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ABSTRACT
Program traces—multiple basic blocks that frequently ex-
ecute in succession as a group—are a useful unit for code
manipulation and optimization, especially in dynamic binary
translation (DBT) systems. Since most of the overhead in
such systems is related to managing control flow into and
out of traces and performing translation and optimization
the first time a trace is accessed, longer traces are desirable
to amortize this overhead. More importantly, longer traces
provide a larger window of instructions on which to oper-
ate when performing dynamic optimizations, potentially im-
proving the impact of such optimizations. However, indis-
criminately building longer traces will only increase the fre-
quency of early exits—branches and jumps out of the middle
of traces that require the execution of costly compensation
code to ensure correctness.

In this paper we propose a method for lengthening pro-
gram traces in dynamic optimization systems without sig-
nificantly increasing the frequency of early exits. Our initial
study of Spec2000Int benchmarks shows that we can increase
the average size of hot traces by more than 50% (from an
average of 33 to 50 instructions) while increasing the fre-
quency of early exits by less than 1%. We demonstrate that
conventional dynamic optimizations can significantly bene-
fit from this increased trace size, in particular by showing
that we can improve the effectiveness of local value number-
ing by 25% through unrolling only 5% of all existing traces.
Furthermore we claim that longer traces can enable novel
and aggressive speculative optimizations that capitalize on
underlying hardware transactional memory support, poten-
tially allowing legacy applications to exploit such support.

1. INTRODUCTION
Dynamic binary translation (DBT ) [24, 34, 36, 41] is a

runtime technique to translate binary code from a source
architecture and execute it on a target architecture, provid-
ing a powerful abstraction layer for architecture and ISA
independence. DBT can be used to run legacy binary code
on modern architectures [43, 44, 45], providing binary-level
compatibility without the need for recompilation or software
re-engineering. DBT can also be used to provide ISA-level
virtualization and enable architecture co-design [43]. DBT
can even be used to implement or extend software transac-
tional memory [38, 42, 45] systems that can support legacy
code and libraries. One of the main challenges for DBT
systems is minimizing translation overhead.

Rather than translate a single instruction or basic block
at a time, DBT systems are often implemented to perform

translation and optimization on the level of a trace [8, 9, 10,
21, 26]: a sequence of basic blocks that frequently execute
in succession. A common implementation allows a trace to
have only a single entry point but multiple exit points. Un-
conditional branches and jumps are straightened by rewriting
the code to fall-through to the target basic-block, and then
removing the original branch or jump. Conditional branches
and jumps can also be straightened by rewriting the code to
fall-through to the most common target basic-block; how-
ever, this requires the generation of costly recovery code
to handle the case when the uncommon conditional path is
taken, referred to as an early exit from the trace.

Operating at the level of traces provides many benefits for
DBT systems such as removing uncommon code, increas-
ing locality, and improving opportunities for optimization.
However, trace size is a key issue: larger traces can better
amortize the overheads of translation and provide more op-
portunities for optimization—but indiscriminantly creating
larger traces will only increase the frequency of early exits,
likely negating any benefit of the larger traces.

1.1 Lengthening Hot Traces
We propose to improve opportunities for optimization in

DBT systems through a novel approach to lengthening traces.
Our key insight is that hot traces, traces that execute fre-
quently, can be dynamically measured for their suitability
for unrolling: that is for traces that normally branch back
to their own start instruction, such traces can essentially
be unrolled similar to the unrolling of loops. The challenge
is to unroll only hot traces with a very small frequency of
early exits, since the high cost of such early exists is mul-
tiplied with each unrolling. Furthermore, when one hot-
trace is frequently followed directly by another specific hot-
trace, we can potentially combine them through a form of
straightening—another technique which can provide length-
ened traces. The advantage of DBT systems is that hot
traces can be easily instrumented to directly measure trace
hotness, trace size, and the frequency of early exits.

We have extended Intel’s StarDBT dynamic binary trans-
lation framework [43] to measure the potential for length-
ening hot traces through unrolling in selected Spec2000Int
benchmarks. We show that a significant fraction of hot
traces can be lengthened through unrolling with only a mi-
nor increase in the frequency of early exits. In addition we
investigate the potential for two classes of dynamic opti-
mization to benefit from lengthened traces.

