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Abstract

Cryobiology, the study of life at low temperatures, requires modeling to extend

understanding and predict responses of living systems.  A compartment model

was developed to represent complex biological tissues as a hierarchy of

compartments.  To implement this model, a description of phase behaviour in

real solutions was developed using thermodynamic principles.  Osmotic

pressures in solutions, derived from phase behaviour, were used to predict water

and solute movements across semi-permeable membranes.  The heat

conduction equation was solved with a piece-wise quadratic model of

temperature and concentrations profiles.  This diffusion model includes effects of

moving phase boundaries within tissues, and allows for planar and dendritic ice

formation.   Constitutional supercooling was calculated for prediction of dendritic

breakdown.  This model was applied to real tissue systems to predict responses

on tissue and cellular scales.  The model’s generality and use of biophysical

mechanisms and parameters allows applications to a wide variety of real tissue

systems.
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Chapter 1

Introduction

Cryobiology

Simply put, cryobiology is the study of life at low temperature.  In this

definition, the relative term, low temperature, refers to any temperature that is

below the temperature at which the specific organism being studied normally

exists.  For many organisms, this temperature is based on that essential

ingredient present in all life on earth: water.  Life exists as a result of the very

specific properties of water, and in most cases life ceases to exist in the absence

of liquid water.  Although cryobiologists may consider temperatures above the

freezing point of water to be low temperature, the most interesting results in this

thesis occur at temperatures below the temperature at which ice begins to form.

Ice is no substitute for water within a biological cell.  In fact, very few

substances are known which can be substituted for water within a cell, and even

in these cases, only a portion of the water may be substituted.  With this

incredible dependence life has on liquid water, it is a wonder how any

cryobiologist can hope to study life at temperatures below that at which water

turns to ice; however, as most Canadians are well aware, each year winter

covers the land with snow and ice, subjecting the trees, animals, and people to a

deep freeze lasting for several months.  Yet despite this harsh treatment, each

spring life flourishes as if completely unscathed by the icy wrath of our northern

climate.

The cryobiologist’s goal is to study the effect of low temperature on all

forms of living organisms, from single cells to entire plants or animals.  This

study, however, is not limited to the life of these organisms, but also includes the

lack of life that many organisms experience when their liquid water is

transformed to ice.  In most cases this lack of life provides more information

about the effect of low temperature than the life itself.  In some cases life in the
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frozen state is desirable (such as for preservation of tissues); while in other

cases, a lack of life is the goal (as with the cryosurgical removal of tumours and

other malignancies).  Regardless of the cryobiologist’s intent, the degree to

which water is present within a biological system ultimately dictates the state of

that system; and therefore, an understanding of the mechanisms by which water

is moved or transformed within the system is crucial.

Water

Water is one of the most abundant substances on earth and also one of

the most versatile.  Liquid water exists at physiological temperatures as a result

of the water molecule’s ability to make hydrogen bonds with its neighbours [Dick

1966].  Also, this liquid is capable dissolving a wide variety of solutes, including

electrolytes, sugars, and alcohols.

The structure of water in all of its forms is a subject of intense research.

The water molecule’s unique ability to form strong hydrogen bonds causes the

existence of metastable clusters in the liquid state.  These clusters, which are

larger and longer lasting at lower temperatures, eventually become the

framework for the crystalline lattice structure of ice.  Any solutes dissolved within

water affect this mechanism by which water is transformed to ice; and thus, result

in changes in the freezing point of water.

Aqueous Solutions

When solutes (salt, sugar, alcohol, etc.) are dissolved in water, the

composite substance is known as an aqueous solution.  Solutions have a variety

of unique properties; some of which are: freezing point, boiling point, and

osmotic pressure.  These properties are called colligative properties since they

arise as a result of the collection of chemical species that make up a solution.

As already mentioned, one of these properties, the freezing point, varies from the

freezing point of pure water as solutes are added.  Generally, as a solute is

dissolved in increasing concentration in water, the freezing point of the solution
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will decrease below the usual 0° C  freezing point of pure water to temperatures

as low as − °60 C  or lower.

The relationship between the freezing point of a solution and the

composition of the solution is called the phase behaviour and is typically

graphed as a phase diagram.  In the case of aqueous solutions, the phase

diagram does not describe solely the temperatures at which liquid water

precipitates out of solution as ice, but also indicates the temperatures at which

other solutes present may precipitate out of solution to their respective solid

forms.  In the case of a binary mixture (water and a solute), half of the phase

diagram indicates the freezing point of water, while the other half indicates the

temperature at which the solute begins to precipitate.  Regardless of which

species leaves the solution at a particular temperature, as temperature is

decreased that species will continue to leave the solution and the other species

present will become more concentrated.  Eventually, a temperature is reached

where both species must leave the solution simultaneously and no further

change in composition results as the entire mixture becomes solid.  This

temperature is called the eutectic temperature.

When more than two species are present in a solution, the situation is

considerably more complicated.  As one species is precipitating from the

solution, due to decreasing temperature, all the other species will be

concentrated within that solution; and thus, at any particular temperature,

another solute may start to precipitate from the solution as well.  The phase

diagrams for these systems must be presented in several dimensions and can be

very complex with multiple eutectic curves between the various subsets of the

solutes present in the solution.

In cryobiology, understanding the phase behaviour of an arbitrary solution

is important since the composition of that solution can be determined from the

phase diagram for any particular temperature the solution is subjected to.  In

biological systems, knowledge of the composition of the aqueous solutions

present is crucial to predicting the movement of water and solutes within the
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system.  This knowledge is also necessary to understand the effect that these

solutions have on living cells.

The phase diagram for a particular solution is also useful for calculating

some of the other colligative properties of that solution.  Osmotic pressure is one

colligative property that is of particular importance since it must be known to

predict the movement of water and permeant solutes across biological

membranes.  This will be discussed in much greater detail later on.

Biological Tissues

The enormous diversity of life on earth results in an equally enormous

diversity of living tissues making up living organisms.  These tissues range from

plants such as trees, shrubs, fruits, and vegetables to animal tissues such as

skin, bone, arteries, and organs.  Each of these tissues has its own unique

structure, and this structure is generally complex and exists on a variety of

scales.

On a macroscopic scale, many tissues have some sort of flesh or matrix in

which cells are embedded.  These regions of flesh or matrix may have properties

that vary spatially, and there may be membranes or other boundaries between

individual regions.

At the microscopic scale, individual cells are generally surrounded by a

semi-permeable membrane and perhaps even a cell wall, as in the case of plant

cells.  A semi-permeable membrane is one that allows passage of water and

solutes with varying degrees of permeability.  A cell membrane typically permits

water and some other non-electrolyte solutes to pass, while blocking the passive

movement of electrolytes and most large molecular weight solutes.  Some of

these blocked solutes are transported across the membrane by active membrane

pumps.  Within each cell a particular intracellular structure is present, depending

on the cell type.  Cells will typically contain organelles, such as the nucleus if

present, which maintain some of the complex chemical reactions that keep the

cell alive, and a scaffolding, called the cytoskeleton, which is composed of

microtubules that bind and connect all the various structures within the cell.
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This complex, almost fractal, structure of biological tissues makes

predicting their behaviour in any particular situation difficult.  Food preservation

is an important part of food sciences and preservation by freezing is a common

technique that is used.  Both plant material and animal meat can be preserved

by freezing; however, the freezing process must maintain the odor, flavour, and

texture of the food being preserved.  A cryobiologist also needs to preserve plant

and animal tissues by freezing; however, these tissues are not later consumed,

but are instead expected to be returned to a normal living condition and

transplanted into some system where they need to function as if fresh.

A cryosurgeon has a completely different objective from the cryobiologist

or food scientist in that the cryosurgeon’s goal is tissue death.  In the treatment

of cancerous tumours and other malignancies, freezing may be employed.  In

this case, the purpose of freezing is not to completely preserve the tissue, but to

instead, destroy the malignant cells while leaving the tissue structure intact.  To

the cryosurgeon, even a small amount of cell preservation is unacceptable as

these cells can later repopulate the treated tissue.  Therefore, an accurate

method of predicting the region of cell death is necessary to minimize any

recurrence of the malignancy.

Modeling the freezing process in this variety of tissues is of importance to

the food scientists, cryobiologists, and cryosurgeons alike.  The food scientist,

while not too concerned with cell survival, needs to maintain the structure of

frozen preserved tissues in order to maintain an acceptable texture in the final

product.  This requires an understanding of the morphology of ice within the

tissue and how that ice affects the structure of the tissue.

A cryobiologist interested in banking tissues for zoological or clinical use

typically requires that a large proportion of the cells within the tissue be

maintained.  The role of these cells within the tissue is usually to maintain and

repair the tissue; and therefore, if the cells survive the freezing process, any

tissue damage may be repaired after thawing.  Transplantation of a tissue
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containing a large proportion of live cells is more likely to result in a successful

graft.

The cryosurgeon needs to be able to predict the exact region of cell death

resulting from a particular treatment.  During a cryosurgical procedure, the

surgeon can measure the size of the ice ball that results from the freezing probe

using techniques such as ultrasound or magnetic resonance imaging; however,

the region where ice is present does not necessarily coincide with the region of

cell death.  Some cells in the region of ice, but near the ice interface, may be

preserved by the freezing process.  Cells near the probe tip, on the other hand,

will be successfully destroyed by the rapid freezing that occurs in that region.  As

a result of this discrepancy between the region of ice and the region of cell

death, a cryosurgeon needs to be able to predict the relationship between these

two regions in order to effectively plan successful treatments.

Mathematical Modeling in Cryobiology

Regardless of the ultimate goal of the freezing process, modeling of the

underlying mechanisms of water, solute and heat movement as well as the

propagation of phase changes and the resulting damage to cells and tissues is

an important tool in both research and applied fields.  A variety of different

approaches to modeling these events has been taken by several researchers.

Some typical approaches are presented here.

Kedem and Katchalsky, driven by a real need for effective permeability

equations, worked to correct the inadequacies of all previous descriptions of

solvent and solute transport through biological membranes [Kedem & Katchalsky

1958].  Using the methods of irreversible thermodynamics, a set of permeability

equations were developed which take into account the transport of both water

and a permeable solute across a biological membrane.  This transport is driven

by a difference in osmotic pressure across the membrane and the permeant

solute concentration gradient within the membrane.  The pair of coupled ordinary

differential equations presented require three coefficients, of which two are the

respective permeabilities of water and the permeant solute, while the remaining
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parameter is a reflection coefficient that had been introduced by Staverman

[1952].  This reflection coefficient describes how selective the membrane is by

quantifying the probability that a particular solute molecule will be reflected from

the membrane and not pass through.

Johnson and Wilson developed a set of permeability transport equations

consistent with the Kedem and Katchalsky equations; however, with a few

modifications [Johnson & Wilson 1967].  The Johnson and Wilson equations

neglect any hydrostatic pressure differences across the membrane and assume

that the permeating solute has negligible molecular volume.  Further, these

equations take into account the possibility of a non-permeating solute present on

both sides of the membrane.  Johnson and Wilson, after writing the equations in

a non-dimensional form, then solved the equations using a first-order

perturbation technique.  Their results are compared with experimental data from

the literature.

Walcerz makes use of the Kedem and Katchalsky equations to predict the

movement of water and cryoprotectant agents (CPA’s) in a two compartment,

single cell model [Walcerz 1995].  The transport parameters used to define these

water and solute movements are allowed to vary with temperature according to

the Arrhenius relation [Atkins 1990].  Also, the phase behaviour of each

compartment is predicted for ternary solutions of water, sodium chloride,

glycerol, and water, sodium chloride, dimethyl sulfoxide using equations

developed by Pegg [1986].  While this model predicts only water and CPA

movements in single cells and makes no attempt to model heat movement or ice

front propagation, it is implemented as an easy to use software package that

attempts to bring mathematical modeling to a greater proportion of cryobiology

researchers.

Rubinsky and Pegg developed a mathematical model to predict the

movement of water and the location of ice in biological organs at low

temperature [Rubinsky & Pegg 1988].  These organs are modeled by breaking

their structure into repetitive sections of tissue, each containing an axial blood
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vessel.  Osmotic flow into the blood vessel is predicted using the Kedem and

Katchalsky equations; assuming that osmotic pressure is related to temperature

by the phase diagram.  This assumption is valid in the blood vessels since ice

present there will maintain equilibrium with the unfrozen aqueous solution.

This Rubinsky model demonstrates that as organs are cooled to freezing

temperatures the tissue sections dehydrate while the blood vessels swell.  At

higher cooling rates this dehydration occurs to a lesser extent which results in a

greater degree of supercooling.  Supercooling is a state at which the local

temperature is below the local freezing point, and in this unstable state, a

probability of ice forming in the region exists.  Results obtained using this model

correlate well both qualitatively and quantitatively with experimental data.  In this

model, however, no attempt is made to predict the movement of heat.  It is

assumed that the entire system is always at a uniform (although non-constant)

temperature.

Rubinsky later expanded on this model [Bischof & Rubinsky 1993].  They

used the same Krogh cylinder model [Krogh 1919], as used in Rubinsky’s earlier

work, to predict the location and extent of ice formation in their model tissue;

however, in this work, some attempt is made to take into account the movement

of heat.  Temperature distributions along the axis of the blood vessel are

calculated, and three different types of ice formation are predicted: solid ice,

mushy ice, and liquid (no ice).  Intracellular ice formation is also predicted using

a probability integral.  In this case, the probability of ice nucleation within a cell is

related to the degree of supercooling within that cell.

A different approach to modeling net volume changes is employed by

Diller [Diller & Dunaway 1991].  This network thermodynamic analysis arose out

of a study of pancreas islets and was developed to predict the volume response

of these tissues to perfusion with a cryoprotective agent (CPA).  Flows of water

and CPA across cell membranes are coupled as with the Kedem and Katchalsky

model, while the tissue as a whole exhibits a viscoelastic behaviour when

shrinking and swelling.  This model also takes into account variations in the
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transport properties with the volume and temperature of the tissue.  The

temperature dependence here ensures that the model can be used to predict

behaviour during freezing experiments.  In other work, Diller uses a solution to

the heat equation to model heat transport in biological organisms with possible

sources of heat included [Diller 1992].  These solutions are developed for cases

with and without a phase change.

From the cryosurgical point of view, Andrushkiw solved the heat

conduction problem numerically using an implicit finite-difference scheme

[Andrushkiw 1990].  His technique yields temperature profile and ice front

location in tissues during cryosurgical procedures.  Since these procedures are

performed on living tissue that is still attached to the body, metabolic heat

generation is also taken into account.  No attempt is made here to model salt

movement within the tissue or water movement into and out of the cells;

however, the model is still a useful tool for testing different cryosurgical

techniques.

Critique

The above approaches to modeling all have one or more of the following

faults.

Most models developed in cryobiology apply to a limited set of cell or

tissue systems.  Some models apply only to single cells suspended in some

physiological solution while others may apply to simple tissue systems.  Models

developed for a particular tissue or organ system usually cannot be easily

extended to apply to systems with significantly different geometry.  Furthermore,

models developed to predict diffusion through a tissue and then permeation

through a cell membrane may not be easily modified to predict permeation

through a cell membrane, followed by diffusion through the cytoplasm, and then

permeation into organelles.

Due to the complexities involved with multi-solute solutions and predicting

the phase behaviour of these solutions, an ideal dilute solution assumption is

typically made.  While this assumption is valid for dilute solutions, the errors
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involved when more concentrated solutions are subject to the same assumption

can be significant.  Furthermore, many models also make additional

assumptions, such as the insignificance of a solute’s molecular volume.  Again,

while this assumption is valid for dilute solutions, errors increase as solutions

become concentrated by freezing.

Some of the models depend on the use of empirical equations and non-

physical parameters to predict behaviour.  These equations are particularly

difficult to apply in situations different from those for which the equations were

developed; thus making the model specific to a single system.  Also, the non-

physical parameters used in these equations cannot be easily estimated and

must be derived by fitting to experimental data.  Extrapolating the use of these

parameters to new systems cannot be easily justified, and in most cases

parameters have to be determined for each specific case in which the model is to

be applied.

Given the ever increasing need to develop effective protocols for tissue

preservation (or tissue destruction as the case may be) and the difficulty

associated with empirical guesses based solely on experiment evidence, general

and effective modeling techniques must be developed and applied to simulate

tissue response in low temperature environments.  The model developed here

combines the effects of heat and mass transport with the phase behaviour of real

solutions to predict low temperature responses in a wide variety of geometrically

distinct tissues.

Approach

The general approach taken in this work is to make minimal assumptions

as to the makeup of the tissue systems that will be modeled while making use of

basic thermodynamic concepts and widely accepted theories from the literature.

