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Abstract

In this paper, we address the problem of distributed learning over a large number of distributed
sensors or geographically separated data centers, which suffer from sampling biases across nodes.
We propose an algorithm called random walk distributed dual averaging (RW-DDA) method that
only requires local updates and is fully distributed. Our RW-DDA method is robust to the change
in network topology and amenable to asynchronous implementation. The theoretical analysis shows
the algorithm has O(1/

√
t) convergence for non-smooth convex problems. Experimental results

show that our algorithm outperforms competing methods in real-world scenarios, i.e. when trained
over non-iid data and in the presence of communication link failures.

1 Introduction

With technological advancements in sensors, mobile devices, and data centers, machine learning algorithms are often
applied to data distributed across these machines. However, in a real-world scenario, this data may not always be
perfectly randomized. For example, physical sensors may collect non-iid data. Even data-centers often collect non-
random data, biased towards the geography where they are located. It is often required to move the data to a central
location to create perfectly random data. However, due to scale, or lack of a central coordinating resource, randomizing
data may not always be possible and it is desirable to train over these nodes despite the presence of biased data at
individual machines.

In this paper, we propose to solve this problem in the framework of Decentralized Consensus Optimization (DCO),
where all the nodes (agents), with their own utility functions, are connected through a network. The network sys-
tem goal is to optimize the sum of all these utility functions, only through local computations and local information
exchange with neighbors as specified by the communication graph of all nodes. Such framework, with applications
ranging from large scale machine learning [11] to wireless sensor networks [6], tends to be scalable, simple to im-
plement and robust to single points of failure. Consequently, many methods have been proposed for DCO recently
[5]. Generally speaking, based on the style of the averaging/consensus step, these methods can be classified as model
averaging methods [6, 7, 8, 14, 3, 4, 10], which average parameters, and dual averaging methods [2, 11, 12], which
average subgradients. However, the successes of these methods heavily rely on the communication network to be
static, which may not realistic due to node/edge failure.

The contribution of the paper is to propose an efficient algorithm, called random walk distributed dual averaging
(RW-DDA) method, that is robust to the change in the network topology, and also suitable for stochastic subgradient
and asynchronous implementation.
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2 Problem Statement

In mathematical terms, the optimization problem is defined on a connected undirected network and solved by n agents
(computers) collectively,

min
x∈X⊆Rd

f̄(x) :=

n∑
i=1

fi(x). (2.1)

The feasible set X is a closed and convex set in Rd and is commonly known by all agents, whereas fi : X ∈ R
is a convex function privately known by the agent i. Throughout the paper, we also assume that fi is L-Lipschitz
continuous over X with respect to the Euclidean norm ‖·‖. The network G = (N , E), with the node set N =
[n] := {1, 2, · · · , n} and the edge set E ⊆ N ×N , specifies the topological structure on how the information can be
spread among agents through local agent interactions over time. In specific, each agent i can only send and retrieve
information from its neighbors N (i) := {j | (j, i) ∈ E} and himself.

3 RW-DDA method

Our random-walk distributed dual averaging (RW-DDA) method is shown step-by-step in Algorithm 1. Literally, in
RW-DDA, each node i keeps a local estimate xi and a dual variable zi maintaining an accumulated subgradient. At
iteration t, to update zi, each node needs to collect the z-values of its neighbors, forms a convex combination with
equal weight of the received information and adds its most recent local subgradient scaled by |N (i)| + 1. After that,
the dual variables zi is projected to the primal space to obtain xi.

To implement RW-DDA, each node only needs to know its neighborhood information, which makes the algorithm
robust to the change in network topology, frequently resulting from node failure or edge malfunction. As possibly
inferred from the name, our RW-DDA method robustify the distributed dual averaging (DDA) method [2], based on
the theory of random walk over undirected graph [9].