Improving conventional optimizations: Lengthened



traces provide a larger window of instructions for conven-
tional dynamic optimizations to operate on. To demonstrate
this opportunity we evaluate the potential for improvement
for local value numbering [14], a common dynamic optimiza-
tion which efficiently performs copy propagation, common
subexpression elimination and dead code elimination.

Exploiting transactional memory: We claim that longer
traces can potentially enable a novel use of transactional
memory (TM) hardware support [23, 32] when the overheads
might be too large otherwise. TM support can potentially
be exploited to checkpoint and roll-back a trace, allowing
a DBT system to perform aggressive speculative optimiza-
tions such as speculative code motion [6, 11, 33], while at the
same time allowing legacy binaries to capitalize on hardware
transactional memory support.

1.2 Contributions
In this paper we make the following contributions: (i) we

show that a significant number of hot traces are amenable
to lengthening through unrolling; (ii) we demonstrate that
conventional dynamic optimizations can significantly benefit
from increased trace size, in particular by showing that we
can improve the effectiveness of local value numbering; (iii)
we propose that longer traces can enable aggressive spec-
ulative optimizations to capitalize on underlying hardware
transactional memory support.

2. RELATED WORK
Our techniques build on existing work in two main ar-

eas: i) binary translation and ii) trace collection and opti-
mization. In the following we compare our work with the
state-of-the-art in these two areas.

2.1 Binary Translation
Binary translation or binary rewriting is a well known

method for instrumenting existing application code with the
purposes of profiling or transparent optimization of legacy
code. User-level instrumentation tools, such as Pin [34], Dy-
namo RIO [18], ATOM [41], and Valgrind [36] can be used
to insert arbitrary instrumentation. Dynamic binary trans-
lation discovers basic blocks and indirect branch targets at
runtime by following the application’s execution. Thus, in
contrast to static binary rewriting tools such as ATOM [41],
dynamic binary translation does not need to determine the
safety of inserting instrumentation by detecting control flow
graphs a-priori. It also provides better support for self-
modifying code. A similar technique is used by machine
virtualization tools i.e., Virtual Machine Monitors, such as
Xen [5] or VMWare [37], which dynamically rewrite instruc-
tions of the guest operating system.

2.2 Trace Collection and Optimization
Related tools that perform trace-based optimizations in-

clude the HP Dynamo system [4], Mojo [12], and DynamoRIO [18].
Most of these tools are based on binary translation, recog-
nize frequently-executed binary traces at runtime, and per-
form dynamic optimizations on the recognized traces. Dy-
namo’s trace optimizations focus on redundancy elimina-
tions and cache utilization to benefit from traces’ simpli-
fied control flow and are free of internal join points. Both
Dynamo and Mojo include loop unrolling optimization, but
the heuristics and mechanism for unrolling are not discussed.

Figure 1: Overview of StarDBT

Specifically, in DynamoRIO when frequently executed traces
are detected they are compiled, optimized, and then exe-
cuted instead of interpreted. DynamoRIO provides four op-
timizations (copy propagation, dead-code-elimination, call-
return matching, and stack cleaning) but does not lengthen
traces through unrolling. While we use StarDBT [43] in
our experiments, our ideas should be generally applicable
regardless of the baseline trace-finding tool.

Our work is also related to recent work on trace collec-
tion and optimization based on Java byte-codes [7, 8, 9,
39]. Similar to our work, Bradel et al. [7] leverage traces for
performing code optimizations—specifically inlining. Addi-
tional work includes characterizing traces in terms of trace
length, dynamic program coverage, completion rates [8, 39],
and available trace-level parallelism [9]. Their goal is to di-
rect optimizations by determining the frequency of various
instructions in traces [39] by predicting the control flow of a
program [8] or by evaluating traces as a unit for automatic
parallelization [9]. Their focus is mostly on off-line feedback-
directed systems. In this paper, we provide support for per-
forming aggressive trace-specific optimizations dynamically.
These optimizations are both efficient and capable of ob-
taining cumulative benefits that are not available otherwise.
At the same time, our techniques open up unique opportu-
nities to exploit hardware transactional memory support to
further leverage these optimizations.