Parameters used in this model are all of physical significance and most are

obtained from the literature.  Only a few of the parameters are fit for by using

experimental data.
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This model uses a concept of a solution as a collection of solutes, not

solute and solvent as is usually the case.  Treating all chemical species in a

consistent manner improves the generality of the model and allows for its

application in situations where it was not directly intended to be applied.

Geometrically complex tissues can be simulated by making use of a

compartment model.  Tissues are viewed as a collection of compartments where,

within each compartment, the mechanisms of mass and heat transport are

uniquely defined, and all compartments interact with neighbouring compartments

as a unified system.

The model predicts mass transport by two basic mechanisms: diffusion

and permeation, while heat transport is governed by the heat conduction

equation.  The model also simulates the movement of phase boundaries within

the system and keeps track of any supercooling that may occur.

A result of the generality of this model is that it may be applied to

biological systems other than those used in cryobiology and perhaps even in

modeling efforts outside biology.  New mechanisms of transport along with other

physical processes (such as chemical reactions) may be included in the general

framework developed here, thus allowing this model to be used in a wide variety

of situations.



12

Chapter 2

Model Design

Introduction

The model that is introduced in this chapter is intended to overcome some

of the failings of the previous modeling approaches presented in chapter one.

This model was developed to be as general in scope as possible, allowing for a

wide variety of biological systems to be simulated.  To aid in the understanding

of the model and the systems it can simulate, basic thermodynamic concepts and

commonly known physical parameters are used throughout.  All attempts are

made to stay away from empirical relations with nonphysical coefficients.

A generalized concept of a solution is presented along with equations to

predict the phase behaviour of such solutions regardless of the number of

components.  Solutes within a solution are allowed to be in any of a number of

states simultaneously; thus allowing for a more realistic simulation of nature.

To ensure that each tissue’s complex geometrical structure can be

effectively represented in this model, the concept of a compartment is employed

where the most relevant physical dimensions are used to describe each

compartment.  This compartment concept aids in the localization of the various

mechanisms of solute and heat transport, while ensuring that the model functions

as a complete system with each compartment interacting with its neighbours.

The compartment concept ensures the generality of the model while allowing for

future enhancement of the various components of the model.

Generalized Solution

In chapter one, an aqueous solution was defined as solutes dissolved in

water.  This is a classic definition where water plays the role of a solvent while all

other molecular species present are called solutes.  This definition, however, has

certain drawbacks that arise from the treatment of water as a different sort of
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entity than the other solutes.  One particular drawback can be seen when looking

at the phase behaviour.  When water is considered as the solvent into which

solutes are dissolved, the phase behaviour of the solution typically only includes

the temperatures and concentrations at which water freezes from the solution to

ice.  However, as described in chapter one, the phase behaviour for a general

solution can be considerably more complex as many solutes (including water)

may precipitate from the solution at some temperature and composition

combinations.

A more general definition of a solution is as follows.  A solution is simply a

collection of solutes, where each solutes’ molecules are randomly mixed with the

others’.  A solute here is defined as an individual chemical species in a solution;

thus, even water is considered to be a solute.  In the ternary solution of water,

dimethyl sulfoxide (DMSO) and sodium chloride (NaCl) there are three solutes

present, namely water, DMSO and NaCl.  When considering the phase

behaviour of such a solution, it is recognized that for a particular temperature

and solution composition, any one or more of the solutes may precipitate from

the solution.  If water is the precipitating solute, it is understood that the water is

freezing out as ice.

The model allows each solute within a solution to be present in any one of

four states: solid, liquid, aqueous, and glass.  Both the solid and the liquid states

are considered to be pure states as solutes in these states are not mixed with

the other solutes present.  The solid state is the result of the freezing or

precipitation process while the liquid state can be used to represent a single

solute or an immiscible solute.  The aqueous and glass states of a solute are

states in which the solute is considered to be mixed with all the other solutes

present in the same state (aqueous or glass, respectively).  All solutes present in

an aqueous solution are in the aqueous state, while the glass state is reserved

for the result of the vitrification process.  Vitrification occurs when an aqueous

solution is cooled without freezing to a temperature where viscosity becomes
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infinite.  When this occurs a glassy state is formed as the solution becomes an

amorphous solid.

Each solute in a solution may be present in any number of the available

states simultaneously, and through phase transitions may be transformed from

one state to another.  Examples of phase transitions include the freezing and

thawing of water and other liquids, the precipitation or dissolution of salts and

sugars, and the vitrification or devitrification of aqueous solutions.  In addition, it

is also possible to include chemical reactions into the model as another

mechanism through with solutes are transformed.  In this latter case, the

transitions would not be among the various states, but from one solute to

another.  Solutes in this model do not need to be restricted to these four states.

If the need for additional states (such as a gaseous state) arises, the required

states can be introduced.

Compartment Concept

To simulate the geometry of real tissue systems, a hierarchical

compartment model is employed.  This compartment model is a mechanism by

which tissues can be represented as a collection of compartments nested one

within another.  Within each compartment, a particular set of transport equations

describes the behaviour of that compartment, while interactions between a

compartment and its neighbouring compartments are defined based on the

boundary that separates the particular compartments.  This compartment

structure allows complex three-dimensional tissues to be modeled in such a way

that the one-dimensional nature of the transport mechanisms can be isolated.

This greatly simplifies the transport equations required.

The hierarchy of compartments is similar to a family tree.  Each

compartment may have any number of compartments contained within it, called

children, while the compartment can only be contained itself within at most one

other compartment, its parent compartment.  This hierarchy is illustrated by an

example, shown in figure 2-1.  Here, human skin is displayed alongside its

compartmentalized schematic.  It is seen that the compartment representing the



15

stratum corneum is contained within the compartment representing the stratum

granulosum, while that compartment is contained within the compartment

representing the stratum spinosum, and so on.  Furthermore, some of these

compartments also have keratinocyte compartments as children.

Each morphological layer in skin plays a specific role in the dynamic

process of skin growth.  The stratum germinativum is the germinal layer from

which cells are produced and move towards the outer surface of the skin.  In the

stratum spinosum, cells which are in the process of growth begin early keratin

synthesis.  When cells reach the stratum granulosum they typically contain

granules which contribute to the process of keratinisation.  The final layer of the

epidermis is the outside layer of skin called the stratum corneum.  This layer of

fibrous protein and keratin consists of the flattened, fused remnants of cells from

all the lower layers of the epidermis.  The dermis region of skin is a thick, dense

layer of fibro-elastic connective tissue which contains many blood vessels that

nourish the stratum germinativum layer of the epidermis [Wheater et al. 1987].

Just as each layer in skin has a specific function, each compartment in the

compartmentalized representation of skin has specific properties relating to the

transport of solutes and heat within that compartment.  Mass transport within

each compartment is modeled by one basic mechanism; either diffusion or

permeation.  If diffusion is the case, then a phase boundary may propagate

through the compartment and a distinction between planar and dendritic ice

formation is maintained.  However, if permeation is the mechanism of transport

then the compartment is considered to be well mixed and all solute transport

occurs through the boundary between the compartment and its parent

compartment.  Heat transport is handled either by the heat conduction equation

or by Fick’s law [Crank 1975] (in the case of permeation).  These two basic

mechanisms of transport are not the only mechanisms that can be implemented

with this model.  Other mechanisms can be added as will be discussed later in

this chapter.
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To ensure a minimal dependence on geometry, the physical dimensions

of each compartment are summarized as much as possible.  The most important

dimensions include: total volume of solute contained, surface area of the

compartment boundary, and characteristic length (used in diffusion calculations).

The total volume of the compartment is the sum of the volume of the contained

solutes and the volume of all the contained child compartments.  In some cases

it may be necessary to vary these dimensions with time as the size or shape of

the compartment varies.  A simple rule, such as spherical shape, may be

introduced to allow two of the dimensions, say surface area and characteristic

length, to be calculated from the third, volume in this case.  Compartments are

not limited to these physical dimensions and different compartment types may be

defined with additional physical dimensions as necessary.

In addition to the specific internal behaviour of each compartment,

compartments also interact with both their parent and child compartments.  In

figure 2-1, each keratinocyte compartment interacts with its parent as predicted

by the Johnson and Wilson [1967] transport model.  Each epidermal layer

compartment interacts with its neighbouring layers as dictated by the diffusion

equation, while the top-most compartment in the hierarchy, the dermis

compartment, interacts with the external environment as defined by the

experimenter.  Since planar tissues, such as skin, tend to have interactions with

their environment on both sides when removed from the body, a special type of

compartment which mirrors the external environment is defined and can be

placed at any point within the hierarchy.  This special type of compartment is not

illustrated in figure 2-1, but is discussed in the next section.

Compartment Types

The compartment is the fundamental structural element present in all the

representations of biological tissues used with this model.  Compartments come

in a variety of types and these compartment types are organized in another sort

of hierarchy.  The hierarchy of compartment types is illustrated in figure 2-2.
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The top (most fundamental) compartment in this hierarchy is the Solution.

This Solution is the generalized solution that was described earlier in this

chapter.  Immediately below the Solution is a Compartment.  The Compartment

is defined here as a solution that is bounded by some sort of boundary.  This

boundary is not explicitly defined in the definition of a Compartment, but is

instead left to the specific compartments derived from Compartment to define.

To avoid confusion with the hierarchy of compartments used to describe

biological tissues, members of the compartment type hierarchy that appear

further up the tree are labeled as ancestors while members that appear further

down are termed descendants.  A descendant compartment type typically

exhibits all of the behaviour of the ancestors it was derived from, however the

descendant will expand upon that behaviour by exhibiting new behaviour unique

to that compartment.  The Compartment type, being a descendant of the Solution

type, exhibits all the behaviour of a solution, but also includes added behaviour

specific to a solution bound by some boundary.

The basic Compartment type is not useful for describing any real

biological system and therefore must have descendants to expand upon its

behaviour.  These descendants specialize the behaviour of Compartment by

defining the nature of the boundary present in the compartment.  In figure 2-2,

some typical descendant types are illustrated.  The JWCompartment defines the

compartment boundary as a semi-permeable membrane and implements the

transport equations of Johnson and Wilson [1967].  On the other hand, in a

DCompartment, concentration and temperature gradients are maintained

throughout the compartment while heat and solutes flow freely through the

boundary as dictated by Fick’s law [Crank 1975].

A special type of compartment, called a MirrorCompartment, reflects the

external environment.  This compartment is necessary whenever the tissue being

modeled is planar and the external environment interacts with the tissue on two

or more sides.  In these cases, the tissue can still be represented using the

hierarchical compartment model.
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Also illustrated in figure 2-2 is a JWMCompartment.  This compartment

type is a descendant of the JWCompartment; and therefore, exhibits all the

behaviour of a JWCompartment with the addition of some new behaviour.  In this

case, the new behaviour is the ability of the compartment to predict the incidence

of intracellular ice formation (IIF).  A wide variety of theories exist to predict IIF

[Levitt & Scarth 1936; Mazur et al. 1972; Steponkus et al. 1984]; however, one

particular theory was chosen here.  The osmotic rupture hypothesis was

developed by Muldrew and McGann [1994] and predicts the initiation of IIF as

the result of the osmotic rupture of the cell membrane.  This rupture occurs when

a defined critical water flux through the membrane exerts sufficient friction on the

membrane to cause a local breakdown, thus allowing extracellular ice to

propagate into the cell.  The JWMCompartment exhibits all the behaviour of a

JWCompartment; however, it also includes calculations to determine the

probability of IIF.  If IIF is sufficiently probable, the compartment can

automatically become “leaky” to simulate the breakdown of the cell membrane.

Implementation Details

The model presented here is implemented using the C++ object oriented

programming language.  The hierarchical structure of object types, called

classes, in an object oriented language is very similar to the hierarchical

structure of compartment types used in this model.  With C++, classes can be a

descendant of one or more ancestor classes.  The descendant typically inherits

the behaviour of the ancestor classes, in addition to defining new, class specific

behaviour.  Given this similarity to the hierarchy of compartment types, individual

compartments are each defined as classes in C++.

The hierarchy of compartments used to represent biological tissues is

implemented as follows.  Each compartment maintains a variety of pointers to: its

parent, its children, and its siblings.  Since a compartment has at most one

parent, only one pointer is required here.  On the other hand, a compartment can

have several children; and thus, the pointer to the compartment’s children is a

pointer to the first child compartment in a linked list of compartments.  To
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maintain this linked list, each compartment also has pointers to some of its

siblings; namely, the sibling immediately preceding and the sibling immediately

following the particular compartment in the parent’s child list.

Maintaining links between compartments through the use of pointers

allows the model to be constructed such that compartments automatically

interact with their child compartments.  The only compartment that requires a

programmed interaction from the user is the top level compartment in the

hierarchy (the compartment adjacent to the exterior environment).  This

compartment has the exterior environment imposed upon it, and then, through

the use of the pointers to its children, the compartment imposes conditions upon

the various child compartments.  This construction closely models the real world

as the experimenter only needs to define the state of the exterior environment

and typically does not define the internal interactions between parent

compartment and child compartment.

Dynamic Delta Time

Simulations proceed as a series of finite time steps.  Since a

heterogeneous collection of numerical methods is employed, however, one must

ensure that this time step is sufficiently small such that no one part of the

simulation generates too much error.  Generally, it is found that if this time step

is fixed throughout the simulation, the simulation can take an unreasonably long

time to perform.  Therefore, to expedite calculations, the time step used in this

model is considered to be dynamic and is chosen at each iteration of the

simulation.  To facilitate the choosing of a specific value of ∆t  for a particular

iteration, the iteration is broken down into two steps:

1.  Calculate rates.  In this step all rates of transport are determined.  In a

JWCompartment, both water flux and permeant solute flux are

determined, while in a DCompartment, the entire temperature and solute

concentration profiles are calculated.  No heat or solute is actually moved

at this stage as the value of ∆t  for the iteration has not yet been

determined.
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2.  Choose ∆t  and finalize movements.  Once all rates have been calculated,

an estimate of error is determined, and then ∆t  is chosen such that the

error is bounded above by some pre-selected value.  The specific error

calculations necessary for this step are presented in later chapters.  Once

∆t  is chosen, all movements can occur at the rates calculated in step 1.

This two-step process ensures that no part of the simulation is occurring at too

quick a rate, and therefore, that the specified rate of error accumulation is not

exceeded.  Furthermore, the simulation will not take a prohibitively long time to

execute as “slow” sections of the simulation (times when not much is happening)

automatically proceed at a faster rate.

The next several chapters describe specific details of the model.  Chapter

3 illustrates the prediction of the phase behaviour of complex solutions.  This

phase behaviour is necessary to accurately predict the amount of ice and other

precipitates that form during the freezing process and to predict the osmotic

pressures that must be known to implement the Johnson and Wilson model

[1967] of solute transport through a semi-permeable membrane.

Chapter 4 describes the details of how the Johnson and Wilson transport

model is implemented, including calculations for the rate of error accumulation

and how the value of the time step is derived from these calculations.

Chapter 5 deals with the diffusion problem.  A solution to the diffusion

equation is developed in stages, starting with a simple, solute only system, and

proceeding to a complete system with solute, heat, and moving phase

boundaries.

Typical uses of the model are presented in chapters 6 and 7.

Constitutional supercooling is explored in chapter 6 with some specific results

making use of the diffusion model developed in chapter 5 being presented.  In

chapter 7 the entire model is used to simulate the responses of a real tissue

system with a discussion of the results.  Chapter 8 contains concluding remarks

and a general discussion of the work.
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Figure 2-1.  Schematic of the biological tissue skin along with its

compartmentalized version.
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Figure 2-2.  Hierarchy of compartment types.  Compartments near the top of the

hierarchy are more general and called ancestors, while compartments lower

down are more specialized and called descendants.
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Chapter 3

Phase Behaviour of Real Solutions*

Introduction

The freezing point of an arbitrary physiological solution is of importance to

cryobiologists attempting to model cellular and tissue responses in non-ideal

environments.  When solutes are added to a liquid, the freezing point of that

liquid is depressed due to a disruption of the dynamic equilibrium between the

liquid and its solid phase.  A phase diagram quantifies the freezing point of a

solution over the entire range of composition, and is usually determined by a set

of experimental measurements of melting temperatures.

The only general mathematical theory describing these phase diagrams is

Raoult’s law [Atkins 1990] for ideal dilute solutions.  Raoult’s law describes the

vapour pressure of the solution as a linear function of solute concentration.

Since the vapour pressure of a solution is related to the freezing point of that

solution, a linear relation between freezing point and solute concentration is

derived, but is valid only for very dilute solutions.  Raoult’s Law is inappropriate

for solutions with solute concentrations of interest in cryobiology, since large

deviations from linearity are observed at these concentrations [Weast 1983;

Rasmussen & MacKenzie 1968].