Algorithm 1 Random Walk Distributed Dual Averaging (RW-DDA) Method
Input: a predetermined nonnegative nonincreasing sequence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Subgradient calculation: gi(t) ∈ ∂fi(xi(t)), for each agent i. (3.1)

2. Dual updates:
zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, for each agent i. (3.2)

3. Primal updates:
xi(t+ 1) = PX [−α(t)zi(t+ 1)] := arg min

x∈X
‖x+ α(t)zi(t+ 1)‖2 , for each agent i. (3.3)

end for

4 Convergence Analysis

In this section, we will provide an O(1/
√
t)-convergence result for Algorithm 1 when α(t) is properly chosen as

O(1/
√
t). But prior to that, we will make an intuitive explanation to help understand the correctness of RW-DDA.

For notational convenience, we will define the matrix P ∈ Rn×n with Pij being 1
|N (i)+1| for j ∈ N (i) ∪ {i} and 0

otherwise. Clearly P is a row stochastic matrix, i.e. the sum of every row of P equals 1. We will also define the vector
π ∈ Rd with the i-th entry πi being |N (i)|+1

β , where β := 2|V| + |E|. It can easily verified that π is a probability
vector, i.e. πi > 0 and

∑
i∈[n] πi = 1. With these notations, we are able to express (3.2) in a terser way. Imagine

X ⊆ R, so xi(t), zi(t) and gi(t) are now all scalars. Then we can rewrite the update (3.2) as

z(t+ 1) = Pz(t) +
1

β
diag (π)

−1
g(t) =

1

β

t∑
s=0

P sdiag (π)
−1
g(t− s), (4.1)
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with z(t) = (z1(t), z2(t), · · · , zn(t))
> and g(t) = (g1(t), g2(t), · · · , gn(t))

>. As we need each node to play the same
role in the system, from (4.1), it is quite reasonable to require P∞diag (π)

−1
= 1n×n, where P∞ := limt→∞P

t

and 1n×n is the n by n matrix with all entries as one. Indeed, we can verify this requirement by the close connection
between P and π, as revealed in the following lemma, which can be regarded as a direct consequence of results
for random walk under undirected graph [9]. This also justifies the appearance of random walk in the name of our
algorithm.
Lemma 1. π>P = π> and P∞ := limt→∞P

t = 1 · π>.

Proof. Consider a discrete-time Markov chain with state space as V and transition matrix specified by P . It can be
easily seen that this Markov chain is irreducible and aperiodic. Therefore, there exists a unique stationary distribution
d satisfying d ≥ 0, 1>d = 1, d>P = d> and P∞ = 1 · d>. Since the probability vector π satisfies the so-called
detailed balance equation, i.e. πiPij = πjPji, π is the stationary distribution, i.e. d = π.

Next, we will state two lemmas that are similar in nature to Theorem 1 and Theorem 2 in [2]. The proofs can obtained
by modifying arguments in [2], which we omit here.
Lemma 2. Consider the sequences {xi(t)} and {zi(t)} generated by RW-DDA (Algorithm 1). Then for any x? ∈ X
and for each node i ∈ [n], we have

f̄ (x̂i (T ))− f̄(x?) ≤L
2n

2βT

T∑
t=1

α(t− 1) +
β

2nTα(T )
‖x?‖2

+
L

T

T∑
t=1

α(t)

 2

n

n∑
j=1

‖z̄(t)− zj(t)‖ + ‖z̄(t)− zi(t)‖

 ,

(4.2)

where x̂i(T ) = 1
T

∑T
t=1 xi(t) and z̄(t) =

∑n
i=1 πizi(t).

Lemma 3. Consider the sequences {xi(t)} and {zi(t)} generated by RW-DDA (Algorithm 1). Define z̄(t) = π>z(t).
Then we have,

‖z̄(t)− zi(t)‖ ≤
L

βπmin

√
1− πi
πi

1

1− σ2(P )
, (4.3)

where πmin = min{πi} and σ2(·) denotes the second largest singular value.

