(&c, sizeof(c));

…

idx

addr

…meta buffer …
0

&a

1

&b

5

&c

Figure 3: Undo-log buffering mechanism.

3 Identifying and Measuring Delinquent Loads

In this section we describe our methodology for identifyingand measuring DLs, including our benchmark applications
and profiling infrastructure.

DL Identification We identify DLs by profiling second-level (L2) cache misses using a cache simulator based on
PIN [23] that we developed for this work. One compelling feature of this infrastructure is that, when a benchmark is
compiled with debug information, it allows us to directly associate load and store instructions with their corresponding
source code location. Hence we can reliably map each load instruction that is responsible for a large fraction of L2
cache misses back to the offending source code location. In this paper, we will consider a particular load instruction to
be a delinquent load if it is responsible for greater than 10%of all L2 cache misses for a program. We will also refer
to the actual percentage of L2 cache misses as thesignificanceof that delinquent load (i.e., a load that is responsible
for all of a program’s L2 cache misses would have a significance of 100%).

Benchmark Applications In this study we focus on the Spec2000Int [11] benchmarks, compiled using gcc-4.1.2 with
-O3 optimization. Our initial investigation of allC benchmarks found that only a subset of the applications contain
DLs, as listed in Table 1. This table also lists the particular ref input that we use for each benchmark, as well as the
significance for each of the DLs in each benchmark (assuming a256KB L2 cache with 32B cache lines and 2-way
set associativity). As is evident from the table, these few DLs are responsible for a very large fraction of all L2 cache
misses for these applications, ranging from 13.6% for VPR to89.6% for MCF.

UT-EECG-TR-2009-0017 4

Name Input Data % L2 misses

mcf inp.in DL0: 14.4%
(ref) DL1: 31.1%

DL2: 23.7%
DL3: 9.7%
DL4: 5.4%
DL5: 5.3%

total: 89.6%
bzip2 input.program DL0: 16.8%

(ref) DL1: 12.2%
DL2: 18.3%
DL3: 14.9%

total: 62.2%
vortex ref DL0: 15.7%

DL1: 12.6%
DL2: 11.5%

total: 39.8%
parser ref.in DL0: 10.4%

DL1: 18.6%
total: 29.0%

vpr ref DL0: 13.6%
total: 13.6%

Table 1: The most significant DLs

4 Delinquent Load Persistence

To consider optimizing DLs in a compiler, we first want to be confident that the DLs for a program are not sensitive
to a particular size or configuration of the L2 cache. In this section we measure thepersistenceof L2 load misses
and DLs in our benchmark applications across a broad range ofL2 cache architectures. We also measure persistence
across program inputs and compiler vendors.

4.1 Persistence across L2 Architectures

We measure a wide range of L2 cache architectures, with sizesvarying from 256KB to 4MB, cache-line size varying
from 32B to 128B, and associativity varying from 2 ways to 16 ways. Table 2 summarizes the combinations that we
study for each cache size—the index is only to indicate the relative order of the combinations, and is the implied x-axis
for each cache size for the remaining result graphs in this paper.

To start, in Figure 5 we present the average number of L2 cacheload misses per 1000 instructions across our L2
cache configuration space. Note that even a single L2 cache miss per 1000 instructions is fairly significant, since
an L2 miss can result in a 300-500 cycle miss penalty depending on the processor. It is evident that there are a
significant number of L2 load misses regardless of configuration—especially for MCF which suffers more than 20 L2
load misses per 1k instructions for the smaller L2 cache sizes. Once the L2 cache size is 2MB or larger, the incidence
of L2 cache misses is greatly reduced. This is partly becausethe SpecINT2000 benchmark suite was not designed to
properly exercise processors with greater than 1MB on-chipL2 caches, so for designs with 2MB L2 caches or larger
the working set for most applications is resident. MCF is an exception, and continues to have a relatively frequent
occurrence of L2 cache misses even for large L2 caches.

Figure 4 demonstrates the persistence of each of the DLs in our benchmarks across L2 cache architectures. Focus-
ing on the experiments using theref inputs, we see that DLs are generally persistent across architectures, with the
significance of the DLs for some applications dropping off for L2 caches that are 2MB or larger. Since MCF has such
a large incidence of DLs we also include DLs that comprise more than 5% of all L2 cache misses. For MCF, three of
the DLs remain persistent even for a 4MB L2 cache. For VPR, themain DL becomes insignificant for 2MB or larger
L2 caches. For both BZIP2 and PARSER, while some DLs become less significant as L2 cache size increases, one of

UT-EECG-TR-2009-0017 5

Index Line-size Assoc.
0 32B 2
1 32B 4
2 32B 8
3 32B 16
4 64B 2
5 64B 4
6 64B 8
7 64B 16
8 128B 2
9 128B 4

10 128B 8
11 128B 16

Table 2: Cache configuration space explored (across a range of L2 cache sizes).

the DLs becomes more significant.

4.2 Persistence Across Program Inputs

Figure 4 also demonstrates DL persistence across program inputs, by showing results for both theref andtrain
inputs for each benchmark. Most DLs remain persistent across architectures (up to 1MB L2 caches), although for
VPR its single DL becomes insignificant, as does one of PARSER’s DLs. This is likely due to the fact thattrain
inputs are generally not as large asref inputs, reducing the L2 cache capacity required to fit the working set for these
benchmarks.

4.3 MCF: A Deeper Look

In this section and for the remainder of this paper we focus onMCF, since it has the most significant DLs of any
benchmark. Our first question is whether DLs are consistent across different compilers. In Figure 4(k) we compile
MCF with gcc version4.0.4 and in Figure 4(l) we compile with Intel’sicc version10.1 [2], both running on the
ref input. Four of the DLs remain consistent across the two compilers, while two of them change between the two
compilers (DL3 and DL5).