Others have used empirical mathematical expressions to describe the

phase behaviour of specific aqueous solutions [Pegg 1986].  Since these

equations have no physical basis for their derivation, they only describe the

phase diagram curves for a few selected solutes, and cannot be generalized to

arbitrary solutions containing an arbitrary number of solutes.  This approach also

requires experimental measurement of phase diagram information over the entire

                                           
* A version of this chapter has been published.  Studholme & McGann 1995.  Advances in

Cryogenic Engineering.  41:47-54.
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range of concentration to calculate the empirical parameters required in the

equations.  As the number of solutes present in a solution increases,

experimental measurement of phase diagram information becomes impractical,

and a general mathematical theory for predicting this phase behaviour becomes

important.

In this chapter, an approach to predicting the phase behaviour of solutions

based entirely on thermodynamics is presented.  Thermodynamics is, by

definition, the study of equilibrium states, and the phase change during freezing

is a reversible, hence equilibrium, process.  As a result of this equilibrium, one

important thermodynamic state variable remains constant -- the Gibb’s free

energy.  Hence, the total derivative of the Gibb’s free energy is identically zero.

This is the basis for development of a thermodynamic phase behaviour theory.

Theory

Since the process of freezing is an equilibrium process that occurs at a

specific temperature depending on solute concentration, the Gibb’s free energy

of the system during this state change must remain constant.  Free energy is

given by

F E TS= − , (3-1)

where F is the Gibb’s free energy, E is the enthalpy of the system, T is the

temperature, and S is the entropy [Atkins 1990].  Since F is constant, the

differential of F should be identically zero.  Formally differentiating equation 3-1

gives

dF dE TdS SdT= − − , (3-2)

which can be simplified slightly by noting that freezing is an isothermal process,

and thus dT = 0 .  Furthermore, imposing the equilibrium condition, dF = 0,

equation 3-2 becomes

dE TdS− = 0

or,
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T
dE

dS
= . (3-3)

Equation 3-3 is an expression for the freezing point of a solution.  To make use

of this equation, expressions for dE  and dS  need to be obtained.

Since E is the enthalpy of the system, dE  is the change in enthalpy that

occurs during freezing.  Water releases energy, the latent heat of fusion, during

the ice formation process and this energy will be one component of dE .  The

other component of dE  is a result of the unmixing that is necessary for a phase

change to occur.  Here, it is assumed that the phase change is the result of one

component freezing out of the solution to a pure form.  Hence, the unmixing

occurs as this component separates from the solution and solidifies.  During any

mixing process it is generally the case that some energy is absorbed or released,

usually called the excess energy of mixing or the heat of mixing.  The unmixing

process during freezing must therefore be accompanied by an absorption or

release of energy, which constitutes the remaining component of the quantity

dE .

An analogous argument for dS  can be presented.  Freezing, being an

ordering process, results in a decrease in entropy which constitutes one of the

two components of dS .  The other component comes from the unmixing that

must occur since, as above, the mixing of distinct solutes generally results in a

change in entropy.  Specifically, mixing results in an increase in entropy since

the mixture will be in a less ordered state than the separate components.

Therefore, the unmixing process must result in a decrease in entropy and this

decrease represents the second component of dS .

Consider a binary mixture consisting of n1  moles of the solvent (where the

term solvent is used here to label the solute that is being frozen) and n2  moles of

another solute.  Since the solvent freezes in a pure form, freezing dn1  moles of

solvent requires that this solvent must first be removed from the solution, and

then solidified.  Removing this infinitesimal quantity from solution will cause

changes in both the excess enthalpy and the excess entropy of the solution,
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which will be labeled − dEM  and − dS M , respectively.  Here, the subscript M

indicates mixture and the minus sign is included because the substance is being

removed from the mixture.  Once the substance has been removed from solution,

it then undergoes the necessary change of state.  Let dEF  and dSF  be the

changes in enthalpy and entropy, respectively, that result from the process of

fusion.  The total changes in enthalpy and entropy can now be expressed as

follows:

dE dE dEF M= − , (3-4a)

dS dS dSF M= − . (3-4b)

These equations can be substituted into equation 3-3 to give,

T
dE dE

dS dS
F M

F M

= −
−

(3-5)

Since the enthalpy and entropy released during freezing is directly

proportional to the amount of substance being solidified,

dE E dnF F= ⋅ 1, (3-6a)

dS S dnF F= ⋅ 1, (3-6b)

where E F  and S F  are the specific latent heat and specific latent entropy of fusion

for the substance being frozen; both are considered constant here.  This leaves

only dE M  and dS M  as unknown quantities that must be examined in greater

detail.

In 1947, J. H. Hildebrand expressed the entropy of mixing for a binary

solution whose molecules differ in size as

∆S

R
n

V n b n b

n v b
n

V n b n b

n v b

M

= − −
−

+ − −
−1

1 1 2 2

1 1 1
2

1 1 2 2

2 2 2

ln
( )

ln
( )

(3-7)

where ∆S M  indicates the excess entropy, labeled S M  here, V is the total volume

of the mixture, v1  and v2  are the molar volumes of each component, and b1  and
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b2  are geometrical volumes, or intrinsic van der Waals volumes, of each

component [Hildebrand 1947].

The partial derivative of S M  with respect to n1 , holding n2  constant, can

be calculated from equation 3-7 as

∂
∂
S

n
R

n v b n v b

n v b

n v b n v b

n v b n v b
M

n1

1 1 1 2 2 2

1 1 1

2 1 1 2 2 2

1 1 1 2 2 2
2







 =

− + −
−

+
− − −
− + −









ln

( ) ( )

( )

( ) ( )

( ) ( )
, (3-8)

where it is assumed that the volume of the solution is additive, that is

V n v n v= +1 1 2 2 , (3-9)

and thus

V n b n b n v b n v b− − = − + −1 1 2 2 1 1 1 2 2 2( ) ( ) . (3-10)

Of the solutes studied in this work, ethanol is the only one with a molar volume

that has a significant dependence on concentration (which invalidates equation

3-9).  This concentration dependence is evident in the phase behaviour of the

solution containing ethanol and water, and therefore, contributes to the error in

predicting the phase behaviour of that solution.

For an expression similar to equation 3-8, but involving EM , look to a

book by Hildebrand, Prausnitz and Scott titled Regular and Related Solutions

where an expression known as the Scatchard-Hildebrand equation is presented

[Hildebrand et al. 1970]. This equation results from work done by Scatchard

[1931] and describes the enthalpy of mixing of two liquids as

∆E n v n vM = + + −( ) ( )1 1 2 2 1 2 1
2

2
2

122φ φ δ δ δ , (3-11)

where ∆E M  represents the excess enthalpy of mixing, labeled EM  here, φi

represents the volume fraction of each component, and δi  is defined to be a

solubility parameter.  Here δ1  and δ2  describe the interactions between like

components in the solution while δ12  describes the interactions between unlike

components.  Practically, however, all these parameters cannot be found

independently, and therefore, a composite solubility parameter is defined by
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δ δ δ δ= + −1
2

2
2

122 , (3-12)

and included in equation 3-11 to get

E
n v n v

n v n vM =
+

1 1 2 2

1 1 2 2

δ , (3-13)

where substitutions for the volume fractions, φi , have also been made.  It should

be noted that δ > 0  implies an endothermic mixing process, while δ < 0  implies

exothermic mixing.  As before, the partial derivative of this enthalpy of mixing

equation with respect to n1 , holding n2  constant, is calculated as

∂
∂

δ
E

n

v n v

n v n v
M

n1

1 2
2

2
2

1 1 2 2
2

2







 =

+( )
. (3-14)

Now, knowing equation 3-8 and equation 3-14, the enthalpy and entropy

of unmixing for the dn1  moles of solvent can be calculated as

dE
E

n
dnM

M

n

=








∂
∂ 1

1

2

, (3-15a)

dS
S

n
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
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∂
∂ 1
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2

, (3-15b)

which, along with equations 3-6, can be substituted into equation 3-5 to get

T

E dn
E

n
dn

S dn
S

n
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M

n

F
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. (3-16)

Cancellation of the dn1 's is a requirement since the freezing point of a solution is

not expected to depend on the amount of solvent being frozen.  Thus, simplifying

equation 3-16 gives
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By substituting equation 3-8 and equation 3-14 into equation 3-17, the

equation for the freezing point of an arbitrary binary mixture is

T

E
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n v n v
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which depends on n1  and n2  along with the constants E F , S F , v1 , v2 , b1 , b2  and

δ.  To show that this expression does not depend on the total amount of solution,

n n1 2+ , make a transformation from n1 , n2  to x1 , x2 , the mole fractions.  This

transformation is
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In this expression v1  and v2  are the molar volumes of each component, which

are usually well known.  However, although δi  may be found in tables for some

compounds, the interaction term δ12  is generally not known, and therefore needs

to be fitted using data from experiment or literature and the technique of least

squares.  Finally, b1  and b2  are the intrinsic van der Waals volumes for each of

the components and although this constant is known for several real gases, it is
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difficult to obtain for most liquids.  Therefore it will have to be found by other

means, a few of which are proposed by Hildebrand et al. [1970]

Methods and Results

Values for the constants b1 , b2  and δ are required in order to predict the

phase behaviour of an arbitrary two component solution.  In the absence of

experimental values for these constants obtained from other sources, an

effective method of determining these values is by fitting equation 3-20 to known

phase information.  With three parameters to fit, at least 4 data points are

required and can be obtained either experimentally or from previously published

tables.  A problem with this method pertains to the calculation of b1 .  Since

solutions of interest in cryobiology all include water as a primary component,

there should be only one value for b1  that is common to all the mixtures.

Therefore, some method for determining b1 , independent of b2 , must be found,

and then curve fitting techniques can be used to find b2  and δ for each binary

solution of interest.

Determining b1

Hildebrand proposes a few techniques to find this geometrical volume

[Hildebrand et al. 1970], but due to limitations on the amount of experimental

data available in the literature, only one technique was found to be applicable.

From a set of steam tables [Haar et al. 1984], the value of b for water was

determined by a linear extrapolation of the molar volume of water vapour at

constant pressure, but as a function of temperature, to absolute zero

temperature.  The pressure chosen was 2000kPa  because the molar volume

data in the range of 50°C  to 210°C  was nearly linear and thus an extrapolation

was possible.  By this method, the value of b1  was determined to be

1144. ml mol .
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Determining δ

Since equation 3-13 represents the excess enthalpy of mixing and does

not contain the parameter b, information from the literature on the excess

enthalpy of mixing can be used to calculate δ.  Data on the excess enthalpy of

mixing for four of the binary mixtures considered here (ethylene glycol, methanol,

propylene glycol, and dimethyl sulfoxide, each as a binary mixture with water)

[Christensen et al. 1984] was fitted using the technique of least squares with

equation 3-13 to determine values for δ.  Figure 3-1 shows the data and fitted

curves.

Determining b2

With these values for δ, equation 3-20 was fitted to phase diagram data

[Weast 1983; Rasmussen & MacKenzie 1968] for the single parameter b2 .  In

the cases where no excess enthalpy data was available, equation 3-20 was fitted

for both b2  and δ.  In either case, figure 3-2 shows this phase diagram data

along with the fitted curves, while table 3-1 summarizes the fitted parameters

which are used to predict the phase behavior of these aqueous solutions.

Table 3-1.  Summary of parameters required in equation 3-20.

Solute molecular 
weight

  v   b     δδ

g/mol ml/mol ml/mol kJ/ml*
water 18.02 18.02 11.44

ethylene glycol 62.07 54.63 48.05 -0.099
propylene glycol 76.09 71.66 67.18 -0.100
methanol 32.03 38.05 31.48 -0.146
ethanol 46.07 54.84 48.26 -0.021
1-propanol 60.09 70.46 63.89 0.011
2-propanol 60.09 70.23 77.92 0.005
glycerol 92.09 71.70 48.23 -0.004
D-glucose 180.16 113.99 123.84 0.002
sucrose 342.30 214.12 232.74 0.001
acetone 58.05 67.59 60.95 0.015
dimethyl sulfoxide 78.13 70.94 52.49 -0.343

* negative values indicate exothermic mixing
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This phase diagram theory, based on a phase change in one component

of a binary solution and the unmixing necessary for the freezing of that

component, predicts the freezing point of aqueous solutions of various solutes

over a wide range of concentrations.  Application of the theory requires three

parameters describing the solution -- a solubility parameter, δ, and the intrinsic

van der Walls volume of each solute, b1  and b2 . The theory, although developed

for binary solutions, can be generalized to mixtures with an arbitrary number of

components.
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Figure 3-1.  Excess enthalpy is shown as a function of water concentration.  The

solid line is the fitted curve using equation 3-13 with the indicated value of δ.

The open squares represent data at 25° C while the closed circles represent data

at 35° C.  This latter data was not used during fitting, but is instead just reported

for comparison.
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Figure 3-2.  Phase diagrams from the literature were fitted to equation 3-20. The

ethylene glycol, methanol, propylene glycol, and dimethyl sulfoxide curves were

fitted for the single parameter b2 , while all the other curves were fitted for both

parameters δ  and b2 .  The broken line in each graph represents the Raoult’s

Law prediction of the phase behaviour.
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Chapter 4

Membrane Permeability

Introduction

Most biological cells, and some other biological tissues, are bounded by a

semi-permeable membrane which typically allows the passive transport of water,

but restricts the passage of salts and other ions.  An ideal semi-permeable

membrane is one which permits resistance-free movement of one solute, such as

water, while completely blocking the movement of all other solutes.  The

membranes which bind cells, however, are considerably more complex as they

will allow transport of many different solutes, each with varying amounts of

resistance.  In addition, some of this transport is actively done by membrane

pumps that vary their rate depending on the state of the cell.  Despite these

complexities, the membrane of a biological cell can be considered to be passive

and semi-permeable.  This assumption is generally valid in cryobiology, and it is

therefore used in this chapter.  It is also assumed that: the membrane is

permeable to water with a specified resistance to water flow, the membrane is

not permeable to electrolytes and large molecular weight solutes, such as

sodium chloride and sugars, respectively, and finally, the membrane is

permeable to certain low molecular weight compounds, such as cryoprotectants,

with a specified resistance to such flow.

Several researchers have worked, and are working, on this problem of

osmotic flow through semi-permeable membranes.  Some early papers dealing

with this subject are [Jacobs 1952; Staverman 1952; Kedem & Katchalsky 1958;

Johnson & Wilson 1967].  The last two papers in this list both present the

equations that will be given here to describe osmotic flow.  More recent work on

membrane permeability can be found in [Kiil 1989; Batycky et al. 1996].  Only the

specific implementation of the transport equations is given in this chapter;

however, a complete derivation of these equations using irreversible
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thermodynamics can be found in [Kedem & Katchalsky 1958].  To start off, a

calculation of osmotic pressure from the freezing point of a solution is given.

Then, the case where only impermeant solutes are present with water is studied.

Finally, the complete problem, with both permeant and impermeant solutes in

water, is presented along with the equations necessary to implement the

dynamic time step numerical method.

Osmotic Pressure

Osmotic pressure is a colligative property of a solution and arises as a

result of the fact that water exerts no pressure on an ideal semi-permeable

membrane; however, the impermeant solute molecules do.  If solute

concentration in the exterior region of a cell is greater than that inside the cell,

the extra solute outside the cell exerts a net pressure on the cell membrane and

literally squeezes the water out of the cell; thus, the cell shrinks.  Osmotic

pressure is called a colligative property because it arises as a result of the

collection of unlike molecules.  Freezing point depression, as discussed in

chapter 3, is also considered a colligative property, and, in that chapter, it was

shown that finding a numerical value for the freezing point of an arbitrary solution

based on the known composition of that solution is not a trivial problem.  In this

chapter, a method of deriving osmotic pressure from the freezing point is given;

and thus, if one finds a method of calculating the freezing point of a solution,

given the solution’s composition, one can find osmotic pressures as well.

The chemical potential of water in solution with other solutes is given by

( ) ( )µ µw w wl l RT a= ′ + ln , (4-1)

where the l denotes liquid, R is the gas constant, T is the temperature, the prime

denotes the value for pure water, and aw  is the water activity.  For an ideal dilute

solution, Raoult’s law is assumed and the water activity is equal to the mole

fraction of water.  In this case, the chemical potential would be

( ) ( )µ µw w wl l RT x= ′ + ln ; (4-2)
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however, since assuming Raoult’s law would limit the scope of these derivations,

it will not be assumed here.