2.3 Dynamic Binary Translation Framework
Our work is based on the StarDBT [43] dynamic binary

translation system. The overall structure of StarDBT is
given in Figure 1. StarDBT runs on top of the OS as a user-
level run-time system. The program binary code is dynam-
ically translated and stored in a code cache. StarDBT con-
trols the execution of the translated code and then applies
different dynamic binary translation techniques. StarDBT
consists of a Runtime module, a Frontend module, and a
Backend module. The Runtime module provides system
supports. The Frontend module manages the execution for
dynamic binary translation. The Frontend module also col-
lects program profiling information during execution and se-
lects hot traces based on the profiling information. The
Backend module then performs run-time optimization on



Figure 2: Types of main-exits: (i) to self, (ii) to
other hot trace, and (iii) to elsewhere.

these hot traces by building an intermediate representation
(IR), performing optimizations on the IR, and finally storing
optimized code in the code cache.

StarDBT extends the well-known Most Recent Execution
Tail (MRET) [3] approach for hot trace selection. In MRET,
the hot trace heads are first identified based on profiling
information. Each loop head (e.g. the backward branch
target) is treated as a candidate trace head. Each candi-
date trace head is instrumented such that a counter is in-
cremented after each execution of the candidate trace head.
When the counter exceeds a certain threshold, the candi-
date trace head becomes a hot trace head. Then the hot
trace is simply selected as the execution path from the hot
trace head to the most recent execution tail (an instruction
that satisfies certain trace tail conditions). Our trace se-
lection is based on MRET 2, a two-pass improvement over
the MRET. In the first pass, we use the MRET approach
to select one trace only as a potential hot trace. We then
clear the performance counter, restart the counting and se-
lect another potential hot trace using MRET in the second
pass. We obtain two potential hot traces with the same hot
trace head but possible different trace tails. Our MRET 2

approach selects the hot trace as the common path of the
two potential hot traces, which is likely to have both hot
head and hot tail.

3. HOT TRACE PROPERTIES
In this section we study the hot traces discovered by the

StarDBT framework. We first categorize hot traces based
on the type of main exit branch or jump. Next we measure
the sizes of hot traces. Finally we analyze the frequency of
early exits from hot traces, as summarized by the completion
ratio. In this work we measure the subset of the Spec2000Int
benchmark suite that worked reliably with the StarDBT sys-
tem at the time of writing, using the MinneSPEC [30] input
set.

3.1 Hot Trace Main-Exit Types
Any trace formed by StarDBT may have multiple exits—

branches or jumps out of the common-path of the trace.

Figure 3: Distribution of hot trace main-exit types.

The exit which occurs most often is called the main exit,
while other exits are called side-exits. To identify traces
suitable for lengthening we first classify hot traces based
on the dynamic destination of the main-exit, as shown in
Figure 2.

The type of hot trace that we are primarily interested in
is the self type where the destination of the hot trace main-
exit is the beginning of that same hot trace, similar to a
loop: such traces can be effectively unrolled in a somewhat
straightforward manner. The second case is where the com-
mon destination of the hot trace main-exit is some specific
other hot trace. These cases can also be lengthened, al-
though through a more difficult transformation explained
later. Finally, the remaining cases are comprised of hot
traces whose main-exit destination is not a hot trace but
elsewhere, and hence StarDBT’s runtime dispatcher is in-
voked on the execution following that main-exit.

Figure 3 shows the relative distributions of these three
types of hot trace main-exits. On average, there are roughly
15% self main-exits, 4% main-exits to some other hot-trace,
and 81% main-exits to elsewhere. Hence a combined 19% of
hot traces can potentially be lengthened.

3.2 Hot Trace Size
StarDBT already builds relatively large and aggressive

traces by employing the MRET 2 algorithm and supporting
early-exits from traces (as described earlier in Section 2.3).
Figure 4 show StarDBT’s average hot trace size in number
of instructions, which averages 33 static1 instructions per
hot trace across the benchmarks; note that each trace is
comprised of roughly three to four basic blocks.