Figure 6 shows the corresponding code for the top six DLs in MCF, which provides insight into DL characteristics
in integer applications. First, all DLs reside within a pointer access, fetching a field from a structure. Examining
source code shows that all DLs are part of a linked-list traversal. All link-list nodes are dynamically allocated which
presents little inter-node spatial locality—implying that conventional prefetching techniques will not be effective for
these DLs. Second, the majority of DLs are within1-level pointer access (DL0 to DL4), while only DL5 is through
multiple levels of pointer indirection. This matches the style of single-level link list where most actions happen within
the single node that is currently being accessed. Third, DLsare more likely to happen within a frequently-accessed
field of a big structure whose size is larger than the cache-line size. Knowing the size of arc is32B (DL1 to DL5)
and the size of node is60B (DL0), they are either equal-to or larger-than the smallest cache-line that we simulate
(32B)—loading a different linked-list node of either type is more likely to cause cache misses on such architectures.
Finally, when there are multiple levels of pointer access (DL5) this is more likely to be a DL, because such accesses
are very unlikely to remain within a single cache line.

4.4 Summary

For code containing large numbers of L2 cache load misses and exhibiting DL behaviors, we observe that the DL
source locations and cache behaviors are persistent acrossvarious cache architectures provided the working set origi-
nated from these DLs won’t entirely fit into the cache. This persistence motivates us to investigate compiler techniques
to tolerate the latency of DLs.

UT-EECG-TR-2009-0017 6

0

10

20

30

40

50

60

70

256
K

512
K

10
24K

20
48K

4096
K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:mcfutil.c:88

DL1:implicit.c:250

DL2:implicit.c:252

DL3:implicit.c:80

DL4:pbeampp.c:191

DL5:pbeampp.c:41

5

(a) MCF:ref

0

10

20

30

40

50

60

70

256
K

512
K

10
24K

20
48K

4096
K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:mcfutil.c:88

DL1:implicit.c:250

DL2:implicit.c:252

DL3:implicit.c:80

DL4:pbeampp.c:191

DL5:pbeampp.c:41

5

(b) MCF:train

0

5

10

15

20

25

30

256K
512K

10
24

K

20
48K

409
6K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:place.c:2002

(c) VPR:ref

0

10

20

30

40

50

60

256K
51

2K

102
4K

20
48K

409
6K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:place.c:2002

(d) VPR:train

0

5

10

15

20

25

30

35

256K
512K

102
4K

20
48K

40
96K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:bzip2.c:1260

DL1:bzip2.c:2688

DL2:bzip2.c:2688

DL3:bzip2.c:2282

(e) BZIP2:ref

0

1

2

3

4

5

6

7

8

9

10

256K
512K

102
4K

204
8K

4096
K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:bzip2.c:1260

DL1:bzip2.c:1866

DL2:bzip2.c:1867

DL3:bzip2.c:1874

DL4:bzip2.c:1875

DL5:bzip2.c:1882

DL6:bzip2.c:1883

DL7:bzip2.c:1890

DL8:bzip2.c:1891

DL9:bzip2.c:2172

(f) BZIP2:train

0

10

20

30

40

50

60

70

256K
51

2K

10
24K

204
8K

4096
K

L2 Cache Configuration Space

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:parse.c:194

DL1:xalloc.c:122

(g) PARSER:ref

0

10

20

30

40

50

60

70

80

90

256K
51

2K

1024
K

20
48K

4096
K

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:xalloc.c:122

(h) PARSER:train

0

5

10

15

20

25

256K
512K

102
4K

2048
K

4096
K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:bmtobj.c:831

DL1:mem10.c:752

DL2:mem10.c:596

(i) VORTEX:ref

0

5

10

15

20

25

30

256K
512K

1024
K

20
48

K

40
96K

L2 Configurations

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:mem10.c:752

DL1:mem10.c:596

DL2:?(system lib)

(j) VORTEX:train

5

0

10

20

30

40

50

60

70

25
6K

51
2K

10
24

K

20
48

K

40
96K

L2 Configuration

D
e

li
n

q
e

n
t

L
o

a
d

 S
ig

n
if

ic
a

n
c

e

DL0:mcfutil.c:88

DL1:implicit.c:250

DL2:implicit.c:252

DL3:implicit.c:80

DL4:pbeampp.c:191

DL5:pbeampp.c:41

(k) MCF:ref,gcc4.0.4-O2

5

0

10

20

30

40

50

60

70

256K
51

2K

10
24K

2048
K

40
96K

L2 Configuration

D
e

li
n

q
u

e
n

t
L

o
a

d
 S

ig
n

if
ic

a
n

c
e

DL0:mcfutil.c:88

DL1:implicit.c:250

DL2:implicit.c:252

DL3:implicit.c:258

DL4:pbeampp.c:191

DL5:pbeampp.c:196

(l) MCF:ref,icc10.1-O2

Figure 4: Persistence of DLs across: (a-j) architectures and benchmark inputs; and (k-l) compiler vendors.

5 Tolerating Delinquent Loads with Speculative Execution

In this section we propose two techniques that leverage compiler-based fine-grained checkpointing to tolerate DLs,
namely data and control speculation. For such single-threaded speculation, we must make a prediction about the

UT-EECG-TR-2009-0017 7

0

5

10

15

20

25

30

35

40

45

256K
512K

1024K

2048K

4096K

L2 Configuration

L
2

 L
o

a
d

 M
is

s
e

s
 p

e
r

1
K

 I
n

s
tr

u
c

ti
o

n
s MCF

BZip2

Parser

Vortex

Vpr

Figure 5: Number of L2 cache load misses per 1K instructions,across different cache configurations (described in
Table 2).

resulting value of a DL and execute code that uses that prediction to make progress rather than awaiting the DL result
value from off-chip; this approach exploits the parallelism provided by a wide-issue superscalar processor that can
execute instructions in parallel with memory references. Ideally the latency of the DL is hidden when the prediction is
correct, but execution can be rewound and re-executed usingthe correct DL value should the prediction be incorrect.
We evaluate the proposed techniques using MCF, the benchmark with the most prominent DLs according to our study
in the previous section.