Following the methods of Atkins [1990], freezing point depression is

derived from the equilibrium condition

( ) ( )′ = ′ +µ µw w ws l RT aln , (4-3)

where the s denotes solid.  Without going into all the detail, the freezing point of

a solution can be expressed as a function of water activity by

F F

F F

R

H
aw s

w s f
w

−
=

∆
ln , (4-4)

where Fw  is the freezing point of pure water, Fs  is the freezing point of the

solution, and ∆H f  is the specific latent heat of fusion for pure water.  During this

derivation, it was assumed that ∆H f  and ∆S f  (entropy of fusion) are constants.

Also, in equation 4-4, ∆H f  must be expressed as a negative number.

An expression for osmotic pressure in terms of water activity can be

derived in a similar fashion.  Again, following the lead of Atkins [1990], an

equilibrium condition involving chemical potentials is written as

( ) ( )′ = ′ + +µ µ πw w wp p RT aln , (4-5)

where the p denotes liquid with hydrostatic pressure p, and π  is the additional

pressure (the osmotic pressure) required on the solution side of a semi-

permeable membrane to maintain equilibrium.  With the details of this derivation

also omitted (but found in Atkins [1990]), osmotic pressure can be expressed as

π =
− RT a

MV
w

w

ln
, (4-6)

where MVw  is the molecular volume of pure water and is assumed to be

constant.  The negative sign is necessary to ensure that osmotic pressure is

positive since aw ≤ 1 .

Now, by combining equations 4-4 and 4-6, and eliminating water activity,

osmotic pressure can be expressed in terms of freezing point by



38

π =
− −








T H

MV

F F

F F
f

w

w s

w s

∆
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Since equation 4-7 does not rely on the ideal dilute solution assumption

(Raoult’s law), it can be used to find the osmotic pressure of any solution

provided that the complete phase behaviour of that solution is known.

Impermeant Solutes in Water

When the only permeant solute is water, the permeability transport

equations take a particularly simple form as only one equation is involved.

Assuming there is no hydrostatic pressure difference across the membrane,

water flux can be written as a linear function of the osmotic pressure difference.

The equation for water flux is thus,

d V

dt
L Ai

p= − ∆π , (4-8)

where iV  is the volume of the cell, Lp  is the hydraulic conductivity, A  is the

surface area of the membrane, and ∆π π π= −e i  is the step change in osmotic

pressure across the membrane (e is for exterior, i is for interior).

Figure 4-1a illustrates the response of a cell when subjected to an

increased osmotic pressure, as dictated by equation 4-8.  In this case, the cell

was chosen to be a V-79 hamster fibroblast and the parameters describing this

cell are given in appendix 1.  The initial osmotic pressure within the cell is

599. atm  (corresponding to a sodium chloride concentration of 0147. mol l , which

is normal for most animal cells), and the cell is subjected to a 40 02. atm

(corresponding to a sodium chloride concentration of 0 976. mol l ) environment at

room temperature ( 22°C ).  This hypertonic environment causes the cell to shrink

until the cellular contents are concentrated enough to make the internal osmotic

pressure equal the applied osmotic pressure.

When equilibrium is restored the final volume is given by the Boyle-van’t

Hoff relation [Lucke & McCutcheon 1932]
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( )i i d
i o

e
i dv v v= + −

π
π

1 , (4-9)

where i oπ  is the initial osmotic pressure inside the cell, e π  is the exterior

osmotic pressure, i v  is the normalized cell volume ( = i i oV V ), and i dv  is the

osmotically inactive fraction of the cell volume.  The interior of a typical biological

cell is not simply composed of an aqueous solution.  Some portion of this interior

region is composed of substances that do not participate in the aqueous

solution, and therefore, do not affect the osmotic interactions of the cell with its

environment.  This portion of the cell is termed the osmotically inactive fraction.

The Boyle-van’t Hoff plot corresponding to the particular system illustrated by

figure 4-1a is given in figure 4-1b.

Addition of a Permeant Solute

When a permeant solute is added to the exterior solution around a cell,

this solute will contribute to the osmotic pressure difference; however, since it is

also permeable, a concentration gradient will drive the solute into the cell.  In this

situation, equation 4-8 becomes a pair of coupled ordinary differential equations,

given by

[ ]

( )

d V

dt
L A

d S

dt
P A C C

d V

dt

i
p N P

i
s s s

i

= − +

= + −










∆ ∆

∆

π σ π

σ1
, (4-10)

where ∆π N  is the osmotic pressure difference due to the presence of non-

permeating solutes, ∆πP  is the osmotic pressure difference due to the presence

of the permeating solute, ∆Cs  is the difference in permeant solute concentration

across the membrane, Cs  is the average concentration of permeant solute in the

membrane, i S  is the amount of permeant solute in the cell, Ps  is the permeability

coefficient for the permeant solute, and σ  is a reflection coefficient [Johnson &

Wilson 1967].  This reflection coefficient was first introduced by Staverman in

1952 and represents the proportion of permeant solute molecules that will be
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reflected from the membrane as opposed to passing through when they

approach the membrane.  Since some of the permeant solute molecules pass

through the membrane, only a portion of the osmotic pressure difference due to

the permeant solute contributes to the volume flux.  Also, because these

molecules pass through the membrane, a portion of the volume flux is due to

permeant solute movement, and not water movement.  This portion is seen as

the second term of the second equation of system 4-10.  The water flux is the

difference between the volume flux and the permeant solute flux.

To simplify the implementation of system 4-10, the first equation is

rewritten as

( ) ( )[ ]d V

dt
L Ai

p N P P= − + − −∆ ∆ ∆π π σ π1 , (4-11)

and given that the total osmotic pressure is π π π= +N P , system 4-10 can be

rewritten as

( )[ ]

( )
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dt
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d S

dt
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π σ π

σ

1

1
. (4-12)

With this system, the total osmotic pressure difference can be calculated from

the freezing point of the solution, as demonstrated in the impermeant only case

above.  The osmotic pressure difference due to the permeant solute can be

calculated from the freezing point depression due to that solute alone in the

solution.

A numerical solution to system 4-12 is presented in figures 4-2.  In this

system, the exterior region of the cell has dimethyl sulfoxide (DMSO) present at

a concentration of 14. mol l  (10%  by volume).  The interior of the cell initially

contains no DMSO.  It can be seen that water is initially forced out of the cell by

the greater osmotic pressure found in the exterior region.  This greater osmotic

pressure is a direct result of the presence of the permeant solute.  However, in
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addition to water being forced out of the cell, permeant solute also moves into

the cell due to the greater permeant solute concentration in the exterior region.

Water continues to leave the cell while solute enters until the osmotic

pressure both in and out are equal, which occurs at t = 4 6. sec  in the case of

figure 4-2.  Beyond this point, since the intracellular concentration of permeant

solute will still not equal the extracellular concentration, solute continues to enter

the cell.  This will result in a greater osmotic pressure (due to a greater permeant

solute concentration) within the cell.  This greater osmotic pressure causes an

influx of water back into the cell, thus expanding it.  Both water and permeant

solute continue to enter the cell until an equilibrium is reached where both

osmotic pressure and permeant solute concentration have zero gradient across

the semi-permeable membrane.  At this time, the cell has returned to its original

volume, but now has some of its water replaced by DMSO.  Figure 4-2b displays

the fluxes present during the process of volume change illustrated in figure 4-2a.

It should also be mentioned here that the parameters Lp  and PS  are

temperature dependent.  This temperature dependence is given by the Arrhenius

relation [Atkins 1990]

( )X T X
E

R T T
a= −

















0

0

1 1
exp , (4-13)

where X 0  is the value of X  at temperature T0 ,  and Ea  is the activation energy

which governs the temperature dependence.

Variable Time Step

Many variable step size methods operate by approximating the local

truncation error at each iteration, and then, if the local truncation error is in

excess, the iteration will be redone with a sufficiently smaller step size.  This

technique requires that iterations can be repeated as many times as necessary;

however, due to the complexity of the systems that may be modeled here, this is

unacceptable.  The computational and memory overhead required to undo

iterations overweigh the gain.  To overcome this problem it is necessary to be
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able to predict the local truncation error before each iteration begins, then

choose the step size for the iteration.

The Euler initial value method is a first order Taylor method [Burden &

Faires 1993] with each successive approximation given by

( )w w hf w ti i i i+ = + ′1 , , (4-14)

where wi  is the approximation of ( )f t  and h  is the step size.  In this case, the

local truncation error is also given by the Taylor theorem as

( )h
f i

2

2
′′ ξ , (4-15)

where [ ]ξi i it t∈ +, 1 .  Assuming that the step size is bounded above and that the

initial data are smooth, it is reasonable to approximate the local truncation error

by

( )h
f ti

2

2
′′ . (4-16)

In the case of the permeability equations 4-10 the local truncation error is

calculated from the second derivatives,
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If equation 4-7 is used to calculate osmotic pressure from the freezing point of

the solution, then

d

dt

T H

MV F

dF

dC

dC

dt
f

w s

sπ
= ⋅ ⋅

∆
2 . (4-18)

Since the local truncation error accumulates with each iteration, the total

error accumulation per unit of time is

( )n
h

f ti

2

2
′′ , (4-19)
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where n h= 1 .  If L is the maximum desired rate of error accumulation, then

( )h
f t Li2

′′ ≤ , (4-20)

which gives the following limitation on the step size

( )
h

L

f t i

≤
′′

1

2

. (4-21)

In the case of the permeation equations, ∆t  ( = h ) is constrained by
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i e
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where L  is the desired error limit in units of fraction error per second.   The

[ ]min  function in the numerator ensures that all errors are expressed as a non-

dimensional fraction of the actual value.

Figures 4-3 illustrate the effect of this variable time step method.  In each

figure the solid line is the volume curve presented in figures 4-1 and 4-2,

respectively, while the dashed lines represent the time step for each iteration.

The simulation was run for two different error tolerances: 10 5− sec  and 10 6− sec .

In both cases the time step was limited to a maximum of 01. sec .

The work presented in this chapter represents an application of basic

numerical analysis techniques.  Modeling the impermeant only situation and the

permeant, impermeant situation has been done time and time again by many

researchers in the field.  However, applying a variable time step to this process

is a seldom-used technique to improve the performance of the analysis.  In this

case, the variable time step is essential to ensure that this complicated model
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can be used to simulate whole tissues in a reasonable length of time while

maintaining a high level of accuracy.

Even though the equations presented in this chapter apply only to

solutions containing water, a permeant solute, and any number of impermeant

solutes, they could be generalized to multiple permeant solutes, increasing the

number of required parameters.  A better approach would be to improve the

theory behind the equations and develop a new set of transport equations.

When such work becomes available, the new equations can be implemented in

this model with a minimum of effort.
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Figure 4-1.  a) Typical volume response curve for a cell suspended in a

concentrated exterior solution.  b) The Boyle-van’t Hoff plot indicating the

equilibrium cell volume as a function of exterior osmotic pressure.
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Figure 4-2.  Simulation of cellular response in the presence of a permeating

solute.  Volume as a function of time is given in a), while the various fluxes that

cause this volume profile are given in b).
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Figure 4-3.  Demonstration of the variable time step method for a) the

impermeant only case, and for b) the permeant case.  The short broken line is for

the case where the error tolerance was 10 5− sec , while the long broken line is for

the 10 6− sec  case.  In each graph, there was no noticeable change in the solid

line for the two error tolerances used.
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Chapter 5

Diffusion Problem

Introduction

Unlike the permeation problem discussed in chapter 4, diffusion is a more

complicated problem since diffusion occurs not only in time, but in space as well.

The JWCompartment discussed in chapter 4 is assumed to be well mixed within,

and thus, the differential equations only describe the movement of solutes

through the membrane.  With diffusion, however, a solute concentration profile

must be maintained at the compartment boundary and throughout the

compartment.  This means that concentration within the compartment is both

time dependent and space dependent.

In addition to these concentration profiles, any phase change that occurs

within the compartment must be localized and propagate within the compartment

at a predicted rate.  The propagation rate of the phase change will depend on

the local solute concentration profiles, as the solute undergoing the phase

change must diffuse towards the phase boundary while all other solutes must

diffuse away, and on the temperature profile, as heat is either required or

released from the phase boundary as it moves.  This coupling between

temperature and the various solute concentrations present within the

compartment complicates the numerical solution as the entire system must be

solved simultaneously.

The basic diffusion equation is

∂
∂

∂
∂

C

t
D

C

x
=

2

2 , (5-1)

where D is the coefficient of diffusion and C is the concentration as a function of

space and time.  This diffusion equation is a differential form of Fick’s law,

J D
C

x
= −

∂
∂

, (5-2)
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which describes the diffusive flux density, J, across a boundary as a function of

the concentration gradient [Crank 1975].  Either form of the diffusion equation

can be used to solve diffusion problems.

In order to handle these equations numerically, one of two approaches

must be taken.  One approach is to solve the diffusion equation exactly in the

space dimension and then iterate through discrete time steps.  Although solving

5-1 exactly for a general case is a difficult problem, once a solution is found the

numerical analysis becomes trivial.  The other approach is to partition both the

space and time dimensions, and then use either equation 5-1 or equation 5-2 to

describe local changes in concentration at each time step.  This latter approach

is employed here.

The method developed here relies on a piece-wise quadratic fit of the

concentration profile.  Within each local region of space, the concentration

profile is fitted to a quadratic polynomial, and then this quadratic polynomial is

used with equation 5-1 to determine the time dependence of the concentration

profile.  To illustrate this method, the problem of mass diffusion alone is

considered first.  Heat diffusion is completely analogous to mass diffusion; and

therefore, follows from the solution for mass diffusion; however, in the case of

heat diffusion, a moving phase change is introduced and a solution for this case

developed.  Finally, mass and heat diffusion are combined with the phase

change, and a general solution to the problem is derived.

Mass Diffusion

Consider a one-dimensional system, bounded in space by [ ]0, L , and

containing some aqueous solution with a known initial concentration profile.  In

general this concentration profile is C∞  in space.  Fick’s law (equation 5-2)

dictates that the gradient of this concentration profile must exist at all locations in

space to ensure that solute fluxes remain finite.  Furthermore, if the diffusion

coefficient is continuous, the concentration gradients must be continuous to

ensure conservation of mass.  If the concentration gradient was discontinuous at
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a particular point, it can be seen from equation 5-2 that the flux of solute into that

region from the left would not equal the flux out to the right; thus implying that a

source or sink of solute was located at that point.

This argument suggests that the concentration profile within the region

[ ]0, L  must be at least a C1  function in the space variable, at all times.  To

achieve this, suppose that the interval [ ]0, L is divided into n subintervals of

varying widths, and that within each subinterval the concentration profile is fitted

to a 2nd order polynomial.  This situation is illustrated in figure 5-1.  To ensure

that the entire concentration profile is a C1  function in space, two constraints

must be imposed at each of the boundaries between subintervals.  One

constraint ensures continuity of the profile, while the other ensures continuity of

the gradient.  Since each constraint dictates the value of one parameter, two of

the three available parameters will be constrained in each subinterval.  The third

parameter will be used to describe the actual concentration profile.

To better understand how the various parameters are determined, the

entire system will be described.  The piece-wise quadratic function outlined in

figure 5-1 requires values for 3n parameters, namely the α i ’s, βi ’s, and γ i ’s.  To

accomplish this, a total of 3n  constraints must be found such that the resulting

3 3n n×  system can be solved.  The first n of these constraints are derived from

conservation of mass.  Assuming that each subinterval contains a total amount of

solute, C i , known at a particular moment in time, the following expression can be

given:

[ ]C x x dx
g

gi i i i
i

i i i
gi

gi

= + + = +
−
∫ α β γ α γ2

3

2

2

12
, i n= −0 1 , (5-3)

which then gives a constraint for γ i ,

γ αi

i

i

i
i

C

g

g
= −

2

12
, i n= −0 1 . (5-4)
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Further constraints arise from the continuity of the concentration profile

and the continuity of the concentration gradient at each of the n − 1  boundaries

between subintervals.  Note that, contrary to what was implied above, since there

are only n − 1 boundaries between subintervals, only 2 2n −  constraints are

required to impose the C1  condition; not 2n .  This means that there will be 2

constraints remaining to impose boundary conditions on the interval [ ]0, L .  The

continuity constraints are

g g g gi
i

i
i i

i
i

i
i i

2
1
2

1
1

1 14 2 4 2
α β γ α β γ+ + = − ++

+
+

+ + , i n= −0 2 , (5-5)

for continuity of the concentration profile, and

g gi i i i i iα β α β+ = − ++ + +1 1 1 , i n= −0 2 , (5-6)

for continuity of the concentration gradient.  Equation 5-5 can be simplified to

eliminate the γ i ’s by substituting the conservation equation 5-4 to get

g g C

g

g g C

g
i

i
i

i

i

i

i
i

i
i

i

i

2
1
2

1
1

1

1

16 2 6 2
α β α β+ + = − ++

+
+

+
+

+
, i n= −0 2 . (5-7)

Given the constraints that have now been presented, only 2 more

constraints are required to make the necessary 3 3n n×  system.  These last 2

constraints will be chosen at the boundaries x = 0  and x L= .  Since the

conditions at these boundaries may apply to either the concentration itself, or the

concentration gradient, four possible choices for these constraints exist.  The

possibilities are

g g C

g
C0

2

0
0

0
0

0
06 2

α β− + = , (5-8a)

− + =g G0 0 0 0α β , (5-8b)

g g C

g
Cn

n
n

n
n

n
n

−
−

−
−

−

−
+ + =1

2

1
1

1
1

16 2
α β , (5-8c)
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g Gn n n n− − −+ =1 1 1α β . (5-8d)

Two of these constraints must be chosen to complete the system.  Typically, this

choice will include one from 5-8a and 5-8b, as well as one from 5-8c and 5-8d.