3.3 Hot Trace Completion Ratio
We are interested in lengthening hot traces by combining

hot trace instances. However, doing so will increase the
frequency of early-exits from hot traces which will invoke a
greater amount of recovery code and potentially nullify any
benefits gained from the larger hot traces. Hence we must

1Static trace size is defined as the total size of static traces
divided by the total number of static traces, while dynamic
trace size is a weighted average with respect to the relative
execution count of each trace.



Figure 4: Average number of instructions per hot
trace.

first understand the frequency and distribution of early-exits
from hot traces.

Once a hot trace is identified, StarDBT instruments the
trace with counters to measure the frequency of early-exits.
In particular for each hot trace StarDBT inserts (i) a counter
at the top of the hot trace to count instances of the hot trace;
and (ii) a counter at each early-exit to count the number of
times the early-exit is taken to leave the trace. To reduce
measurement overheads, the counters are only present for
a small fixed number of instances of the trace (currently
limited to 256 instances, but achieving a 94%+ level of con-
fidence [25]). Furthermore, rather than place the early-exit
counters inside the hot-trace they are instead placed at the
early-exit destination locations. When the limit number of
sampling instances is reached, the hot-trace and destina-
tion locations are re-translated to remove these measure-
ment counters.

The trace instance counter and early-exit counters can
be used to compute a completion ratio for the hot trace—
an indication of the frequency of early-exits for a hot trace.
Let Cinstances denote the value of the trace-instance counter,
and let C[i]early−exit denote the values of early-exit counter
i, then the completion ratio CR for the hot trace can be
computed by

CR =
Cinstances −

Pn

1 C[i]early−exit

Cinstances

(1)

where n is the total number of early-exit branches (i.e.,
excluding the main exit from the hot trace). Hence the com-
pletion ratio effectively indicates the fraction of instances of
the hot trace that one can expect to execute to completion
(i.e., to its main-exit).

Figure 5 shows the cumulative distribution of completion
ratios for hot traces. The main insight from the figure is that
roughly half of all hot-traces have a fairly high completion
ratio of greater than 97%, and that there is a fairly uniform
distribution of completion ratios for the other half of hot-
traces. These results are encouraging since they indicate
that half of all hot traces can be combined without resulting
in unacceptable frequency of early-exits.

Figure 5: Cumulative distribution of completion ra-
tios for hot traces.

4. LENGTHENING HOT TRACES
The goal of this work is to obtain longer hot traces while

maintaining high completion ratios. However, these two re-
quirements are contradictory: longer hot traces have more
side-exit branches, and thus lower completion ratios. Our
approach is to lengthen hot traces through unrolling, straight-
ening, or an combination of the two depending on the main-
exit type of the hot trace. A self type hot trace can be
unrolled by replicating the trace body multiple times; an
other hot-trace type hot trace can be straightened by ap-
pending a replicated copy of the target hot trace. In both
cases any early exits must also be repaired. Note that when
unrolling or straightening, the main exit for the first original
hot trace becomes an early exit for the resulting lengthened
hot trace. This iterative process continues until the new
hot trace (produced through either unrolling or straighten-
ing) has an estimated completion rate below a certain target
value.

Figure 6(a) shows a suitable hot trace a being unrolled
twice (i.e., an unroll factor of 3). Figure 6(b) shows a
straightening example on an other hot-trace type hot trace
b. Straightening concatenates b with its target hot trace c,
producing a straightened hot trace composed of code from
both b and c. The straightening process continues whenever
the new target hot trace (e.g., c’s target hot trace) is still of
other hot-trace type. However, since we find that the other
hot-trace type is fairly uncommon in practice (only 4% of
hot trace exits on average according to Figure 2), we do not
implement nor evaluate straightening further in this paper.