5.1 Overview

Figure 7(a) illustrates the challenge presented by a DL: theL2 miss latency for a DL can be lengthy, and the compu-
tation that follows the DL (work()) likely depends on the DL’s result value (x). Figure 7(b) provides an overview of
how to tolerate a DL by overlapping the DL miss latency with speculative execution of the subsequent code using a
predicted value (v). The DL is scheduled as early as possible, followed by the generation of a predicted value (v).

The computation proceeds using the predicted value (work(v)), with that computation being checkpointed to
support computation rewind. When the computation is complete, we compare the predicted value with the actual
value, and if they are equal then we can commit the checkpoint(as shown in Figure 7(b)). Ideally such a successful
prediction and speculation will result in a performance gain relative to the non-speculative original code. Should
the value be mispredicted, as illustrated in Figure 7(c), then we must rewind the checkpoint and then perform the
computation with the correct result value of the DL (work(x)). The combined overheads of checkpointing as well
as rewinding and retrying the computation can result in a performance loss relative to the original code.

5.2 Prediction

The effectiveness of speculation depends on the data prediction accuracy, since frequently-inaccurate prediction will
result in an overwhelming amount of failed speculation. Also, the complexity of the predictor itself is a source of
overhead—a cost that must be overcome by the benefits of tolerating the DL latency to produce speedup.

We implement and evaluate two of the simplest previously-proposed value predictors [6, 22, 39, 47]: including a
last value predictor and a stride-based predictor. The last-value predictor simply predicts that the next value will be
the same as the last value observed, requiring only a single variable for storage. The stride predictor computes the
difference between each consecutive pair of values and predicts that the difference will be constant: hence the stride
predictor must store the last value as well either the current value or the differencestridebetween them.

UT-EECG-TR-2009-0017 8

(b). DL1: implicit.c:250, DL2: implicit.c:252

while(arcin){

tail = arcin->tail; // DL 1

if(tail->time + arcin->org_cost > latest){ // DL 2

arcin = (arc_t *)tail->mark;

continue;

}

…

}

(a) DL0: mcfutil.c:86

while(node != root){

while(node){

if(node->orientation == UP) // DL0

node->potential = node->basic_arc->cost + node->pred->potential;

else{

node->potential = (node->pred)->potential -node->basic_arc->cost;

checksum++;

}

…

}

(c) DL3: mcfutil.c:80

cost_t compute_red_cost(cost_t cost, node_t *tail, cost_t head_potential)

cost_t cost; node_t *tail; cost_t head_potential;

{

return (cost - tail->potential + head_potential); // DL3

}

(d) DL4: pbeampp.c:191

for(; arc < stop_arcs; arc += nr_group)

{

if(arc->ident > BASIC) { // DL4

red_cost = bea_compute_red_cost(arc);

…

}

}

(e) DL5: pbeampp.c:41

cost_t bea_compute_red_cost(arc_t *arc){

return(arc->cost - arc->tail->potential + arc->head->potential); // DL5

}

Figure 6: Significant DL locations in MCF

Figure 8(a) shows the accuracy of last value and stride predictors on the DLs in MCF. DL1, DL2, and DL5 have
close to0% prediction accuracy and hence cannot benefit from the form of speculation that we propose. DL4 has a
high prediction accuracy of91.3% using the last-value predictor, and hence is our best candidate for speculation. A
closer look at the value distribution for DL4 given in Figure 8(b) shows that the value1 is extremely common, while
only two other values are observed (for theref input)—obviating while a last-value predictor does well for this DL.
The stride predictor achieves81.84% accuracy for this DL, but predicting a stride of zero (i.e.,not really capitalizing
on the stride predictor’s ability). DL0 and DL5 have only a22.85% and43.7% prediction accuracy respectively and
will likely suffer from too much misprediction to enjoy a speedup from speculation. For these DLs we find that the
last-value predictor out-performs the stride predictor inevery case, in addition to the stride predictor being slightly
higher overhead. Hence we focus on implementations of speculation based on the last-value predictor.

To try to reduce mispeculation and improve prediction accuracy for the DLs we tried two things. First, we also
measured previously-proposed context-based predictors that can predict fixed-length sequences of arbitrary values,
but we expect that the storage and computation complexity ofsuch predictors would be prohibitive. However, our
initial studies showed that even aggressive context-basedpredictors did not significantly improve prediction accuracy

UT-EECG-TR-2009-0017 9

(a) normal execution (b) successful speculation

load x (DL)

v = predict();

start ckpt

time

(c) failed speculation

load x (DL)

work (x)

work (v)

start ckpt

performance gain

performance loss

rewind_ckpt(); // x != v

work(x);

load x (DL)

v = predict();

work (v)

commit_ckpt(); // x == v

L
2
 m

is
s
 l
a
te

n
c
y

L
2
 m

is
s
 l
a
te

n
c
y

Figure 7: Overview of tolerating a DL with speculative execution.

for MCF, hence we do not discuss them further here. Second, a method of reducing the rate of costly misprediction is
through an implementation ofconfidence: an n-bit saturating counter which tracks the recent accuracy of prediction,
such that future predictions are only actually made when confidence is above a certain threshold. However, we found
that a variety of confidence counters (ranging from1-bit to 3-bit) did not improve the misprediction rate significantly.

5.3 Data Speculation

The first method of tolerating DL latency that we evaluate isdata speculation(DS) where we predict the result data
value of the DL and use it to continue execution speculatively, as illustrated in Figure 9. After issuing the DL as early
as possible (1), predicting the DL’s data value (2), starting the checkpoint (3), and speculatively executing based on
that predicted value (4), we then attempt to commit the speculation. The commit process first checks whether the
prediction was correct (5): if so then the checkpoint is committed (6), otherwise the checkpoint is rewound (7) and the
computation is re-executed using the correct DL result value (8).