This ensures that both boundaries of the interval [ ]0, L  have conditions limiting

solute transport.  In the case of a semi-infinite system, both conditions 5-8a and

5-8b may be used at the left boundary; however, in this case, these conditions

would then dictate the solution to the entire system.  For the purposes of this

work, 5-8a and 5-8d are the constraints that are chosen; however, calculations

for all four constraints will still be given where applicable.

Now, equations 5-4, 5-5, 5-6 and the appropriate choices of 5-8 represent

3n constraints on the 3n unknowns, α i , βi , and γ i .  Alternatively, equations 5-6,

5-7 and 5-8 can be considered as 2n constraints on the 2n unknowns, α i  and βi ,

and then later used to get the γ i ‘s from equations 5-4.  In matrix notation, the

2 2n n×  system is given by

g g

g g g g

g g

g

C
C

g
C

g

C

g

Gn

n

n n

0
2

0

0
2

0 1
2

1

0 1

1

0

0

1

1

1

1

0
0

0

0

0

1

1

6 2
0 0 0 0

6 2 6 2
0 0

1 1 0 0

0 0 0 0 1

0

−

−
−



























⋅





























=

−

− +




















−

−

−

α
β
α
β

α
β









. (5-9)

This large system can be solved as a series of small systems, each

formed by combining particular subsets of the equations in system 5-9 with

results from the other small systems.  To see how this is accomplished, consider

the last three equations in system 5-9,

g g

g g g g C

g

C

g

g G

n n n n n n

n
n

n
n

n
n

n
n

n

n

n

n

n n n n

− − − − − −

−
−

−
−

−
−

−
−

−

−

−

−

− − −

+ + − =

+ − + = − +

+ =











2 2 2 1 1 1

2
2

2
2

2
1

2

1
1

1

2

2

1

1

1 1 1

0

6 2 6 2

α β α β

α β α β

α β

. (5-10)



53

Since there are only three equations for four parameters, only three parameters

may be solved for, while the fourth remains independent.  Suppose the

parameters αn−1 , βn−1 , and βn−2  are all solved for as functions of αn−2 , then the

one equation involving αn−2  and βn−2  can be combined with the fourth and fifth

last equations of system 5-9.  These three equations would represent a system

for the parameters αn−2 , βn−2 , αn−3 , and βn−3 , of which, only three could be

solved for while the fourth is again independent.  The equation that is derived in

one system and used with the next in the series has a general linear form:

P Qi i i iα β+ = , (5-11)

where Pi  and Qi  are functions of Pi +1  and Qi+1 , and not functions of any of the

α i ’s or βi ’s.  By examining the last equation in systems 5-9 and 5-10, it can be

seen that this constraint is of the form 5-11.  In this case

P gn n− −=1 1 , (5-12a)

Q Gn n− =1 . (5-12b)

To make use of this method of solving the large system 5-9, it is

necessary to obtain a solution for the smaller, three equation systems

− + − =

− − = + −

+ =











+ + +

+
+

+
+

+

+

+ + + +

g g

g g g g C

g

C

g

P Q

i i i i i i

i
i

i
i

i
i

i
i

i

i

i

i

i i i i

1 1 1

1
2

1
1

1

2
1

1

1 1 1 1

6 2 2 6

α β β α

α β β α

α β

, i n= −0 2 . (5-13)

With the help of some symbolic math software, the solution to 5-13 is

( )
( )( )α
α

i

i i i i i

i

i

i

i

i i i i i

g g g Q
C

g

C

g

g P g g g
+

+ +
+

+

+ + + +

=
− + + + −









+ + −1

2
1 1

1

1

1 1 1 1
2

2 3 6

3 2
, (5-14a)
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( )
( )( )β

α

i

i i i i i i i i

i

i

i

i

i i i i i

g P g g g Q P
C

g

C

g

g P g g g
+

+ + + + +
+

+

+ + + +

=
+ + − −









+ + −1

2
1 1 1 1 1

1

1

1 1 1 1
2

2 3 6

3 2
, (5-14b)

( )( )
( )( )

( )
( )( )

β αi

i i i i i i i i

i i i i i

i

i i

i

i

i

i
i i

i i i i i

g g P g g g g P

g P g g g

g P
C

g

C

g
g Q

g P g g g
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− + + −

+ + −

+
− + −







 −

+ + −

+ + + + +

+ + + +

+ +
+

+
+ +

+ + + +

1 1 1 1 1

1 1 1 1
2

1 1

1

1
1

2
1

1 1 1 1
2

2

3 2

6 2

3 2

. (5-15)

Equation 5-15 can be written in the form 5-11 by letting

( )( )
( )( )P

g g P g g g g P

g P g g g
i

i i i i i i i i

i i i i i

=
+ + +

+ + −
+ + + + +

+ + + +

1 1 1 1 1

1 1 1 1
2

2

3 2
, (5-16a)

( )
( )( )Q

g P
C

g

C

g
g Q

g P g g g
i

i i

i

i

i

i
i i

i i i i i

=
− + −







 −

+ + −

+ +
+

+
+ +

+ + + +

6 2

3 2

1 1

1

1
1

2
1

1 1 1 1
2

. (5-16b)

These results are almost sufficient to solve system 5-9.  Equations 5-16

represent a recursive sequence for determining all the Pi ’s and Qi ’s with initial

values given by equations 5-12.  Equations 5-14 give a recursive sequence for

determining all the α i ’s and βi ’s; however, α0  and β0  are not yet known.  To find

these two initial values needed by equations 5-14, combine the first equation in

system 5-9 with the instance of equation 5-11 when i = 0  to get the system,

g g
C

C

g

P Q

0
2

0
0

0 0
0

0

0 0 0 0

6 2
α β

α β

− = −

+ =








, (5-17)

and then solve to get

( )α0

0 0 0
0

0

0 0 0

3 6

3
=

+ −








+

g Q C
C

g

g g P
, (5-18a)
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( )β0

0
2

0 0 0
0

0

0 0 0

6

3
=

− −








+

g Q P C
C

g

g g P
. (5-18b)

With these initial values to equations 5-14, all the α i ’s and βi ’s may be

determined; thus solving system 5-9.

It should be noted that if boundary condition 5-8b were used instead of 5-

8a, the initial values α0  and β0  would be

α0
0 0

0 0

=
−
+

Q G

g P
, (5-19a)

β0
0 0 0 0

0 0

=
+
+

g Q G P

g P
. (5-19b)

Furthermore, if boundary condition 5-8c were used instead of 5-8d, the initial

values Pn−1  and Qn−1  would be

P
g

n
n

−
−=1

1

3
, (5-20a)

Q
g

C
C

gn
n

n
n

n
−

−

−

−
= −







1

1

1

1

2
. (5-20b)

Two approaches can be taken to use the solution to system 5-9 in solving

the diffusion problem.  One approach makes use of the diffusion equation 5-1,

while the other uses Fick’s law (equation 5-2).  To use the diffusion equation,

first consider that within each subinterval,

∂
∂

α
2

2 2
C

x i= , (5-21)

and thus the diffusion equation becomes

∂
∂

α
C

t
D i= 2 . (5-22)
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Then, employing an Euler method [Burden & Faires 1993], the iteration equation

is

∆ ∆ ∆C D ti i= =γ α2 , (5-23)

where ∆t  is the time step used.  This method is only appropriate if the diffusion

coefficient is spatially constant; otherwise, Fick’s law should be used instead.  In

this case, the flux across each subinterval boundary is given by

( ) ( )J D g D gi i i i i i i i i= − − + = − +− − −α β α β1 1 1 , (5-24)

where J i  is the flux across the left hand boundary of subinterval i , and Di  is the

local diffusion coefficient.  In the case where i n=  the right hand side of equation

5-24 is used instead.  Once the fluxes across the subinterval boundaries have

been calculated, the iteration equation becomes

( )∆ ∆C J J ti i i= − +1 . (5-25)

To see that equation 5-25 is equivalent to equation 5-23 in the case where D is

spatially constant, note that ∆ ∆C gi i i= γ .

At each iteration of the simulation, it is generally the case that the α i ’s are

not equal and therefore continuity will be lost as the γ i ’s are adjusted.  To

restore continuity, all the α i ’s, βi ’s, and γ i ’s need to be recalculated at the end

of each iteration (that is, solve system 5-9).  This process is necessary to ensure

that as the model proceeds, a C1  representation of the concentration profile in

[ ]0, L  is maintained.

To test this numerical method, a problem where the exact solution is

known was chosen for comparison.  The problem chosen is one in which the

interval is initially at zero concentration, the x L=  boundary is a solid barrier to

diffusion, and the x = 0  boundary is fixed at a concentration that grows

exponentially to an equilibrium value.  The boundary condition at x = 0  is given

by
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( ) ( ){ }φ ηt C t= − −0 1 exp , (5-26)

and the exact solution [Crank 1975] to this problem is

( ) ( )
( )

( ) ( )( )
( ) ( ){ }
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t

x D

L D

L D j t L

j L D j

j x
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j
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16 1 2 1 4

2 1 4 2 1

2 1

2
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−
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− − +

+

=

∞

∑

exp
cos

cos

exp
cos

η
η

η

η
π

π

η π

π
. (5-27)

Figure 5-2 displays the exact and numerical solutions to this problem for

two different values of n, a) 5 and b) 10.  The solid lines are the numerical results

while the broken lines represent the exact solution.  The value of the diffusion

coefficient for these calculations was chosen to be 10 10 5 2. cm sec× − .  It can be

seen in figure 5-2 that small values of n result in significant error and other

numerical artifacts (such a negative relative concentrations).  Also, these

problems can be avoided by using a larger number of subintervals, such as

n = 10 .

Heat Diffusion with a Phase Change

Diffusion of heat occurs in exactly the same manner as solute diffusion;

therefore, the equations derived above all apply in the case of heat.  However,

the heat problem is complicated somewhat by the introduction a moving phase

change into the system.  This phase change marks a step change in heat

capacity, thermal conductivity, and density, and is usually accompanied by the

release or absorption of latent heat.  Therefore, although this problem is similar

to the above mass problem in many respects, the constraints that must hold at

the phase boundary are different.  Figure 5-3 illustrates the heat problem.

Equations 5-14 and 5-16 still apply for the cases where i m= −0 2  and

i l= − −2 , but are restated here with new variables,
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The new variables are: θ  for temperature, h for the subinterval width, and a

prime on all other variables to indicate the heat case.  The possible initial values

for these recursion relations corresponding to each boundary condition 5-8 are,
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2
θ

θ
, (5-30c)

′ =− −P hm m1 1  and ′ =−Q Hm m1 . (5-30d)

The significant differences between this heat problem and the preceding

mass problem all lie at the phase boundary.  At this boundary, heat is either

released or absorbed depending on the movement of the boundary; and

therefore, this source or sink of heat invalidates the continuity of the gradient
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condition that was used earlier.  In place of this condition, a new constraint is

used to describe the step change in the temperature gradient at the phase

boundary.  This new constraint is

K
x

K
x

L
dX

dts
s

x X l
l

x X

∂θ
∂

∂θ
∂

ρ= =− = , (5-31)

where the subscript s denotes the solid side of the boundary, while the l denotes

the liquid side.  Also, K is the thermal conductivity, L is the specific latent heat of

fusion and ρ is the density.  In terms of the usual notation, this expression is

rewritten as

( ) ( )K h K h L
dX

dts l′ + ′ − − ′ + ′ =− − −α β α β ρ1 1 1 0 0 0 . (5-32)

The quantity dX dt  is the speed of the phase boundary and is a new parameter.

With this extra parameter, the system will no longer have a unique solution

unless a new constraint is introduced.  The new constraint results from the fact

that the phase boundary always maintains a temperature equal to the freezing

point of the substance.  That is

θ( )X F= (5-33)

or in the appropriate notation

h h
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h h
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θ
. (5-34)

Now, with constraints 5-32, 5-34 and the generic linear relation 5-11, a system

analogous to 5-13 can be formed,

h h
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0
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. (5-35)
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This system is solved to get
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From equation 5-38, we read off as before,

′ =−
−P

h
1

1

3
, (5-39a)

′ = −






−
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Q
h

F
h1
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1

1

2 θ
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These equations now provide initial values for equations 5-29 in order to find the

′Pi ’s and ′Qi ’s for i l= − −2 .  Equations 5-36 are used to calculate initial values

for equations 5-28, which are then used to calculate the ′α i ’s and ′βi ’s for

i m= −1 1.

To make use of these equations in solving the heat problem, proceed as

before by deriving an iteration equation based on either the heat equation or

Fick’s law.  The heat equation is
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∂θ
∂ ρ

∂ θ
∂t

K

c x
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







2

2 , (5-40)

and results in iteration equations

∆ ∆′ =






 ′γ

ρ
αi

s

s s
i

K

c
t2 , i l= − −1, (5-41a)

∆ ∆′ =
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

 ′γ

ρ
αi

l

l l
i

K

c
t2 , i m= −0 1. (5-41b)

In these equations, K is the thermal conductivity, c is the specific heat capacity

and ρ  is the density.  Since the thermal conductivity is discontinuous across the

phase boundary, two iteration equations are required, one for each phase.

When using Fick’s law to derive the iteration equation, start with

( ) ( )J
K

c
h

K

c
hi

i

i i
i i i

i

i i
i i i= −






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 − ′ + ′ = −







 ′ + ′− − −ρ

α β
ρ

α β1 1 1 , (5-42)

where Ki , ci , and ρi  represent the value of each parameter at the left hand

boundary of the subinterval.  Then define the iteration equation as

( )∆ ∆θi i iJ J t= − +1 ; (5-43)

however, care must be taken when defining the iteration equation for the two

subintervals adjacent to the phase boundary.  When i = −1, J0  in equation 5-43

must be defined as

( )J
K

c
hs

s s
0 1 1 1= −







 ′ + ′− − −ρ

α β , (5-44)

and when i = 0 , J0  in equation 5-43 must instead be defined as

( )J
K

c
ho

l

l l

= −






 − ′ + ′

ρ
α β0 0 0 . (5-45)
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This attention is required to ensure that heat is conserved at the phase

boundary.

The only difficulty that remains is with the fact that the phase boundary is

moving, and thus h0  and h−1  will vary with time, one eventually reaching zero.

There are a variety of ways in which this problem can be approached.

The ideal way is to, at each iteration, calculate the approximate error

accumulation within each subinterval.  Then choose the subinterval producing

the most error and shrink it by some calculated amount, thus increasing the width

of the subintervals adjacent to the error prone subinterval.  This method still does

not preclude the possibility that either h0  or h−1  may become zero, nor does it

allow for the movement of subintervals from the liquid side to the solid side as all

the liquid turns to solid.  If one of h0  or h−1  becomes zero it would be necessary

to add that subinterval to the opposite phase and then continue the phase

change in the next subinterval, 1 or -2 respectively.

A simpler approach is to maintain all subintervals, except those two on

either side of the phase change, at a constant width.  When either h0  or h−1

becomes zero, that subinterval is transformed to the opposite phase and takes

half of the width from the other subinterval, h−1  or h0  respectively, which would

be twice the original, constant width.  This way, subintervals that are not adjacent

to the phase boundary maintain a uniform constant width, while the two

subintervals adjacent to the phase boundary vary in width from zero to double

the constant width of the other subintervals.  It is, of course, very important to

ensure that when subintervals are varied in size that the heat contained within

each subinterval is appropriately transferred to or from the neighbouring

subintervals.  This is a minor technicality.

Figure 5-4 demonstrates the freezing of water in an insulated rod initially

at 0°C  when one end is brought into contact with a constant cold source at a)

− °10 C  and b) − °100 C .  Each graph displays the temperature profile within the

rod at various times from the start of freezing to two hours.  The various

constants used to generate this data are given in appendix 1.  It can be seen
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from this simulation that the farther the ice front moves from the cold end, the

slower it moves.  This behaviour can be predicted from equation 5-31 by

approximating the temperature gradient in the solid phase by a straight line.