4.1 Unrolling Algorithm
For any self type hot trace, let its original completion

ratio be porig, and let the target completion ratio be ptarget,
then there exists a positive integer number U such that

p
U
orig ≥ ptarget (2)

and



Figure 6: Two types of hot trace can be lengthened:
(i) self type hot traces suitable to unrolling; and (ii)
other hot-trace type hot traces suitable to straight-
ening.

p
U+1
orig < ptarget (3)

U is the predicted unroll factor, the maximum unroll fac-
tor such that the completion ratio for the unrolled trace is
predicted to be above the target value. A predicted unroll
factor of 1 means no unrolling, a predicted unroll factor of 2
means to unroll the hot trace once, and so on. For any self
type hot trace its predicted unroll factor can be computed
by the following.

U =

8

>

<

>

:

10 if porig = 100%

⌊
log ptarget

log porig
⌋ if porig ≥ ptarget

1 otherwise

For each candidate hot trace with a 100% completion ra-
tio, the formula will heuristically set the unroll factor to 10,
hence replicating the trace body 9 times. If porig ≥ ptarget,
the predicted unroll factor is estimated through the for-
mula, taking both porig and ptarget into consideration. If
porig < ptarget, the formula indicates that unrolling should
not be performed (giving a predicted unroll factor of 1).

The formula of

U = ⌊
log ptarget

log porig

⌋

is obtained by taking logarithm on both sides of eq. (2) and
eq. (3) with some simplification.

4.2 Lengthening Results
In this section we evaluate the impact of unrolling on hot

traces, including the impact on average trace size and pre-
dicted completion ratio.

Unrollable Hot Traces Figure 7 shows the fraction of
hot traces that can be unrolled for varying target comple-
tion ratios. For some benchmarks such as bzip2 the number

Figure 7: Fraction of hot traces that can be unrolled
for varying target completion ratios.

Figure 8: Average predicted unroll factor across all
hot traces.

of unrollable hot traces increases significantly as the target
completion ratio decreases, while for others such as parser
decreasing the target completion ratio has little impact. On
average across all benchmarks there are roughly 5% of hot
traces suitable for unrolling with a 98% target completion
ratio, and 6% of hot traces suitable for unrolling with an
80% target completion ratio.

Predicted Unroll Factors Figure 8 shows the impact of
decreasing the target completion ratio on the predicted un-
roll factor. On average across all benchmarks, decreasing
the target completion ratio steadily increases the predicted
unroll factor from 1.42 for a 98% target completion ratio to
1.8 for an 80% target completion ratio. This impact varies
widely across the benchmarks, and is fairly tied to the frac-
tion of unrollable hot traces in each benchmark as shown in
Figure 7.



Figure 9: Impact on average hot-trace size of un-
rolling to varying predicted completion ratios.

Figure 10: Impact on hot-trace completion ratio of
unrolling to the predicted unroll factor.

Impact of Unrolling on Hot Trace Size Figure 9 shows
the impact of unrolling on average hot-trace size as the pre-
dicted completion ratio is reduced from 98% to 80%. Recall
that the original hot traces have an average trace size of
roughly 33 instructions. Unrolling to a target completion
ratio of 98% increases the average hot trace size to roughly
44 instructions (an increase of 33%); further relaxing the
target completion ratio to 80% results in an average hot
trace size of 50 instructions (an increase of 52%). These
results demonstrate that despite the relatively low fraction
of traces that are amenable to unrolling, unrolling can still
have a significant impact on average trace size.

Impact of Unrolling on Completion Ratio In Figure 10
we evaluate the impact of unrolling hot traces to the pre-
dicted unroll factor on the completion ratio of the unrolled
hot trace. On average, reducing the predicted completion
ratio from 98% to 80% reduces the actual completion ratio

Figure 11: Local value numbering effectively im-
plements (i) common subexpression elimination, (ii)
dead-code elimination, and (iii) copy propagation.

from 77% to 76.5%—a reduction of only 1%, while average
hot trace size has increased by 50%.