5.4 Control Speculation

Whenever a the result value of a DL is usedsolelywithin a conditional control statement, as shown in Figure 10(a), we
have an interesting opportunity: rather than predicting the exact result value of the DL we can instead merely predict
the boolean result of the conditional—which ideally will more easily be an accurate prediction than predicting the
exact result value. We call this form of speculation controlSpeculation(CS), which is essentially a special-case of
data speculation.

Modern processors perform branch prediction and speculatively execute instructions beyond the branch—however
this speculation is limited to the size and aggressiveness of the processor’s issue window. With compiler-based control
speculation we can ideally speculate more deeply, allowinggreater opportunity for tolerating all of the latency of a
DL.

UT-EECG-TR-2009-0017 10

Type Last Value

Predictor

(%)

Strider

(%)

DL0 CS 22.85 18.56

DL1 DS 0.0 0.0

DL2 CS 0.0 0.0

DL3 DS 1.75 1.72

DL4 CS 91.3 81.84

DL5 DS 43.67 30.84

(a) MCF DLs’ Value Prediction Accuracy (b) MCF DL4’ Value Distribution

Value Distribution

Percentage

1 94.66

0 3.65

2 1.69

Figure 8: MCF DL (a) prediction accuracy and the type of speculation each DL is amenable to, data speculation (DS)
or control speculation (CS), and (b) value distribution forDL4.

6 Performance Modeling and Evaluation

In this section, we give both theoretical performance modeling and practical evaluation of the proposed speculative
techniques on real machines. We 1st present mathematical analysis of the implicit DL memory overlapping model and
give theoretical upper-bound predictions of potential performance gains. We show that the theoretical model predicts
50%+ relative speedup. We then apply this model on syntheticbenchmarks running on real machines and demonstrate
that the relative performance gain of the micro benchmark closely matches the theoretical prediction. We finally
conduct a detailed study for applying the model on a real-world DL-intensive application with software speculation
enabled.

6.1 Theoretical Performance Modeling

Figure 11 illustrates the ideal timing model for overlapping execution with DLs. Figure 11(a). is the normal sequential
model where the total execution time is the sum of both DL cycles and the overlapped work cycles. This represents
the condition where the DL value is immediately needed to continue execution. While under the overlapped model
(Figure 11(b)), the total execution time is themaximumof the two. This models the cases of either the DL value is
not immediately needed or the DL is used to make a predictablecontrol-flow decision thus its precise value is less
important.

Let CL denote to the cycles of a cache miss and letC denote to the cycles of overlapped work, we have

Tsequential = CL + C

Tspeculate = max(CL, C)

Let Sdenote to relative speedup of overlapping execution with DL, we give the definition ofS

S =
Tsequential − Tspeculate

Tsequential

=
CL + C − max(CL, C)

CL + C
(1)

Thus the ideal theoretical speedup for only overlapping with L1 cache is

UT-EECG-TR-2009-0017 11

(a) original code (b) with data speculation

……

work(work(PP-->a>a);); // DL

…

1: t = P->a; // issue DL

2: v = predict(); // value prediction

3: start_ckpt(); // start ckpt

4: work(v)work(v);; //speculative execution

5: if(t == v){ // check prediction

6: commit_ckpt();

}

else{

7: rewind_ckpt();

8: work(t); // normal re-execute

}

Figure 9: Tolerating a DL via data speculation.

S =
CL1 + C − max(CL1, C)

CL1 + C

=

{

CL1+C−CL1

CL1+C
, if C < CL1

CL1+C−C
CL1+C

, if C ≥ CL1

=

{

C
CL1+C

, if C < CL1

CL1

CL1+C
, if C ≥ CL1

And the ideal theoretical speedup for only overlapping withL2 cache is

S =
CL2 + C − max(CL2, C)

CL2 + C

=

{

CL2+C−CL2

CL2+C
, if C < CL2

CL2+C−C
CL2+C

, if C ≥ CL2

=

{

C
CL2+C

, if C < CL2

CL2

CL2+C
, if C ≥ CL2

In addition, we obtain the theoretical speedup for overlapping with combined L1 and L2 cache by aggregating the
individual speedups:

S =

C
CL1+C

+ C
CL2+C

, if 0 ≤ C < CL1

CL1

CL1+C
+ C

CL2+C
, if CL1 ≤ C < CL2

CL1

CL1+C
+ CL2

CL2+C
, if C ≥ CL2

UT-EECG-TR-2009-0017 12

(a) original code (b) with control speculation

if(P->a){

// DL, commonly true

work1(); //“no use of P->a”

}

else{

work2(); // “no use of P->a”

}

1: t = P->a; // issue DL

2: start_ckpt(); // start ckpt

33:: work1();work1(); // speculative execution

4: if(t == predict()){ //check prediction

5: commit_ckpt();

}

else{

6: rewind_ckpt();

7: work2(); // normal execution

}

Figure 10: Tolerating a DL via control speculation.

Figure 12 presents three theoretical speedup curves for overlapping with L1 cache only, with L2 cache only, and
overlapping with combined L1-and-L2 cache. It shows both the overall similarity and individual differences. For ease
of comparison, we fix the L1 cache miss cycles to20 (CL1) and L2 cache miss cycles to500 (CL2).

The curve that overlaps with L1-only workload goes sharply to its peak from0 to CL1 (20) cycles in the beginning.
Since the L1-miss-and-L2-hit cycles are relatively short,it has only limited room to stretch before reaching its theo-
retical maximum, which is predicted to be 50% when the overlapped cycles (C) equals to L1-miss-and-L2-hit cycles.
The curve that overlaps with L2-only work can be treated as horizontally scaling the L1 curve to match with L2-miss-
and-memory-hit cycles (CL2) and its theoretical performance upperbound is also 50%. Given ideal workloads, the
two theoretical speedups can further combine and generate an aggregrated effect that can cross the 50% threshold,
presented as the CL2-centered triangle-like area in Figure12.