From figure 5-4 it can be seen that this approximation may be reasonable for the

a) case, but perhaps not as reasonable for the b) case; therefore, begin with the

a) case.  The temperature gradient in the solid phase is approximated as

( ) ( )∂θ
∂

s

x

C C

X
≅

° − − °0 10
, (5-46)

while the gradient in the liquid phase remains zero at all time.  Substituting these

in equation 5-31 gives the following ordinary differential equation

( )
K

C

X
L

dX

dts

10°
= ρ , (5-47)

which is solved to get

( )
X

C K

L
ts=

°2 10

ρ . (5-48)

The ice front position as predicted by this equation is compared to the simulation

results in figure 5-5.  Graphs are plotted for both the a) − °10 C  case and the b)

− °100 C  case, and in each graph the solid line represents the simulation result

while the broken line represents the solution 5-48.  It can be seen that in both

cases the solution 5-48 overestimates the progress of the ice front.  This is

understandable since approximating a concave down curve with a straight line

between the endpoints of the curve will always overestimate positive slopes at

the right hand endpoint.  This situation is demonstrated most clearly in figure 5-

5b where the straight line approximation is most inappropriate.

Mass and Heat Diffusion with a Phase Change

Given the development of a numerical method to simulate mass diffusion,

and the refined method to simulate heat diffusion with a phase change, a

combined solution can now be developed which incorporates the characteristics
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of both these previous solutions.  In this new combined system, the moving

phase change excludes solutes which will diffuse away from the phase change.

Also, since the freezing point at the phase change generally depends on the

concentration of the solutes present, the solutes will serve to hinder the

propagation of the phase change.  This new combined system is illustrated in

figure 5-6.

As one might expect, all the differences between this system and the

previous ones discussed occur at the phase boundary.  Thus, equations 5-12, 5-

14, 5-16, 5-18, 5-19, 5-20, 5-28, 5-29, and 5-30 still apply in this combined case,

but only when i m= −0 2  or i l= − −2 .  Therefore, in this case, it is only

necessary to derive the equations that describe the new behaviour exhibited at

the phase boundary.

There are two significant differences between this combined heat and

solute diffusion problem and the heat only problem discussed in the last section.

These differences are that the freezing point at the phase boundary now varies

with the concentrations of the solutes present, and that solute concentration

gradients at the phase boundary depend on the velocity of the phase boundary.

To begin, consider the latter difference.  At the phase boundary, the solute

concentration gradient is given by

∂
∂
C

x

C

D

dX

dt
= − , (5-49)

where C is the solute concentration at the phase boundary and dX dt  is the

velocity of the phase boundary.  It can be seen here that the concentration

gradient does not depend linearly on the boundary velocity.  This difficulty

seriously complicates the analysis; and therefore, needs to be rectified.  Since

this numerical method ultimately depends on calculations at a series of small

time increments, it is possible to estimate the solute concentration, C, at the

phase boundary by making use of the concentration at the last time increment.
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Call this concentration estimate 
~
C .  Then, in the standard notation, equation 5-

49 becomes

− + = −g
C

D

dX

dt0 0 0α β
~

. (5-50)

Since P0  and Q0  can be calculated from equations 5-12 and 5-16, they

are known; and thus, equation 5-50 can be combined with the linear relation 5-

11 to get the system

− + = −

+ =







g
C

D

dX

dt
P Q

0 0 0

0 0 0 0

α β

α β

~

. (5-51)

This system has the solution

α0

0

0 0

=
+

+

Q
C

D

dX

dt
g P

~

 and (5-52a)

β0

0 0 0

0 0

=
−

+

g Q P
C

D

dX

dt
g P

~

; (5-52b)

and thus, once dX dt  is known, the solution to the mass portion of the problem is

known since equations 5-52 can be used as initial values for the recursion

relations 5-14.

Now consider the freezing point at the phase boundary.  In general, this

temperature is some function of the solute concentration at the boundary.  In

chapter 3, equations to calculate freezing point as a function of concentration

were developed; however, these equations are non-linear and would be very

difficult to implement here.  Instead, the concentration estimate introduced

above, 
~
C , is used again.  In this case, the freezing point of the solution at the

phase boundary is defined based on a first-order Taylor expansion about 
~
C .

The desired definition of freezing point is



66

( ) ( )[ ] ( )F C A C C C F C= − +~ ~ ~
, (5-53)

where A F C= ∂ ∂  and can be calculated from the equations given in chapter 3.

In the usual notation, equation 5-53 is

( )F C A
g g C

g
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
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where ( )~ ~
F F C=  is used for convenience.  This calculation of freezing point can

be made a function of dX dt  by substituting equations 5-52, giving

( )
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Ag g P

g P
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g P
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3

6 3
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At this point it is actually possible to generalize this development to allow

for an unlimited number of solutes.  By denoting individual solutes by a

superscript j, equation 5-53 can be generalized to include the effect of each

solute.  This generalization is given by

( ) ( )[ ] ( )F C A C C C F Cj j j j

j

= − +∑ ~ ~ ~
, (5-56)

where it is understood that C and 
~
C  are the appropriate column vectors

consisting of the C j ’s and 
~
C j ’s, respectively.  Equation 5-56 can be simplified

as

( )F C M
dX

dt
N= + , (5-57)

by letting
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System 5-35 was developed during the heat only analysis in the previous

section; however, that system still applies in this case with only minor

modification. The only modification is the constraint defining the freezing point at

the phase boundary.  The new constraint is

( )h h

h

h h
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F C M
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dt
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which, when used in system 5-35, gives the new system
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System 5-60 has solution
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where

( ) ( ) ( )[ ]
( ) ( ) ( )′ =

+ ′ − + ′ + + ′

+ ′ − + ′ − + ′−

− − −

− −

P
L h h h P Mh K h h P K h h P

L h h h P K Mh h P K Mh h P

l s

s l

1

1
2

0 0 0 1 1 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0

1

3
3 2 3

3 2 3 6

ρ

ρ
, (5-64a)

( )
( ) ( ) ( )

( )
( ) ( ) ( )

′ =
+ ′ −







 + ′

+ ′ − + ′ − + ′

+
+ ′ −









+ ′ − + ′ − + ′

−

−

−

− −

−

−

− −

Q

L h h P N
h

K Mh Q

L h h h P K Mh h P K Mh h P

K M h P
h h

L h h h P K Mh h P K Mh h P

l

s l

l

s l

1

0 0 0
1

1
0

2
0

1 0 0 0 0 0 0 1 0 0

0 0
1

1

0

0

1 0 0 0 0 0 0 1 0 0

2 3 4

3 2 3 6

12

3 2 3 6

ρ
θ

ρ

θ θ

ρ

. (5-64b)

It should be noted here that equations 5-61 through 5-64 are actually a

generalization of equations 5-36 to 5-39 from the pure water case discussed in

the previous section.  To see this, just set M = 0 , N F=  and compare.

The values for ′−P 1  and ′−Q 1  calculated using equations 5-64 can now be

used in equations 5-29 to find the remaining ′Pi ’s and ′Qi ’s for the heat portion

of the problem.  Then, all the ′α i ’s and ′βi ’s can be found along with dX dt , with

dX dt  being used to find the αi ’s and βi ’s for the solute part of the problem.

The same iteration equations (5-23, 5-25, 5-41, and 5-43) that were used in the

mass only and heat only cases can be employed here to update the simulation at

each time interval.

The only additional consideration that must be addressed is that as the

ice front moves, solute must remain in the liquid region.  This, however, is easily
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accomplished by maintaining the value of C0 , while g0  changes as a result of the

moving ice front.  Solute will automatically concentrate near the ice front when

the solid region is growing, and will automatically be diluted near the ice front

when the solid region is shrinking.

Numerical results obtained using this method are presented in figures 5-

7a and 5-7b.  In these simulations, D was given a value of 1.545× −10 5 2cm sec ,

which is appropriate for sodium chloride in water [Weast 1983].  All other

parameters used in the simulation are given in appendix 1.  Figure 5-7a

illustrates the results of freezing an aqueous solution initially at 0150. mol l  with a

fixed − °10 C  boundary condition.  The dashed line indicates the salt

concentration on the right axis.  The region of liquid extends from the open

square (indicating the phase boundary) to the right hand edge of the graph.

Figure 5-7b displays a summary of ice front position as a function of time.

For the purposes of comparison, the ice front position in the pure water case is

also presented (from figure 5-5a).  Clearly the rate of ice growth in an aqueous

solution is slowed by the presence of a solute; however, the buildup of this solute

at the phase boundary is not sufficient to halt the progress of the boundary.  The

primary effect of the solute buildup is the reduction of the temperature at the

phase boundary, and thus, a reduction of the thermal gradients in the solid

region.  These reduced thermal gradients are the primary cause of the reduced

rate of phase boundary propagation.

The numerical methods developed here are effective tools for simulating

the behaviour of a combined solute and heat system with a propagating phase

change.  These methods do not require any special form for either the initial

conditions or the boundary conditions; and thus, can be used to simulate the

behaviour of any real system.  The equations can also be generalized to an

arbitrary number of solutes (as described above) and can also be generalized to

the case where the diffusion coefficient varies in space.  This latter construction

is important for simulating three-dimensional systems where diffusion occurs in

only one-dimension, but the surface area through which the diffusion is occurring
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varies along the axis of diffusion.  In the next chapter, constitutional supercooling

will be introduced along with a description of dendritic breakdown.  The formation

of dendrites in the liquid region effectively reduces the surface area (in a position

dependent manner) available for solute diffusion; and thus, this model must be

able to deal with that situation.
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Figure 5-1.  Subinterval structure for the mass only diffusion problem.  The

concentration gradient within each subinterval is fitted to a quadratic equation,

while observing certain boundary conditions.
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Figure 5-2.  Illustration of solute diffusion in an aqueous solution.  The

simulation was done for the case where a) n = 5  and b) n = 10 .  In both cases,

the broken line represents the exact solution to the problem.
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Figure 5-3.  The heat diffusion problem is similar to the mass diffusion problem;

however, it has been revised to include a phase boundary at X.  This phase

boundary propagates with time, and is always maintained at a temperature equal

to the freezing point of the liquid.
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Figure 5-4.  Temperature profiles present during the freezing of a pure water

sample by a fixed temperature at the left boundary.  The fixed temperatures used

are a) − °10 C  and b) − °100 C .  In both cases the right boundary can be

considered to be either insulated or fixed at 0°C .
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Figure 5-5.  Summary of the extent of ice growth in the cases presented in figure

5-4.  In both figures the solid line is the simulated extent of ice growth (from

figure 5-4), while the dashed line is the estimated extent of ice growth (from

equation 5-48).  The estimated extent of ice growth in the b) graph deviates

significantly from the simulated extent of ice growth due to the inappropriateness

of the assumption that the temperature profile in the solid phase is linear.
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Figure 5-6.  Mass and heat diffusion are combined into a single problem.  The

mass gradient boundary condition at the phase change depends on the velocity

of the phase change, while the temperature at the phase change depends on the

concentration of solutes.
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Figure 5-7. Simulation of the freezing process in a sample of aqueous solution

with an initial concentration of 0150. mol/ l  and an initial temperature of 0°C .

Graph a) gives the temperature (solid lines) and concentration (broken lines)

profiles along with the phase boundary location (open squares), while b)

summarizes the extent of ice growth as a function of time.  In b), the extent of ice

growth in the pure water case (figure 5-5a) is also reported for comparison.
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Chapter 6

Constitutional Supercooling

Introduction

It has been demonstrated that the presence of a solute in liquid water can

significantly slow the freezing process.  In chapter 5, the progress of the planar

ice front was reduced by approximately 47% when a solute at 015. mol l  is

present.  This reduction in phase boundary velocity results from the conditions

that solute diffuse away from the phase boundary and that the temperature at the

phase boundary always equals the local freezing point.  The freezing point at the

phase boundary is a function of solute concentration, and as solute

concentration increases due to the advancing phase boundary, the freezing point

decreases.  This reduces the temperature gradient in the solid region, and since

ice growth is heat limited, the reduction in temperature gradient reduces the

amount of heat diffusing from the phase boundary, thus reducing the velocity of

the boundary.

On the liquid side of the phase boundary an interesting situation may

arise.  If the liquid is initially warmer than the freezing point and at a uniform

temperature, then, as the phase boundary propagates, a temperature gradient

will develop on the liquid side and will be greatest at the phase boundary.  Also,

since no solute crosses the phase boundary, solute concentration will build

immediately adjacent to the phase boundary and decrease to the initial

concentration as one moves further from the boundary.  Since the freezing point

is a function of solute concentration, this concentration profile will lead to a

freezing point profile where the freezing point gradient is greatest at the phase

boundary.  Assuming the solid is on the left, both the temperature and freezing

point gradients will be positive and be greatest at the phase boundary, in this

case.
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If the freezing point gradient is greater than the actual temperature

gradient, a condition known as constitutional supercooling arises.  Since the

phase boundary is at equilibrium, the temperature and freezing point are equal at

the boundary; however, if the freezing point gradient is the greater, the freezing

point at locations a small distance from the phase boundary will be greater than

the actual temperature.  Since liquid exists in this region, the liquid will be in a

meta-stable supercooled state.  Some early work dealing with constitutional

supercooling can be found in [Weinberg & Chalmers 1951; Rutter & Chalmers

1953], while observations (and excellent pictures of dendritic ice growth) more

comparable to this work can be found in [Körber & Scheiwe 1983a; Körber et al.

1983b].

Constitutional Supercooling

To illustrate how constitutional supercooling may arise and how it may be

dealt with, a series of simulations similar to those done at the end of chapter 5 is

performed.  These simulations, however, only consider a 15. mm  region liquid

with the same initial solute concentration of 015. mol l  as in chapter 5.  The

simulations will all start with the liquid at a temperature of + °10 C  and the left

boundary at a temperature of − °05. C  (corresponding to the freezing point of a

015. mol l  solution of sodium chloride in water).  The temperature at the left

boundary is reduced at fixed rates of − 0 02. K sec , − 0105. K sec , and − 10. K sec .

The diffusion coefficient used for these simulations is 0 72 10 5 2. cm sec× − , which is

the diffusion coefficient for a solution of sodium chloride and water as used in

[Körber et al. 1983b].

Figure 6-1a illustrates the temperature and concentration profiles that

arise in the − 0105. K sec  simulation.  Since the freezing point of the solution is a

function of solute concentration (as described in chapter 3), the concentration

profiles in figure 6-1a can be alternatively represented as freezing point profiles.

These freezing point profiles are shown in figure 6-1b as the broken lines.

Equilibrium at the phase boundary dictates that the freezing point must equal the
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actual temperature at this boundary, as shown in figure 6-1b; however, since the

freezing point is a function of solute concentration, which is in general

independent of the actual temperature, the freezing point will deviate from the

actual temperature as the distance from the phase boundary increases.

If the freezing point increases more with distance from the phase

boundary than the actual temperature does, then constitutional supercooling will

result.  Figure 6-1b illustrates the state of the simulation at three distinct times.  It

can be seen that at 3sec  constitutional supercooling has not yet developed, but

at 7sec  constitutional supercooling is beginning to arise as the actual

temperature of the liquid near the phase boundary falls below the freezing point.

At 11sec , the temperature is as much as 0 31. K  below the freezing point at some

locations.

This supercooled state is meta-stable and can persist for a finite period of

time; however, as the degree of supercooling increases, the probability that

random perturbations at the phase boundary will cause some regions to protrude

into the supercooled liquid also increases.  Since the supercooled liquid

presents conditions favourable to an advancing ice front (that is, the possibility of

forming ice without having to remove heat), any perturbation in the planar phase

boundary that allows ice to protrude past the region of salt buildup and into the

supercooled region will cause a dendrite to form.  This breakdown of the planar

ice front is called dendritic breakdown.

Stability Condition

A necessary condition for interface instability is derived from a

comparison of the freezing point gradient and the actual temperature gradient.

This condition was first presented in [Rutter & Chalmers 1953], and is given here

as

dT

dx

dT

dx

dT

dC

dC

dxliquid fp

> = , (6-1)
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where dT dC  is the slope of the phase diagram.  The condition does not dictate

the initiation of dendritic breakdown; but instead, indicates the presence of

constitutional supercooling which is a requirement for dendritic breakdown.  The

actual dendritic breakdown event occurs randomly with a probability that is

dependent on the degree of supercooling.  For the purposes of numerical

simulation, the exact conditions necessary and sufficient for dendritic breakdown

must be specified prior to the execution of the simulation.

Figure 6-2 gives the thermal gradients present during each of the three

sample simulations.  The solid lines represent the actual temperature gradient as

a function of location, while the broken lines indicate the freezing point gradient.