5. IMPACT OF LENGTHENED HOT TRACES
ON LOCAL VALUE NUMBERING

There are many challenges to attempting optimizations
in DBT systems. DBT systems typically operate on bi-
nary executables that have already been heavily optimized
by a static compiler at its highest optimization levels—hence
there are significantly fewer optimization opportunities com-
pared to those available when operating at the level of the
original unoptimized source code. Furthermore, the runtime
performance of the target executable is highly sensitive to
the overheads of any dynamic optimizations attempted by
the DBT system; hence any optimization benefits have to
outweigh the overheads of implementing them.

In this section we demonstrate that lengthened traces can
improve the impact of conventional trace-based dynamic op-
timizations, in particular by showing the resulting improve-
ment in local value numbering—a common optimization im-
plemented in DBT systems and JIT compilers.

5.1 Local Value Numbering
Most existing compiler optimization algorithms need to

perform control-flow analysis and build data-flow solvers.
But for dynamic optimization systems such as DBT systems,
such analyses are too expensive. Local value numbering
(LVN) [2, 14, 19] is an analysis that natively and elegantly
supports three different optimizations: constant subexpres-
sion elimination (CSE), copy propagation (CP), and dead-
code elimination (DCE)—as illustrated in Figure 11. LVN
can be implemented with worst case complexity of O(N2)
(though in practice most LVN analyses complete in O(kN)
time where k << N).

Briefly, LVN works as follows. Progressing through each
statement in order, each new variable is assigned a distinct
integer value-number (starting from 1). For any assignment
expression, an existing value-number on the right-hand side
(RHS) is assigned to the left-hand side (LHS). If the RHS
is a new variable (no existing value-number), a new value-



Figure 12: Percentage increase in optimization can-
didates for local value numbering over all hot traces.

number is created and propagated to both sides of the as-
signment expression (simulating copy propagation). LVN
looks for value-number patterns on all unary expressions
and binary expressions. When a match is recognized, LVN
searches a history table of value-number versions, and re-
places the RHS with the corresponding variable that has
the matching value-number (effectively implementing CSE).
If LVN recognizes that the same variable is assigned different
value-numbers in two different assignment expressions and
there is no intervening use of that variable, the first assign-
ment expression is marked dead and can be removed from
the instruction list (effectively implementing DCE).

Figure 11 illustrates the progress of LVN. The left-most
column shows the original code in a simplified format. In the
2nd column all variables have been assigned value-numbers,
and a common subexpression has been identified and elimi-
nated (a CSE hit): binary expression c3 = a1+b2 and binary
expression f3 = d1 + e2 have the same value-number pat-
tern (vn(3) = vn(1) + vn(2)), hence f3 = d1+e2 is replaced
with f3 = c3. The third column shows elimination of dead
code (a DCE hit): two assignment expressions, d1 = a1 and
d4 = x4, associate different value numbers to the same vari-
able d, and there is no intervening use of d, hence the 1st

assignment expression d1 = a1 is marked dead and removed
from the list of instructions. The last column shows the
resulting optimized code after LVN.

Our prototype LVN implementation in StarDBT covers
three forms of expressions: binary expressions of the form
(result = operand1 op operand2), unary expression of the
form (result = op operand), and assignment expressions of
the form (result = operand). An operand can be a memory
location, a register, or a constant, and an operator can be
any arithmetic or logical operation in the IA32 ISA.

5.2 Impact of Lengthened Hot Traces on LVN
Each time LVN finds a match for any of the three opti-

mizations it covers, we call it a LVN hit. In this preliminary
evaluation we measure the increase in LVN hits for length-
ened hot traces. Figure 12 shows the percentage increase in

LVN hits for traces unrolled to decreasing target completion
ratios. For mcf, hot-trace lengthening provides 25% addi-
tional LVN hits for a 98% target completion ratio and 65%
additional LVN hits for a 90% target completion ratio. For
other benchmarks such as gzip and parser our approach to
lengthening has little impact: as seen in Figure 9, the overall
impact on hot-trace size of unrolling is equally limited for
these two benchmarks. On average across all benchmarks
LVN hits are increased by 16% for a 98% target completion
ratio, and by 23% for a 90% target completion ratio. Over-
all these results demonstrate that lengthened traces indeed
result in increased opportunities for dynamic optimization.
For now we are unfortunately unable to evaluate the per-
formance impact of LVN optimization because our binary
translation infrastructure is incomplete.