6.2 Benchmarks

With theoretical speedup predictions, it comes to implement the predicted speculative techniques and realize the per-
formance premium in real workloads. We propose two set of application suites for evaluation. The 1st set is a group of
synthetic micro benchmarks, including linklist, binary search tree, B-tree, red-black tree, avl tree, etc. They behave in
a similar way that accessing to dynamically allocated data structures results frequent cache misses (DLs). The 2nd set
contains real-world applications that expose data structures and memory access patterns more complex than synthetic
benchmarks. At the same time, they need to exhibit extensiveDL behaviors that are suitable for our DL study. For
performance evaluation, we use linklist as the representative among the group of synthetic benchmarks and we select
MCF from Spec2000Int suite due to its frequent and intensiveDL behaviors.

6.3 Micro Benchmark Performance

We construct the linklist benchmark such that the size of each node is larger than the size of the cache line on the
machine it evaluates. To exacerbate the DL situation, we randomize the starting address of each node in the linkist.
This helps to cripple the hardware prefetcher as it becomes difficult to predict the starting address of the next node
in the linklist with randomization enabled. By adjusting the number of nodes in the linklist, we achieve the effect
of either polluting only L1 cache (L1-DL), or polluting bothL1-and-L2 cache (L1L2-DL) through a single linklist
traversal. The empirical list size we use is 4K nodes for L1-DL and 2M nodes for L1L2-DL, respectively. We use
RDTSC [1, 50] for fine-grain time measurement.

The real-machine used for evaluating the benchmarks has a single-core 3.0GHz Pentium-IV CPU, with 16KB 4-
way set-associative L1 data cache, 12KB 8-way set-associative L1 instruction cache, and 1MB 8-way set-associative

UT-EECG-TR-2009-0017 13

(a). sequential model (b). speculative (overlapped) model

CL

C

D
L

 C
y
c
le

s
W

o
rk

 C
y
c
le

s

CL

CD
L

 C
y
c
le

s

W
o
rk

 C
y
c
le

s

time time

Figure 11: Ideal Timing Model

L2 cache. The cacheline size is consistent at 64B. Each measurement data point is the arithmetic average of5 inde-
pendent runs.

Figure 13 shows the relative speedup of overlapping with L1 DL using linklist. The workload to overlap with
DL is a loop performing accumulation of integer adds (shown on x-axis), while y-axis gives the relative speedup.
Figure 13 represents close similarity of the theoretical prediction of L1 speedup curve given in Figure 12. It reaches
its maximum of 45% with overlapping roughly 70 INT-ADDs.

When performing testing on real machines, a workload that pollutes L2 cache must already have L1 cache polluted.
It is difficult to obtain the performance figure with workloadthat overlaps with only L2 cache (L2 DL). We thus focus
on the real workload that overlaps with L1-and-L2 (L1-L2 DL).

Figure 14 shows the relative performance result when overlapping with both L1 and L2 cache DLs on a real
machine. In stage 1, the curve reaches around 35% speedup at roughly 70 INTADDs. This agrees with our own
measurement given in Figure 13 and it is the effect of mostly overlapping L1 DL. In stage 2, the curve maintains
stableness over 35% with top gain reaching very close to the 50% theoretical peak. This closely matches the L1-and-
L2 prediction given in Figure 12 where a wide cap of 35%+ relative performance is expected after Stage 1.

We give theoretical predictions on performance gain which overlaps with various level of cache. We verify this
claim with macro benchmarks that can reach very close to the theoretical peak. These results are obtained under ideal
conditions that i). there is no need to do checkpointing because the workload has no global side effect (similar to
a pure function), and ii). there is no failed speculation because the involved predictor can produce 100% prediction
accuracy. However, such ideal situations may not hold undernon-synthetic benchmarks on real machines.

6.4 Initial Results for MCF

In this section we investigate the potential for compiler-based data and control speculation to tolerate DL latency,
focusing on the DLs in MCF. Any beneficial data speculation has to satisfy a critical condition: the data value must be
highly predictable. Any low data value prediction accuracyeffectively renders data speculation unattractive due to the
overwhelming expense of failed speculation. Of the three DLs best-suited to data speculation in MCF (DL1, DL3, and
DL5), unfortunately all three have prediction accuracies thatare too low to exploit. For control speculation, MCF’s
DL0 and DL2 are also too unpredictable to exploit; however DL4 presents an interesting case. This DL has only 3
different result values, where both the numerical values and their distributions are given in Figure 8(b). It is easy to
see that a static branch predictor that always predicts taken (true) will yield 96.35% accuracy.

The 100% accuracy case (pred+ckpt+nousepred) represents one extreme where prediction and checkpointing are
both enabled and aggressively optimized, but the predictedvalue is not actually used—hence this case measures our
overheads without allowing any speculative overlap. This case results in only a tiny slowdown of 0.14%, emphasizing

UT-EECG-TR-2009-0017 14

Speedup of Overlapping DLs

0

10

20

30

40

50

60

0

2
1

4
2

6
3

8
4

1
0

5

1
2

6

1
4

7

1
6

8

1
8

9

2
1

0

2
3

1

2
5

2

2
7

3

2
9

4

3
1

5

3
3

6

3
5

7

3
7

8

3
9

9

4
2

0

4
4

1

4
6

2

4
8

3

5
0

4

5
2

5

5
4

6

5
6

7

5
8

8

6
0

9

6
3

0

6
5

1

6
7

2

6
9

3

7
1

4

7
3

5

7
5

6

7
7

7

7
9

8

of CPU Cycles

S
p

e
e

d
u

p
 (

%
)

Overlap L1 only

Overlap L2 only

Overlap L1 and L2

CL1
CL2

%

%

%

%

%

%

Figure 12: Relative Speedup of Ideally Overlapping Execution with DLs on Various Levels of Cache