The condition for interface instability, equation 6-1, is satisfied when the broken

line intersects the solid line and at all points to the right of the intersection.  This

intersection occurs at x = 0 0061. cm  and t = 12 5. sec  in the − 0 02. K sec  case, at

x = 0 0060. cm  and t = 5 6. sec  in the − 0105. K sec  case, and at x = 0 0022. cm  and

t = 085. sec  in the − 10. K sec  case.

Dendritic Breakdown

When breakdown of the supercooled state occurs, ice forms in the region

of constitutional supercooling.  Since the region is at a temperature below the

freezing point, ice will form without the removal of latent heat as is usually

required, and therefore, can form at an almost unlimited rate.  As ice forms in this

region, however, the latent heat that is released increases the local temperature.

Also, increased solute concentration, due to water removal, decreases the

freezing point.  Ice may continue to form until the release of latent heat and the

concentration of solute results in the restoration of equilibrium; where the local

temperature and the freezing point are equal.

To calculate exactly how much ice will form in this situation, suppose that

before dendritic breakdown the region contains w0  moles of water and n0  moles

of solute at a temperature of θ0 .  Assuming that the freezing point can be

calculated from
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( ) ( ) ( )F C F C C C
F

C
= + −0 0

∂
∂ , (6-2)

where C0  is the initial solute concentration, a relation equating temperature and

the freezing point can be derived to calculate how much ice should form.

If s  moles of ice were to form, the sample would be warmed by the latent

heat of fusion to a temperature given by

( ) ( )
( )θ θ

θ
θ

θ
= − = −

+ −0
0

0
0

0

L

HC
s

L

HC sCp lCp s
s , (6-3)

where HC0  is the initial heat capacity of the sample, sCp and lCp are the specific

heat capacities of solid and liquid water, respectively, and L  is the specific latent

heat of fusion as a function of temperature (and is negative, hence the negative

sign on the second term).  The two different forms of this equation result from the

fact that one can either: increase the temperature of the system first and then

turn the liquid to solid (first equation), or first turn the liquid to solid and then use

the heat to raise the temperature of the system.  In nature, the temperature of the

system rises as the liquid is turned to solid.

Both versions of equation 6-3 present difficulties in solving the ice growth

problem.  The difficulty with the first equation lies in its implicit nature and

requires one to estimate a value for θ , while the second version of the equation

increases the complexity of the algebra.  There is one valid argument for the use

of the first version of equation 6-3 with an estimated, or better, an overestimated

value of θ .  Overestimating the value of θ  will result in an underestimate of the

amount of ice that will form.  This underestimate may be desirable since dendritic

ice growth will be limited by solute diffusion perpendicular to the axis of the

dendrite.  Since the effect of solute diffusion on the non-axial growth of a

dendrite is not calculated, underestimating the amount of dendrite growth in this

direction is a safe alternative.

Equating the freezing point (equation 6-2) and temperature (equation 6-3)

gives
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where ( )F F C0 0= , ( )n v lMV s C0 0 − ⋅ = , MVw  is the molecular volume of water, v0

is the initial aqueous volume, and L  is the estimated latent heat of fusion

( ( )= L F0  is suggested).  Equation 6-4 has a pair of solutions, of which one is

applicable:
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If multiple solutes are present in the solution, equation 6-5 may be generalized to
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Equation 6-5 is used to calculate ice growth and melt following dendritic

breakdown at each iteration of the simulation in each of the liquid subintervals.

In the − 0105. K sec  simulation discussed above, dendritic breakdown was forced

to occur at 11sec  into the simulation and these results are displayed in figure 6-3.

The figure illustrates the situation immediately preceding dendritic breakdown,

as it was in figure 6-1b, and then demonstrates the effect of dendritic breakdown

immediately after the formation of dendrites and then at a later time.

After dendritic breakdown ice growth is far less limited by the

accumulation of solutes at the ice surface since the ice surface is significantly

greater in area and the ice now has two options for further growth:  extend the

length of the dendrites, or increase the width of the dendrites.  The option that is

preferred in a particular situation depends primarily on the thermal gradients

present in the region of the dendrites.  If the thermal gradients are kept large, the



84

dendrites will likely be very thick at the cold end, and taper in width rapidly as

one moves towards the warm end.  The overall length of the dendrites will be

limited as the freezing point is exceeded at the warm end.  On the other hand, if

the temperature in the region of the dendrites is more uniform and thermal

gradients are reduced, dendrite thickness will also be more uniform, and the

dendrites will likely grow to longer lengths.

Since ice in the region of the dendrites remains at equilibrium with the

liquid at all times, the local temperature will always equal the freezing point,

which, of course, is a function of solute concentration.  This coupling between

solute concentration and temperature can have a profound effect on either the

solute concentration or the temperature profile, depending primarily on the

specific values of the latent heat of fusion and the heat capacity.  Figure 6-3

illustrates the effect on the temperature profile when the specific latent heat of

fusion is relatively large compared to the heat capacity, as is the case for water.

As the dendrites form in the liquid region, large amounts of latent heat are

released and the temperature profile is forced to follow the freezing point profile

(as dictated by the concentration profile).  In [Körber & Scheiwe 1983] the

opposite effect is demonstrated as their experimental setup includes a large

glass substrate possessing a heat capacity far greater than that of the liquid.  In

this case, it is observed that the when dendrites form, solutes become

increasingly concentrated until the freezing point profile coincides with the

temperature profile.  The large heat capacity of the glass ensures that the

released latent heat had little effect on the local temperature.  Since the

temperature profile is roughly linear, and the phase behaviour of the solute is

also roughly linear, Körber found that the solute concentration profile in the

region of the dendrites is approximately linear.

Understanding the effect of constitutional supercooling on a planar ice

front is of importance in a range of scientific fields ranging from engineering and

chemistry to biology and cryobiology.  The techniques presented in this chapter

can be used to model planar ice growth and to predict the temperature gradients
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that lead to constitutional supercooling.  When constitutional supercooling does

result, dendritic breakdown may occur as a means to extend the ice front beyond

the solute barrier that had built up in the path of the planar ice front.  In this way,

solute diffusion ceases to limit the growth of ice in a solution when temperature

is decreasing.  The methods developed here allow the simulation of dendrite

growth in both the axial direction and in width.
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Figure 6-1.  A sample of aqueous solution is cooled from an initial + °10 C  at a

constant rate of − 0105. K sec .  An advancing planar ice front (open squares)

leads to a) increased solute concentration, which results in b) a depression of

the freezing point near the ice front.  It can be seen in b) that at later times, the

actual temperature is below the freezing point.
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gradients (broken lines) as a function of phase boundary position for various

cooling rates.  At positions beyond the intersection of the two temperature

gradients, the phase boundary is unstable and may undergo dendritic

breakdown.
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Figure 6-3.  After dendritic breakdown, dendrites extend from the phase

boundary into the supercooled liquid region.  Latent heat released from the

dendrites causes the temperature profile to exactly match the freezing point

profile (11sec ).  The planar ice front can continue to propagate after dendritic

breakdown; however, growth of the dendrites is preferred.
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Chapter 7

Experimental Applications

Introduction

The application of a mathematical model to the simulation of heat and

mass transport in biological tissues can be of great value to experimental

biologists.  These simulations, typically of real experiments done in the lab, can

be used to predict the possible outcome of an experiment before it is performed,

or to help to understand the results obtained from each experiment.

Furthermore, the simulation can be used to infer measurements that are either

difficult or impossible to make during an experiment, or alternatively, to predict

the outcome of entire experiments that may be difficult to perform.

The fundamental elements of the model outlined in chapter 2 have been

developed, tested, and presented in the preceding chapters.  In this chapter, the

complete model is employed in the simulation of some typical experiments that

may be performed on tissues in the lab.  Unfortunately, sufficient experimental

data necessary to test the complete model were not available in the literature at

the time of this writing, and therefore, since each component of the model was

tested as it was developed, simulation results will be presented in this chapter

without direct comparison to experimental data.  Qualitative assessment of the

results is given as data are presented.

The simulations presented in this chapter are all done using human

articular cartilage as the tissue model.  Cartilage is the tissue found on the

exposed surfaces of bones at the joints where one bone meets another.  The

primary role of cartilage is to absorb compressive forces between the two bones

while providing a low friction surface for relative movement between the bones

[Muldrew 1993].  Cartilage is composed primarily of a matrix of collagen fibrils

with cells, called chondrocytes, interspersed within the matrix.  The function of

the cells is to maintain the cartilage matrix by repairing damaged collagen fibrils
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or by synthesizing new fibrils; and therefore, attempts to preserve cartilage

outside the body must focus on the preservation of the function of the

chondrocytes [Schachar & McGann 1991].  As a result, an understanding of the

local conditions experienced by individual chondrocytes during an experimental

procedure is necessary to develop optimal protocols for preservation.

Cartilage Simulations

Cartilage is a tissue well-suited for testing the capabilities of the model

developed in the preceding chapters.  Cartilage can be considered to be

relatively uniform in composition throughout with only the two main components

discussed above: the matrix and the chondrocytes.  The matrix consists of 80%

water [Maroudas 1979] and has three distinct regions: the superficial zone, the

intermediate zone, and the deep zone.  The composition of the matrix and the

function of the chondrocytes does not vary from one zone to the next; only the

density and placement of the chondrocytes define each zone.  Figure 7-1

illustrates the structure of articular cartilage and how it is represented for

simulation.

Since cartilage has a large proportion of water, it can be adequately

simulated by an aqueous solution with the diffusion coefficients set as

appropriate for the tissue.  Also, as little is known about the specific diffusion

properties of each region within the cartilage, a single diffusion compartment can

be used to model the entire tissue.  If it can be assumed that ice and solutes

profuse equally and symmetrically at both sides of the tissue, only half of the

tissue need be simulated as the other half will be a mirror image of the first.

Four distinct simulations involving the freezing of cartilage are presented

in this chapter.  In all four simulations, a piece of cartilage 2 mm  thick and 1cm2

in surface area is frozen with 1ml  of surrounding media ( 015. mol l  sodium

chloride solution) in a plastic freezing tube that is about 14 mm  in diameter.  As

mentioned, only the first 1mm  of the cartilage is actually simulated.  The thermal

conductivity of the plastic freezing tube is estimated to be 0.045J cm2 Ksec  and
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the surface area available for heat transport is estimated to be 5 2cm .  The

extratissue media is considered to be well mixed with zero temperature gradient,

and thus, a JWCompartment, as described in chapter 4, is used to represent the

media.  The cartilage is represented by a DCompartment, as described in

chapter 5, into which four chondrocytes (JWCompartments) are placed.  These

chondrocytes are located at positions 015. mm , 0 40. mm , 0 70. mm , and10. mm

within the DCompartment, and, due to their size, they are assumed to have

infinite thermal conductivity; thus, they maintain a temperature exactly equal to

the local extracellular temperature.  The permeability coefficients for the

chondrocytes are listed in appendix 1.

Each simulation begins with the entire system at a uniform temperature of

− °5 C  and, at t = 0 , ice is nucleated in the extratissue media with planar ice

formation beginning at the cartilage surface.  Each simulation proceeds with the

temperature outside the freezing tube being lowered at a constant rate.  Two of

the simulations have this rate set at − °1 min , while the other two have a cooling

rate of − °5 min .  Of each pair of simulations, one simulation is performed with

the additional solute, dimethyl sulfoxide (DMSO), present throughout the system

at a concentration of 14. mol l  (10%  by volume), while the other simulation was

done without this extra solute.  DMSO is a cryoprotective agent that is commonly

used to aid in the cryopreservation of cells and tissues.  The protective effect of

DMSO for cartilage will be assessed based on the results of these simulations.

Table 7-1 details the four simulations performed.

Table 7-1.  Summary of freezing simulations performed.

Simulation
Number

Initial
Temperature

Cooling
Rate

Final
Temperature

Dimethyl Sulfoxide
present

1 − °5 C − °1 min − °30 C none
2 − °5 C − °5 min − °30 C none
3 − °5 C − °1 min − °30 C 14. mol l

4 − °5 C − °5 min − °30 C 14. mol l
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Ice Formation

Each simulation was first run in planar ice mode.  This means that

dendritic ice formation was disabled and the planar ice front that is initiated at

the cartilage surface propagates throughout the cartilage.  Since this ice front

excludes solutes as it propagates, both salt and DMSO are excluded in the

simulations where DMSO is present.  The diffusion coefficient used for sodium

chloride in cartilage was 068 10 5 2. cm sec× −  [Maroudas 1979], while for DMSO in

cartilage a diffusion coefficient of 102 10 5 2. cm sec× −  [Muldrew 1993] was used.

Since the samples are not at a high temperature to start with, and are not

being warmed at the far end, constitutional supercooling develops immediately

after t = 0  and grows in magnitude with time.  As a result, it is quite possible that

dendritic breakdown will occur within the tissue.  In the simulations presented

here, this dendritic breakdown is arbitrarily chosen to occur at the moment the

planar ice front reaches 01. mm  from the cartilage surface.  With this particular

choice made, dendritic breakdown was chosen for each simulation to occur at

times t = 95sec , t = 75sec , t = 145sec , and t = 98sec , respectively.  Figures 7-2a

and 7-2b illustrate the progress of the planar ice front in each of the four

simulations, both with dendritic breakdown and without dendritic breakdown.

The fact that the phase boundary can pass the 1mm  mark is due to the reduction

in the density of water as it is transformed to ice.  If the entire system were

capable of freezing, the compartment would increase in width to 109. mm .

It is seen in figure 7-2b, that the presence of DMSO significantly slows the

planar ice front.  This is due to the fact that the freezing point at the phase

boundary is a function of both the DMSO and salt concentrations.  Also, both

DMSO and salt must be excluded from the phase boundary.  The equations

developed in chapter 5 were used to simultaneously predict the diffusion of both

DMSO and salt from the phase boundary.  Figure 7-3 shows the DMSO and the

salt concentration profiles that result in the cartilage at various times for the

− °5 min  simulation.



93

Since the case of planar ice propagation throughout the cartilage may be

seen by some as unrealistic, the remaining data presented in this chapter will

deal with the simulations where dendritic breakdown occurs at 01. mm  from the

cartilage surface, as mentioned above.

Temperature Profiles

Temperature within each simulation was calculated at a variety of

locations throughout the system.  In particular, figures 7-4 and 7-5 displays the

temperature at six locations within the system: the control temperature, the

temperature of the extratissue media, and the temperatures present inside each

of the four chondrocytes.

At t = 0  in each simulation, the temperature throughout the system is

− °5 C ; however, since the extratissue media also has ice growth nucleated at

this time, the temperature in this media instantly rises to the freezing point of the

media ( − °05. C  for the no-DMSO case, and − °13. C  when DMSO is present).

Since ice does not form within the cartilage at this time, the temperature there is

a little slower to rise than the temperature of the surrounding media.

Temperatures within the cells of the cartilage continue to match the temperature

of the extratissue media until dendritic breakdown occurs.  At this moment,

dendrites quickly form throughout the cartilage and the latent heat that comes

with this ice growth increases the temperature in the cartilage.  It is seen in

figures 7-4 and 7-5 that the cell furthest from the planar phase boundary

experiences the greatest increase in temperature.  The reason for this is twofold:

first, being farther from the cartilage surface, heat takes longer to be extracted by

the colder surrounding media; and second, since the planar ice front excludes

solutes into the non-frozen region, and these solutes take time to diffuse into the

cartilage, the freezing point of the cartilage will be higher as one moves deeper

into the cartilage.

Eventually, as enough ice forms and concentrates solutes sufficiently to

lower the freezing point, the temperature of the system can begin to fall towards

the control temperature (temperature outside the plastic freezing tube).  The
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amount of time that is required for this to take place depends primarily on how

much ice needs to form since all this ice produces a large quantity of latent heat

which must be removed.  DMSO has the effect of decreasing the freezing point,

or alternatively, decreasing to total amount of ice that must be present at a given

temperature.  In the presence of DMSO, no less ice forms; however, the ice does

not form until lower temperatures are reached.  This is the reason why the

temperature of the system is quicker to return to the control temperature when

DMSO is present, as seen in figure 7-4b and 7-5b.  Furthermore, since DMSO

postpones ice formation to lower temperatures, it can also be seen in figures 7-

4b and 7-5b that the system does not match the control temperature as closely

when DMSO is present.  Despite this, DMSO does help to reduce the overall

discrepancy between system temperature and control temperature.