Finally, we are ready to present the convergence theorem.
Theorem 1. Consider the sequences {xi(t)} and {zi(t)} generated by RW-DDA (Algorithm 1). Define the running
average at each node i as x̂i(T ) = 1

T

∑T
t=1 xi(t). Then for any x? ∈ X with ‖x?‖ ≤ R, and for each node i ∈ [n],

one has

f̄ (x̂i (T ))− f̄(x?) ≤ 2LR√
nT (1− σ2(P )π

3/4
min

(4.4)

when the step size α(t) is chosen as β(πmin)
3/4
√

1−σ2(P )R

4L
√
n

· 1√
t
.

Proof. Let us choose α(t) in the form of c/
√
t, where c is to be optimized later.

Plugging (4.3) into (4.2), we reach

f̄ (x̂i (T ))− f̄(x?) ≤ L2n

β
√
T
· c+

β

2n
√
T
R2 · 1

c
+

6L2

√
Tβπ

3/2
min(1− σ2(P ))

· c

≤ 7L2

√
Tβπ

3/2
min(1− σ2(P ))

· c+
β

2n
√
T
R2 · 1

c
, (4.5)

where we have used the fact that
∑T
t=1 t

−1/2 ≤
∫ T
t=0

t−1/2dt =
√
T .

The claimed result holds directly as we optimize the upper bound (4.5) with respect to the parameter c.
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5 Extension

Our RW-DDA method can be easily adapted to incorporate stochastic gradients to solve an optimization problem with
a convex regularizer (e.g. `1, nuclear norm). In specific, Algorithm 2, a natural modification of RW-DDA (Algorithm
1), is capable of solving

min
x

1

n

n∑
i=1

fi(x) + φ(x), (5.1)

where φ(x) is a convex regularizer. Its convergence proof follows directly from combining our analysis above and
arguments used in previous literature [13, 2], which we omit here.

Algorithm 2 Generalized Random Walk Distributed Dual Averaging (GRW-DDA) Method
Input: a predetermined nonnegative nonincreasing sequence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Stochastic subgradient calculation: E [gi(t)] ∈ ∂fi(xi(t)), for each agent i. (5.2)

2. Dual updates:
zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, for each agent i. (5.3)

3. Primal updates:
xi(t+ 1) = Proxtα(t)φ(·)[−α(t)zi(t+ 1)]

= arg min
x

1

2
‖x+ α(t)zi(t+ 1)‖2 + tα(t)φ(x), for each agent i. (5.4)

end for

6 Experiments

We now evaluate the RW-DDA algorithm for the SVM application using the RCV1 dataset [1]. We compare RW-DDA
with model averaging, both implemented over the MALT framework [4]. To improve performance, we perform the
following three optimizations. First, instead of calculating the full gradient on every iteration, we only compute the
sparse gradient and separately correct the regularizer [1]. Second, instead of sending z (or w for model averaging)
after every example, nodes locally process examples (usually 500-5000), and then communicate z. We adjust the
learning rate parameters to account for the batched communication. Finally, we maintain a running sum average over
the dual, and only compute this sum only during reduce (incoming z parameters). We run all our experiments using 6
ranks. We compare the average training error over all ranks w.r.t. wall clock time for non-i.i.d. data and with failures
as shown in Figure 1 (a) and (b) respectively. We find that RWDDA converges faster in time, and achieves a stable
accuracy 2.6% better than model averaging after 2000 iterations.

(a) non-i.i.d data (b) non-i.i.d. data with 
random link failures

Figure 1: Figure (a) shows training error vs time for RW-DDA and model averaging for six ranks for non-iid dataset. Figure (b)
shows the same experiment with intermittent link failures. Each machine communicates z after processing a local epoch (slightly
over 3300 examples). We find RW-DDA method to be stable and faster to converge especially in the presence of failures.
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[5] A. Nedić. Distributed optimization. In Encyclopedia of Systems and Control, pages 1–12. Springer London,
2014.
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[7] S. S. Ram, A. Nedić, and V. V. Veeravalli. Distributed stochastic subgradient projection algorithms for convex
optimization. Journal of optimization theory and applications, 147(3):516–545, 2010.
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