Predictor Accuracy Speculative Perf
pred+ckpt+nousepred 100% -0.14%

branch always taken 96.35% -0.51%
const value(1) 94.66% -1.33%

last value 91.3% -1.36%
const value(0) 3.65% -1.49%
const value(2) 1.69% -2.43%

always predict wrong 0.0% -2.45%

Table 3: Prediction accuracy and performance for MCF:DL4 for several predictors—the negative speedup percentages
are all slowdowns.

the efficiency of our checkpointing framework. Various predictors yield different accuracies, ranging from 96.35% for
a static taken branch predictor (always predicts true) to 1.69% of a const value predictor (always predicts the value 0).
These are fully functional speculation executions with error checking and failure recovery in place. Their respective
performance shows steady degradations with the ever decreasing prediction accuracy. This matches our expectation
that low prediction accuracy triggers failed speculationsthat are overwhelmingly expensive.

A small overall slowdown of 2.43% (with 1.69% prediction accuracy) is derived from a much larger slowdown
factor on regional granularity. The row with 0.0% prediction accuracy is achieved by constantly predicting a data
value of -1, which is neither in the distribution of available values (Figure 8(b)) for value prediction, nor contributes to
any success in branch prediction (Figure 6, DL4 case). Thus the global slowdown of 2.45% represent the performance
lower bound in the worst case that a forever failing speculation transformation can cause.

A few critical conditions need to be satisfied simultaneously in order for control speculation to work. This includes
(1) highly-biased branch prediction toward selected speculative region;(2) overlapping code region that is coarse-grain
enough to closely match the DL latency and compensate checkpointing overhead;(3) no control-flow terminating
instructions within the overlapping code region which can prematurely terminate speculative execution,(4) no reuse
of DL’s value within the speculative region, and(5) no hidden DLs in the speculative region that are covered by
a leading DL. Among the three control-speculation cases (DL0, DL2 and DL4), DL4 is the only one that yields
prediction accuracy high enough to proceed further. Unfortunately, DL4 has only a small computation to potentially
overlap with (see Figure 6): this code region is too fine-grain to completely hide the long-latency DL while tolerating
the software checkpointing overhead. In addition, DL4 is a leadingDL, which means that it covers other memory
loads whose code distances to DL4 are within the cache line size. Speculative execution on DL4 breaks its delinquent

UT-EECG-TR-2009-0017 15

Speedup Overlapping with DL1

-10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

of INT-ADDs

R
e
la

ti
v
e
 S

p
e
e
d
u
p

4K Nodes

%

%

%

%

%

Figure 13: Relative Speedup Overlapping with L1-only DL on Real Machine

nature, but exposes DLs that used to be hidden and covered by the leading DL. As a result, control speculation on DL4
gives no positive performance despite its high prediction accuracy.

6.5 Summary

We present theoretical analysis of speculative fine-grain overlapping with DLs and predict that the relative speedup
will reach 50%+ given combined L1-and-L2 DL cache effects. We measure the performance gains of representative
synthetic benchmarks on real machine and verify that the macro benchmark delivers performance close to theoretical
peak under ideal conditions. We continue our detailed studyof speculative execution using MCF and demonstrates
that MCF has balanced DL cases in control speculation and data speculation. We find that the DL data values are not
always predictable; however, a simple last-value predictor or static branch predictor offers the best overall accuracy for
those that are predictable. We find that MCF’s data speculation cases are generally unsuitable for software speculation
due to their low prediction accuracy. We identify a control speculation case in MCF that has highly attractive prediction
accuracies. We implement compiler transformations to leverage on this DL and overlap with sequential execution. We
believe that further success of speculative techniques will also heavily depend on the nature of the overlapping code
region which needs to be coarser in granularity.

UT-EECG-TR-2009-0017 16

Speedup of Overlapping with DL2

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

of INT-ADDs

R
e
la

ti
v

e
 S

p
e
e
d

u
p

2M-Nodes

%

%

%

%

%

%

Figure 14: Relative Speedup Overlapping with L1-and-L2 DL on Real Machine

7 Related Work

Our techniques are based on a wide spectrum of existing work in related areas, including prefetching, multithreading,
prediction, checkpointing, speculation and identifying DLs.

Prefetching Prefetching alleviates an application suffering from frequent cache misses [9, 24, 25, 32, 33]. Memory
prefetching copies data from memory to cache in anticipation of near-future uses. Prefetching helps to hide memory
access latency because execution needs no stall when requesting data that used to reside off chip. Prefetch non-DL
locations provide little benefit, but with the guaranteed expense of wasted CPU cycles, increased usage of memory
bandwidth and potential cache pollution. The effectiveness of prefetching depends on precisely identified DL loca-
tions.

Multithreading Long-latency memory access can be handled by multithreading [12, 38, 45, 46]. On a system with
multiple threads in ready state, any running thread with a blocking memory access will be context switched out
immediately. The processor keeps busy by executing threadsnot being blocked. It hides the long memory latency
as the blocking thread will never execute before its memory access request has been satisfied. Multithreading greatly
improves CPU utilization rate and throughput of a multi-program system, but has little benefit for the thread that
frequently blocks on DLs.

Prediction Prediction is a mechanism to identify the outcome of a futureaction. This includes predict the branch taken
or non-taken(branch prediction)[8, 43, 51, 52], predict a target address that a branch will transfer control to(target
address prediction)[7, 47], and predict the value from a load instruction or a function call return(value prediction)[6,
22, 39, 42, 47]. Majority of existing prediction research focuses on obtaining high prediction accuracy, while the
expense and complexity of building predictors that achieving such accuracy is often considered less important. In
our software-only speculative scheme prediction contributes to overhead, hence we aim to achieve the same level of
prediction accuracy while employing the simplest solutionthat has the lowest overhead.