Intracellular Supercooling

When the temperature within the tissue deviates from the control

temperature, due to the release of latent heat during ice growth, the tissue

temperature must eventually return to the control temperature and this can only

be accomplished with cooling rates greater than the externally applied cooling

rate.  This large cooling rate causes rapid changes in the composition of the

extracellular environment, and these changes, in turn, cause supercooling to

occur in the chondrocytes as they attempt to maintain osmotic equilibrium with

their extracellular environment.  When ice forms in the extracellular region,

solutes are concentrated, and these solutes will induce an osmotic pressure

gradient across the cell membrane.  As detailed in chapter 4, this osmotic

pressure gradient will cause the cell to dehydrate in order to concentrate its

intracellular solutes, and thus, match osmotic pressure with the outside

environment.  Figures 7-6 illustrate this cell shrinkage.  It can be seen that the

rate of cell shrinkage reaches a maximum at a time corresponding to the time

when the temperature decrease is most rapid, as seen in figures 7-4 and 7-5.

The large water flux from the cells is an attempt to restore equilibrium

between the cellular contents and the extracellular environment.  The finite value
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of the hydraulic conductivity of the membrane, however, combined with the fact

that this value has an exponential dependence on temperature, ensure that the

water flux from the cell remains limited; and therefore, if the external cooling is

incessant, equilibrium is not restored in the cell.  Is this case, intracellular

supercooling will result.  Figure 7-7 demonstrates the degree of intracellular

supercooling present in the four cells within the cartilage.  Initially the entire

tissue is supercooled, however this ceases shortly after extratissue nucleation.

Then, in the planar ice growth stage, supercooling slowly rises, not a result of

the cells failing to maintain equilibrium with their environment, but instead, as a

result of the constitutional supercooling of the environment due to the

propagation of the planar phase boundary.

At the moment of dendritic breakdown, ice quickly grows throughout the

cartilage, raising the temperature and thus reducing the degree of supercooling.

Also, as the dendrites form, concentration of solutes will initiate cell dehydration.

Since the latent heat of fusion maintains a relatively high temperature, the cells

are able to quickly equilibrate with their environment; however, as ice formation

nears its conclusion, less latent heat is released and the temperature starts to

decrease rapidly towards the external control temperature.  Under these

conditions, the cells fail to maintain equilibrium with their local environment, and

thus, intracellular supercooling increases, as seen in figure 7-7.

The external cooling rate has a significant effect on this supercooling, as

does the presence of DMSO.  Since DMSO acts to postpone ice growth until

lower temperatures are reached, more time is available to the cell to dehydrate,

and thus, supercooling is reduced.  When the external cooling ceases, the cells

have time to restore equilibrium with the extracellular solutes, as seen in figure

7-7d when t = 300sec .  However, if cooling does not cease, the cell must

continue to play “catch-up” with the ever-changing extracellular environment, and

since the hydraulic conductivity of the cell decreases exponentially with

temperature, the cell soon falls behind.  Figure 7-8 demonstrates what can

happen if cooling continues at − °5 min  down to a temperature of − °60 C .
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In addition to cell dehydration during the supercooled state, DMSO

concentration within the cell will be lower than the external DMSO concentration

as a result of the excess water in the cell.  Since the cell is permeable to DMSO,

this reduced DMSO concentration will result in a flux of DMSO into the cell.  The

increase in DMSO within the cell is illustrated in figure 7-9.  Since chondrocyte

permeability to DMSO has a greater dependence on temperature than hydraulic

conductivity (due to a large activation energy), permeability to DMSO decreases

rapidly with decreasing temperature, and thus, only small amounts of DMSO

move through the membrane during the freezing simulation.

Initial Conditions

In addition to being a useful tool in predicting experimental outcome, this

model can also be used to aid scientists in preparing experiments by predicting

the amount of time it takes to equilibrate the system.  The simulations presented

in this chapter rely on their experimental counterparts being equilibrated in two

particular cases.  First, at room temperature the cartilage used in DMSO

experiments needs to be equilibrated to a 14. mol l  DMSO solution.  This

involves simply placing the cartilage in media containing DMSO and waiting.

Simulation of this equilibration process is an effective way to determine the

required amount of time to wait.  Figure 7-10 clearly shows that a 30min  wait is

sufficient.

Once the cartilage needed for an experiment is prepared at room

temperature, it must be equilibrated at − °5 C  before ice formation can be

nucleated.  Equilibration at this temperature is necessary to ensure that

nucleation can be quickly and easily performed when doing these experiments.

Figure 7-11 shows that 2 min  is sufficient to ensure thermal equilibrium.

While performing these simulations, it was found that the results could be

presented in far more ways than presented in this chapter.  Simulations of this

kind yield such a large volume of information that it is sometimes difficult to

decide how to present it.  In this chapter, all the data were presented in a
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consistent way (similar scales, for example); however, this may not have been

the most intuitive way to present some of the data.  The possibilities are as

endless as the data, and this was only a single set of simple experiments.  The

list of possible experiments that can be aided, or simulated entirely, by this

model is limitless.
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Figure 7-1.  Cartilage diagram.  This diagram illustrates how cartilage may be

represented with the hierarchical compartment model.  The simulations

presented in this chapter were all done using a slightly simpler model consisting

of a single DCompartment and four individual chondrocyte compartments.
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and following dendritic breakdown.  Simulations for the a) salt only case, and b)

the DMSO case are presented.
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Figure 7-4.  Temperature profiles present during the − °1 min  simulations.  The

effect of DMSO can be seen in b) as ice formation is postponed to lower

temperatures than in a).
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Figure 7-6.  Cell volume curves for the a) slow cooling, b) slow cooling with

DMSO, c) fast cooling, and d) fast cooling with DMSO simulations.
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Figure 7-9.  The amount of DMSO present within the cells during the a) slow

cooling simulation and the b) fast cooling simulation.  In both cases DMSO

enters the cells during the supercooled state, and then very slowly leave the cell.
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the a) DMSO uptake and b) cell volume curves show that 30min  is sufficient
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as a result of the fact that when DMSO diffuses into the cartilage, it dilutes the

salt solution present there.
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Chapter 8

Discussion

Thesis Objectives

The objective of this thesis was to develop a model of heat and mass

transport in biological tissues that is relatively easy to understand, but general

enough that it can be applied to a wide range of systems.  This model was

developed from well-known physical processes and thermodynamic

mechanisms, using only parameters with physical significance.  The use of

empirical relations and meaningless coefficients that must be fit for using

experimental data was avoided.  The basic framework of the model makes very

few specific assumptions regarding the scale and geometry of the system to be

modeled.  As a result, a wide variety of tissue systems can be effectively

modeled by this approach.  This framework was also intended to be extendible,

and it can have additional geometry or physical mechanisms included as the

need arises.  This also helps to ensure that the scope of the model is significant.

Since the model was implemented with an object oriented programming

language, the compartment type hierarchy corresponds well with the class

structure allowed by such a programming language.  By implementing each

compartment as a specific class, and each descendent as a class derived from

its ancestor, the reasons for having a hierarchy of compartment types is realized.

A new compartment type that only modifies the behaviour of an existing

compartment type by a small amount can be easily and quickly implemented by

creating the new compartment type as a descendent of the existing one.

Although this compartment model does allow three-dimensional tissues to

be effectively represented by a hierarchy of compartments, the one-dimensional

nature of the transport mechanisms cannot be easily avoided.  This model, in its

current state, is not intended to effectively model situations where the gradients

in solute concentration and temperature are not parallel.  In terms of modeling
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situations of interest to cryobiologists, however, this is not a major drawback as

the need for such complex modeling efforts does not currently exist.

There is, in cryobiology, a definite need to be able to predict the phase

behaviour of a solution consisting of an arbitrary number of components, each

present in an arbitrary amount.  It is easily seen that large deviations from the

ideal dilute solution model do occur with many solutions that are currently being

used by cryobiologists.  The theory presented in this thesis effectively describes

the phase behaviour of some typical binary solutions of interest to the

cryobiologist; however, this theory has not been extensively tested with other

binary solutions, nor has it been tested with solutions containing more than two

solutes.  There is an obvious way to generalize the equations that have been

presented such that they apply to solutions containing more than two solutes;

however, these generalized equations would require that more parameters be

provided to accurately describe the phase behaviour.  The parameters required

by the theory are physical in nature and some may be found in the literature;

however, most remain unknown and would have to be fitted from known phase

behaviour.  Of course, as the number of components in a solution increases,

measurement of the phase behaviour quickly becomes a very tedious endeavor.

The transport mechanism known as osmosis has been well studied by a

wide range of researchers.  Provided that osmotic pressures can be calculated,

the transport equations for water and permeant solute movement provide a

reasonably accurate description of osmosis.  The current description of this

transport mechanism can be generalized to allow for multiple permeant solutes,

each with its own permeability and reflection coefficients; however, any

significant interaction between permeant solutes would require a more precise

model.

The calculation of osmotic pressure is a problem similar in difficulty to the

problem of calculating phase behaviour.  In fact, one can think of a planar phase

boundary as an ideal semi-permeable membrane.  As the planar phase

boundary propagates, it selects out a single solute from the solution being frozen
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and allows only this solute to cross the boundary.  Also, the boundary has

infinitesimal width as an ideal semi-permeable membrane would.  In a situation

where pure water exists on both sides of a semi-permeable membrane (ie.

equilibrium), and then some solute is added to one side, the solute interferes

with the dynamic equilibrium at the membrane and causes a net flux of water

towards the side of the membrane containing the solute.  A completely

analogous situation arises when a planar ice front separates ice from pure water,

and solute is added to liquid side.  Again, the solute will disrupt the dynamic

equilibrium between the ice and the liquid, and a net flux of water will cross the

phase boundary into the liquid region (the ice melts).  This comparison between

a phase boundary and an ideal semi-permeable membrane could be useful in

further attempts to predict phase behaviour and osmotic pressures.

The variable time step algorithm introduced in chapter 2 and detailed in

chapter 4 is actually just an optimization for the model.  It is, however, a very

effective optimization as some of the simulations done for this thesis take hours

to execute on a moderately powered desktop computer.  Without the variable

time step method, either error tolerance would have to be sacrificed or weeks of

computer time would have to be allocated for each simulation.

In chapter 5 a general solution of the diffusion equation was presented.

The diffusion equation can be solved exactly in many specific situations;

however, as more general solutions are desired, the difficulty associated with

finding an exact solution skyrockets.  The numerical solution presented in this

thesis is general enough to fulfill all the needs of this model.  Both heat and

solute movements can be modeled, along with moving planar phase boundaries

that couple the separate heat and solute movements at their location.  In this

thesis, however, no attempt was made to model the diffusion of water.  Most

models that consider diffusion of a solute in water assume that the water is so

abundant that the concentration of the water does not vary significantly from one

part of the system to another, and thus, water does not diffuse.  This may be an

erroneous assumption when the dilute solution assumption cannot be made.
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The equations presented is chapter 5 are complete and can be used to model

the diffusion of water in addition to the other solutes.  The only special

consideration is that at the phase boundary, water concentration is depressed as

freezing proceeds; not elevated as is the case of the other solutes.

The solution to the diffusion problem also allows for dendritic ice

formation.  When this occurs, solute concentration and temperature are coupled

throughout the region of the dendrites via the phase diagram.  From experience

running the simulations presented in this thesis, dendritic breakdown tends to

cause the value of ∆t  to suddenly plummet as the temperature profile within the

system is forced to conform to the distinctly non-linear freezing point profile.

Another realization that comes with experience running these simulations

is that there are far more possible ways to graph the data than can be physically

accomplished.  During a typical experiment in biology, the experimenter must

carefully choose what measurements they wish to make before the experiment

begins and are then forced to only make those measurements during the course

of the experiment.  Although the person who simulates their experiments usually

must also choose what measurements are desired before the simulation is run,

the number of measurements that may be allowed for each simulation is virtually

unlimited.  Each simulation yields a mountain of numbers, and these numbers

can be presented in an equally massive number of possible ways.  Chapter 7

presents a simple set of four simulations that mimic experiments that are typical

of what a cryobiologist might be interested in performing.  The results of these

simulations are presented in a few select ways such that the effectiveness of the

model can be displayed.  The data could, just as easily, have been presented is

a variety of other ways that would have, perhaps, made the cryobiology easier to

understand, or the mechanisms of transport easier to understand.  The

possibilities are limitless.

As cryobiologists continue studying tissues of ever increasing complexity,

and use solutions containing multiple solutes in extreme concentrations, the

need to understand the movement of heat and solutes in these tissue systems,
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along with the growth or absence of ice, is an ever-increasing difficulty.  A model

that can effectively describe these mechanisms within tissues is of great

importance to any researcher that needs a thorough understanding of the state

of the tissue they are studying.  The modeling efforts presented in this thesis are

a necessary first step to understanding more complex mechanisms of damage

and injury in biological tissues.  With the fundamentals of heat and mass

transport grasped, the biological impact of freezing on tissues can now be

addressed.
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Appendix 1

Constants and Parameters

Permeability Parameters

Parameters are given for both V-79-w hamster fibroblasts and bovine

chondrocytes.  All these values came from [Muldrew 1993].

V-79 Hamster Fibroblasts

Parameters Symbol Value
Isotonic Volume V 800 3µ m

Membrane Surface Area SA 417 2µ m

Osmotically Inactive Volume Vd 359 3µ m

Base Temperature for Parameters Tg 273K

Hydraulic Conductivity Lp 0145 3 2. m m atm minµ µ ⋅ ⋅
Activation Energy for Lp Ea 914. kcal mol

DMSO Permeability Pg 0512. m minµ
Activation Energy for Pg Ea 201. kcal mol

Reflection Coefficient σ 09.

Bovine Chondrocytes

Parameters Symbol Value
Isotonic Volume V 1000 3µ m

Membrane Surface Area SA 484 2µ m

Osmotically Inactive Volume Vd 430 3µ m

Base Temperature for Parameters Tg 287K

Hydraulic Conductivity Lp 0146 3 2. m m atm minµ µ ⋅ ⋅
Activation Energy for Lp Ea 12 2. kcal mol

DMSO Permeability Pg 2 70. m minµ
Activation Energy for Pg Ea 185. kcal mol

Reflection Coefficient σ 0 95.
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Physical Parameters

These physical parameters were used in more of the diffusion simulations.

Most of the parameters were found in [Weast 1983].

Solute Constant Symbol Value
H2O Molecule Weight MW 18 01528. g mol

H2O Freezing Point (at 1atm ) F 27315. K
H2O Latent Heat of Fusion L − 6009J mol

H2O Molecular Volume of Liquid l MV 18.01528ml mol

H2O Molecular Volume of Solid s MV 19.58ml mol

H2O Heat Capacity of Liquid l pc 7598. J K mol⋅
H2O Heat Capacity of Solid s pc 37 8. J K mol⋅
H2O Thermal Conductivity of Liquid l K 0 00574. J cm cm K sec2⋅ ⋅ ⋅
H2O Thermal Conductivity of Solid s K 0 022. J cm cm K sec2⋅ ⋅ ⋅
NaCl Phase Diagram Coefficient a − ⋅3115K ml mol

NaCl Phase Diagram Coefficient b − ⋅270K ml mol2 2

NaCl Diffusion Coefficient D 1545 10 5 2. cm sec× −

NaCl Molecular Volume in Solution l MV 19.07ml mol

NaCl Molecular Weight MW 58.4428g mol

DMSO Phase Diagram Coefficient a 0
DMSO Phase Diagram Coefficient b -1021856K ml mol2 2⋅
DMSO Diffusion Coefficient D 102 10 5 2. cm sec× −

DMSO Molecular Volume in Solution l MV 70.94ml mol

DMSO Molecular Weight MW 78.1335g mol
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Appendix 2

Variable Time Step Calculations

The variable time step method presented at the end of chapter 4 can also

be applied to the diffusion equations derived in chapter 5.  As in chapter 4, all

that is required is that some time derivatives be calculated.

Since the iteration equation for the diffusion problem is

( ) ( )C t C t
C

t
tj j+ = +1

∂
∂

∆ , (A2-1)

where

∂
∂

α
C

t
D i= 2 , (A2-2)

the local truncation error associated with each iteration can be written as

( )D t
d

dt
i∆ 2 α

. (A2-3)

This means that to achieve a desired error limit, one must choose ∆t  such that

∆t
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
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where L is the desired fraction error per second.

To calculate the derivatives d dtiα , start by calculating dQ dti  for each

subinterval.  From equation 5-12b,

dQ

dt

dG

dt
n n− =1 , (A2-5)

and from equation 5-16b,
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At the phase boundary (from equation 5-64b)
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where (from equation 5-58b)
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Note that all these calculations rely on the fact that

dC

dt
Dgi

i i= 2 α . (A2-9)

Then, the d dtiα ’s may be calculated.  From 5-18a,
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and from 5-14a,
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At the phase boundary equation 5-61a differentiates to
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while equation 5-52a gives
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where (from equation 5-62)
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These equations are all that is required to implement a variable time step

method for the diffusion problem presented in chapter 5.


