
1

Efficient Software-only 
Checkpointing Support for 

Debugging

Chuck. Zhao

May.14
 

2009

UofT Connection 2009



2

Checkpointing Support for Debugging

•
 

Efficient Software Checkpointing Framework
▫

 
checkpoint and rollback within any given program 
region


 
cover arbitrarily large code area

▫
 

software only
▫

 
compiler optimizations for overhead reduction

•
 

Existing Solutions for Ckpt-enabled Debugging
▫

 
hardware-based schemes

▫
 

cover limited program region (limited checkpoint 
buffer)

▫
 

no program analysis or optimizations



3

Checkpointing Support for Debugging

P: root cause of a bug

Q: place where the bug manifests

(a user or programmer notices the bug at this 
point)

T: safe point, literally earlier than P, the 
program can reach through checkpoint recovery

ckpt 
region

Programmer can progressively increase the ckpt region’s granularity until 
the root cause point (P) is covered



4

Checkpointing Support for Debugging
•

 
Bug Identifying Process
▫

 
bug locations are known to us (from BugBench 
doc)

▫
 

can trial and error with the buggy input 

•
 

Enable Software Ckpt
▫

 
backup: over normal program code region


 
start ckpt: an estimated “good” program point



 
stop ckpt: immediately before/after the bug 
manifests

▫
 

recovery


 
programmer controlled in debugging mode



5

Checkpointing Support for Debugging by 
Example

/* buggy code: storage.c:176, bc-1.06, BugBench suite */
for (; indx < v_count; indx++){

arrays[indx] = NULL;
}

original code with buffer overflow bug

/* buggy code: storage.c:176, bc-1.06 */
start_ckpt();
for (; indx < v_count; indx++){

backup_memory(&arrays[indx], sizeof(arrays[indx]));
arrays[indx] = NULL;

}
stop_ckpt();

buggy code checkpointed



6

Checkpointing Support for Debugging
•

 
Benchmarks
▫

 
BugBench


 

a total of 17 C programs that have known bugs


 

around 10 are buffer-overflow related memory bugs

•
 

Evaluations
▫

 
SUIF Compiler Framework


 

leverage on our existing checkpointing framework
▫

 
Functional


 

program rewinding


 

ckpt locations and granularity


 

buffer size, # of instructions, # of meta entries, …
▫

 
Performance


 

performance difference with ckpt enabled (on non-failing 
inputs)



 

performance difference with ckpt optimizations



7

Checkpointing Support for Debugging

•
 

Debugger with ckpt will not find the bug 
automatically
▫

 
still the programmer’s job to find the bug

•
 

Debugger with ckpt will provide additional 
assistance in finding the bug
▫

 
reverse code to start ckpt location without terminate 
execution

•
 

Our proposed work will deliver both 
functionality and performance

take away points



8

Questions?



9



10









	Efficient Software-only Checkpointing Support for Debugging
	Checkpointing Support for Debugging
	Checkpointing Support for Debugging
	Checkpointing Support for Debugging
	Checkpointing Support for Debugging by Example
	Checkpointing Support for Debugging
	Checkpointing Support for Debugging
	Questions?
	Slide Number 9
	Slide Number 10