6. USING TRANSACTIONAL MEMORY TO
SUPPORT SPECULATIVE
OPTIMIZATIONS FOR LONG TRACES

Support for instruction-level speculation in current pro-
cessors is limited, for example processors have on the or-
der of a few tens of entries for load/store queues that sup-
port the speculative reordering of loads and stores [16, 28,
29]. Furthermore, support for instruction-level speculation
is unlikely to increase significantly given recent industry
trends towards multicore processors composed of simpler
cores. Transactional Memory (TM) [1, 13, 20, 22, 27, 31,
35, 40] has been proposed to support optimistic synchroniza-
tion of critical sections in parallel programs, by providing the
ability to checkpoint and restore code that can speculatively
read and modify kilobytes of data and more. In this paper
we propose a novel use for TM to support aggressive specu-
lative optimization of sequential programs, particularly the
speculative optimization of legacy sequential programs in
DBT systems that are enabled by lengthened traces and
with guaranteed safety by TM’s support for precise excep-
tion.

The basic idea is to exploit TM hardware to provide low-
overhead checkpoint and restore, allowing the DBT system
to apply speculative optimizations to hot traces. Length-
ened hot traces will offer improved opportunities for recently-
proposed speculative optimizations such as speculative code
motion [17], and speculative execution based on delinquent
load value prediction and function return value prediction [15].

We also argue that our techniques for estimating the ideal
trace size based on completion ratios could be extended to
determine the ideal size of transactions within traces. In par-
ticular, we can use the DBT system to profile the successful
completion ratio of a transaction, which would subsume two
factors: i) the completion ratio of the corresponding trace;
and ii) the success ratio of the speculative optimization ap-
plied to that trace (i.e., the fraction of times that the spec-
ulative optimization succeeds). We can then throttle the
application of speculative optimizations and transactions to
be limited only to traces with a minimum successful comple-
tion ratio. There are many ways to extend this framework
to take other factors into account, such as hardware limits
to speculative buffering.

In this preliminary work we demonstrate that the amount
of data accessed by lengthened traces is near the limit of
what can be supported by typical load and store queues,
motivating the use of TM hardware to enable DBT systems



to apply more aggressive speculative optimizations than pos-
sible in the processor’s reorder buffer.

Figure 13 shows the average number of memory accesses
(both reads and writes) for the original hot traces, and the
hot traces unrolled to varying predicted completion ratios
from 98% to 80%. On average, the original hot traces have
22 memory reads and 12 memory writes. After lengthening
to a predicted completion ratio of 80%, reads are increased
to 34 and writes to 18—roughly a 50% increase for both
reads and writes.

Figure 14 shows the average amount of data in bytes of
memory accessed (reads and writes), for the original hot
traces and those unrolled to predicted completion ratios be-
tween 98% and 80%. On average, the original hot traces
read 91 bytes and write 46 bytes. Unrolling to 98% increases
the reads and writes to 150 bytes and 77 bytes respectively;
unrolling to 80% increases memory reads to 183 bytes and
writes to 94 bytes.

7. CONCLUSIONS AND FUTURE WORK
In this paper we demonstrate the feasibility of obtain-

ing longer hot traces through unrolling. We achieve sig-
nificantly lengthened hot traces at a negligible increase in
the frequency of early exits from hot traces (i.e., a negligi-
ble decrease in the completion ratio). We also demonstrate
that lengthened traces can improve opportunities for apply-
ing both traditional and speculative optimizations dynam-
ically. We develop a prototype LVN-based trace optimizer
and prove that longer hot traces improve opportunities for
optimization. Finally, we propose that emerging hardware
transactional memory can provide effective support for spec-
ulative optimizations on hot traces. Our future research
efforts will focus on completing the binary translation in-
frastructure for trace optimizations and directly evaluating
performance on real machines, investigating speculative op-
timizations on long hot traces with high completion ratio
and on automatically determining the optimal transaction
granularity for such traces when applying speculative opti-
mizations.
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