Speculation Speculation is a form of optimistic program execution whoseresult might not be needed [10, 14, 16, 29].
Speculation handles control or data uncertainties that can’t be statically proved. Steffan at al. [14, 44, 53] studied
a speculative multi-core architecture that extends cache coherence protocol to include speculative states and buffers
speculative change in cache. Most existing work is based on speculative hardware support with limited buffering
capacity, which limits the granularity of the program region that can be speculated. In contrast we explore a software-
only speculative approach that has no hardware dependency.We rely on both accurate and efficient software prediction

UT-EECG-TR-2009-0017 17

as well as lightweight software checkpointing to enable speculation. We further leverage on aggressive compiler
optimizations for speculative overhead reduction.

Checkpointing A checkpointing [13, 20, 21, 34, 40, 48, 49] enabled program copies data to its backup storage under
designated request, in preparation for unexpected programerrors and facilitate recovery by restoring the backup data.
While hardware-based checkpointing solutions [3, 30] deliver desired performance, they come with a price premium
and suffer from lack of availability and support in commercial systems. Software-only checkpointing solutions [20,
21, 37, 49] don’t have inherited hardware dependency, but often carry prohibitive overhead through copying of coarse-
grain memory blocks. This often prevents them from board adoption. In contrast with existing checkpointing work
on coarse-granularity, we develop a lightweight software-only solution that works on a per-variable granularity. It is a
compiler-based scheme that leverages on static program analysis and targets aggressive overhead reduction.

Identifying DLs Panait at el. [36] investigated techniques to identify DLs statically. They examine code on assembler
level, categorize memory load instructions into various groups, and calculate a final weight based on profiling info
obtained through training. They single out10% of data loads that generate90% of all cache misses. However, their
approach is based on short-distance predictable memory behaviors. Thus their scheme is applicable only in isolating
level-1 DLs. In addition, the identified DLs are memory locations in assembly format, non-trivial to recognize on
source level. We identify DLs through an efficient software cache simulator based on PIN [5, 23, 35]. It can be
configured to deal with artificially many levels of cache and is capable of identifying DLs at any designated cache level.
It provides service to map loadPCs back to source program locations, which is particularly useful to enable compiler
optimizations. Zhao at el. [54] introduced a lightweight and online runtime methodology to identify DLs. They observe
that bursty online profiling and mini simulation of short memory traces can largely represent the underlying memory
behaviors. Their simulation provides 61% overall accuracywith only 14% extra runtime overhead. However,they also
introduces a 57% false positive ratio, a prohibitive numberfor any speculative compiler adopting their technique.

8 Conclusion

In this paper we present our discovery that level-2 DLs from cache-miss intensive applications are persistentacross a
wide variety of cache architectures and input data sets. Motivated by this persistence, we present compiler transforma-
tions dealing with both control speculation and data speculation. Our in-depth study of the DLs in MCF finds that the
DL result values are not always predictable; for those that are, a simple last-value predictor or static branch predictor
is sufficient to give the best overall experience. We show that speculative overhead can be aggressively optimized to
have only negligible impact on overall application performance and further success of software speculation also highly
depends on the nature of the application and the availability of sufficient computation to overlap with the DL.

8.1 Future Work

In this work we found that the overheads of compiler-based checkpointing relative to the potential for speculative
overlap for DLs (at least in MCF) were too prohibitive. However, with the appearance of hardware support for
transactional memory [27] we may be able to capitalize on thereduced overhead to use it to implement fine-grain
speculative optimizations such as tolerating DL latency. We also plan to pursue alternative client optimizations for
compiler-based fine-grained checkpointing such as debugging support, and possibly as part of an optimized software
transactional memory (STM) [18, 41].

UT-EECG-TR-2009-0017 18

References
[1] Using the rdtsc instruction for performance monitoring. In Pentium II Processor Application Notes, Intel Corporation, 1997.

[2] Intel c++ compiler user’s guide. 2008.

[3] H. Akkary, R. Rajwar, and S. Srinivasan. Checkpoint processing and recovery: An efficient, scalable alternative to reorder
buffers. InIEEE Computer Society, 2003.

[4] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The suif compiler for scalable parallel machines. In
Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing, February 1995.

[5] P. P. Bungale and C.-K. Luk. Pinos: A programmable framework for whole-system dynamic instrumentation. InProceedings
of the 3rd ACM/USENIX International Conference on Virtual Execution Environments (VEE 2007), 2007.

[6] B. Calder, G. Reinman, and D. M. Tullsen. Selective valueprediction. InInternational Symposium on Computer Architecture
archive, 1999.

[7] P.-Y. Chang, E. Hao, and Y. N. Patt. Target prediction forindirect jumps. InProceedings of the 24th annual international
symposium on Computer architecture (ISCA ’97), May 1997.

[8] I. cheng K. Chen, J. T. Coffey, and T. N. Mudge. Analysis ofbranch prediction via data compression. InProceedings of the
7th International Conference on Architectural Support forProgramming Languages and Operating Systems (ASPLOS), 1996.

[9] J. Collins, H. Wang, D. Tullsen, C. Huges, Y.-F. Lee, D. Lavery, and J. Shen. Speculative precomputation: Long-range
prefetching of delinquent loads. InACM SIGARCH Computer Architecture News, May 2001.

[10] C. B. Colohan, A. Ailamaki, J. G. Steffan, and T. C. Mowry. Tolerating dependences between large speculative threads via
sub-threads. InInternational Symposium on Computer Architecture (ISCA), June 2006.

[11] S. P. E. Corporation. Spec2000 integer benchmark suites. 2000.

[12] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and D. Tullsen. Simultaneous multithreading: A platform for next-generation
processors. InIEEE/ACM International Symposium on Microarchitecture, 1997.

[13] W. Elnozahy, D. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. In11th Symposium on Reliable
Distributed Systems, pp. 39-47, October 1992.

[14] S. Fung and J. G. Steffan. Improving cache locality for thread-level speculation. InIEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), April 2006.

[15] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
multiprocessor performance with the suif compiler. InIEEE Computer, December 1996.

[16] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for a chip multiprocessor. InACM SIGOPS Operating
Systems, December 1998.

[17] L. Hammond, V. Wong, M. Chen, B. Carlstrom, J. Davis, B. Hertzberg, M. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun.
Transactional memory coherence and consistency. InCM SIGARCH Computer Architecture News, March 2004.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer. Software transactional memory for dynamic-sized data structures. In
The Twenty-Second Annual Symposium On Principles Of Distributed Computing, 2003.

[19] H. V. Jagadish, A. Silberschatz, and S. Sudarshan. Recovering from main-memory lapses. InProcs. of the International Conf.
on Very Large Databases (VLDB), 1993.

[20] G. Kingsley, M. Beck, and J. Plank. Compiler-assisted checkpoint optimization using suif. InFirst SUIF Compiler Workshop,
1995.

[21] C. Li, E. Stewart, and W. Fuchs. Compiler-assisted fullcheckpointing. InSoftware-practice and Experience, Vol 24(10),
871-886, October 1994.

[22] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and load value prediction. InACM SIGOPS Operating Systems
Review, December 1996.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In PLDI 05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, pages 190–200, New York, NY, USA, 2005. ACM.

[24] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive data structures. InProceedings of the Seventh Inter-
national Conference on Architectural Support for Programming Languages and Operating Systems, pages 222-233, October
1996.

[25] C.-K. Luk and T. C. Mowry. Automatic compiler-insertedprefetching for pointer-based applications. InIn IEEE Transactions
on Computers, Vol. 48, No. 2, Feburary 1999.

UT-EECG-TR-2009-0017 19

[26] A. Mcdonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural semantics for
practical transactional memory. InACM SIGARCH Computer Architecture News, 2006.

[27] S. Microsystems. A third-generation 65nm 16-core 32-thread plus 32-scout-thread cmt sparc(r) processor. Feburary 2008.

[28] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. Logtm: Log-based transactional memory. InHigh-Performance
Computer Architecture (HPCA), 2006.

[29] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. Dynamic speculation and synchronization of data dependences.
In International Symposium on Computer Architecture (ISCA), 1997.

[30] A. Moshovos and A. Kostopoulos. Cost-effective, high-performance giga-scale checkpoint/restore. InComputer Engineering
Group Technical Report, November 2004.

[31] J. E. B. Moss. Log-based recovery for nested transactions. InProceedings of the 13th International Conference on Very Large
Data Bases, 1987.

[32] T. C. Mowry. Tolerating latency through software-controlled data prefetching. March 1994.

[33] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for prefetching. InArchitectural
Support for Programming Languages and Operating Systems, 1992.

[34] W. Ng and P. Chen. The symmetric improvement of fault tolerance in the rio file cache. InProceedings of 1999 Fault
Tolerance Computing (FTC), 1999.

[35] H. Pan, K. Asanovic, R.Cohn, and C.Luk. Controlling program execution through binary instrumentation. InSIGARCH
Computer Architecture News 33, 5, 2005.

[36] V. Panait, A. Sasturkar, and W.-F. Wong. Static identification of delinquent loads. InInternational Symposium on Code
Generation and Optimization, March 2004.

[37] J. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for fast checkpointing. InIEEE Technical Commit-
tee on Operating System and Application Environments, Special Issue on Fault-Tolerance, 1995.

[38] A. Roth and G. S. Sohi. Speculative data-driven multithreading. InSeventh International Symposium on High-Performance
Computer Architecture (HPCA), 2001.

[39] B. Rychlik, J. Faistl, B. Krug, and J. Shen. Efficacy and performance impact of value prediction. InParallel Architectures
and Compilation Techniques (PACT), 1998.

[40] C. S. An evaluation of recovery related properties of software faults. InPh.D. thesis, 2004.

[41] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, and C. C. M. and. Mcrt-stm: A high performance software transactional memory
system for a multi-core runtime. InPrinciples and Practice of Parallel Programming(PPOPP), 2006.

[42] Y. Sazeides and J. E. Smith. The predictability of data values. In30th International Symposium on Microarchitecture, 1997.

[43] J. E. Smith. A study of branch prediction strategies. InSIGARCH: ACM Special Interest Group on Computer Architecture,
25 years of the international symposia on Computer architecture (selected papers), 1998.

[44] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable approach to thread-level speculation. InInternational
Symposium on Computer Architecture (ISCA), June 2000.

[45] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simultaneous multithreading processor. In34th Annual
IEEE/ACM International Symposium on Microarchitecture, 2001.

[46] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneousmultithreading: maximizing on-chip parallelism. InInternational
Symposium on Computer Architecture, 1995.

[47] K. Wang and M. Franklin. Highly accurate data value prediction using hybrid predictors. InProceedings of the 30th annual
ACM/IEEE international symposium on Microarchitecture, 1997.

[48] Y. Wang, Y. Huang, K. Vo, P. Chung, and C. Kintala. Checkpointing and its applications. In25th Int. Symp. On Fault-Tol.
Comp., pp. 22-31, June 1995.

[49] J. Whaley. System checkpointing using reflection and program analysis.

[50] P. Work and K. Nguyen. Measure code sections using the enhanced timer. InIntel(R) Software Network, 2008.

[51] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction. Inthe 24th annual international symposium on
Microarchitecture (MICRO), 1991.

[52] P. yung Chang, E. Hao, and Y. N. Patt. Alternative implementations of hybrid branch predictors. InProceedings of the 28th
Annual International Symposium on Microarchitecture (MICRO), 1995.

[53] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler optimization of scalar value communication between spec-
ulative threads. InInternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 2002.

[54] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W. fai Wong. Ubiquitous memory introspection. InProceedings of
the International Symposium on Code Generation and Optimization (CGO), 2007.

UT-EECG-TR-2009-0017 20

