
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Random Walk Distributed Dual Averaging Method For
Decentralized Consensus Optimization

Abstract
In this paper, we address the problem of dis-
tributed learning over a decentralized network,
arising from scenarios including distributed sen-
sors or geographically separated data centers. We
propose a fully distributed algorithm called ran-
dom walk distributed dual averaging (RW-DDA)
that only requires local updates. Our RW-DDA
method, improves the existing distributed dual
averaging (DDA) method, making it robust to
changes in network topology and amenable to
asynchronous implementations. Our theoretical
analysis shows the algorithm has O(1/

√
t) con-

vergence for non-smooth convex problems. Vari-
ous and valuable practical acceleration tricks are
also introduced in the implementation. Experi-
mental results show that our algorithm outper-
forms competing methods, especially in the pres-
ence of communication link failures.

1. Introduction
With technological advancements in sensors, mobile de-
vices, and data centers, machine learning algorithms are
commonly applied to data distributed across these ma-
chines. However, distributed learning in real world sce-
narios suffers from two issues. First, the various nodes
in a distributed setting may suffer from intermittent net-
work or node failures. For example, geographically sepa-
rated data centers may suffer from communication delays
or dropped packets. Second, the nodes in the distributed
system such as the physical sensors may collect data points
that are not randomly distributed across the nodes resulting
in non-independent and identically distributed (non-i.i.d.)
data across the nodes. Data-centers too, often collect non-
random data, with each data center receiving data that is
biased towards the geography where it is located. Often
due to scale, privacy, or lack of a central coordinating re-
source, randomizing data may not always be possible. As a
result, distributed training across these nodes with the pres-

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ence of biased data at individual machines based on simple
techniques such as averaging of parameters may not work.

In this paper, we propose to solve this problem in the frame-
work of Decentralized Consensus Optimization (DCO),
where all the nodes (agents), with their own utility func-
tions, are connected through a network. The networked
system goal is to optimize the sum of all the utility func-
tions, only through local computations and local informa-
tion exchange with neighbors as specified by the com-
munication graph of all nodes. Such peer-to-peer frame-
work, with applications ranging from large scale machine
learning (Tsianos et al., 2012a; Ling et al., 2012; 2013;
Yuan et al., 2013b) to wireless sensor networks (Nedić &
Ozdaglar, 2009; Dimakis et al., 2010), tends to be scal-
able, simple to implement and robust to intermittent net-
work failures.

Given the importance of DCO, many methods have been
proposed recently (Nedić, 2014). One of the techniques
that gained recent popularity is a class of distributed al-
gorithms that combine the consensus protocols developed
from the control field (Olshevsky & Tsitsiklis, 2009) and
the gradient-type methods from the optimization area (No-
cedal & Wright, 2006). Here, a consensus protocol refers
to a mechanism for information diffusion, where each
agent independently spread their information via locally
weighted averaging of their incoming data. The gradient-
based methods are particularly suitable, since they, in gen-
eral, have a small per-iteration cost and are robust to var-
ious sources of stochastic errors. In contrast with ap-
proaches based on bi-directional communication, e.g. Ran-
domized Gossiping (Boyd et al., 2006) and ADMM-type
distributed methods (Wei & Ozdaglar, 2013), the above
mentioned technique employs only one-directional com-
munication, (where agents only send information and then
proceed with their local computations without expecting a
response from others,) and thus manage to avoid the dead-
lock problem resulting from the bi-direction communica-
tion in practical implementation.

Generally speaking, based on the style of the consensus
step, these methods can be classified as model averaging
methods (Nedić & Ozdaglar, 2009; Ram et al., 2010; 2012;
Yuan et al., 2013a; Jakovetic et al., 2014; Li et al., 2015;
Shi et al., 2015), which average parameters, and dual aver-

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

RW-DDA Method For Decentralized Consensus Optimization

aging methods (Duchi et al., 2012; Tsianos et al., 2012a;
Tsianos & Rabbat, 2012), which average (sub)gradients.
Arguably, the dual averaging approach is preferable as it
is more scalable in the size of the network than the pri-
mal one (Duchi et al., 2012). However, the dual method
may suffer from significant performance overheads. In spe-
cific, the dual computation and distributed consensus lead
to high CPU costs when computing the dual variable every
iteration, which makes it impractical when applied to large
datasets as compared to primal model averaging methods.

Moreover, the successes of the above mentioned model av-
eraging methods and dual averaging methods heavily rely
on the communication network to be static, which may not
be realistic due to node/edge failures. One exception is
these methods (Tsianos et al., 2012b;a; Nedic & Olshevsky,
2015; Zeng & Yin, 2015) using the push-sum protocol, aka
weighted gossip or sum-weight algorithms (Kempe et al.,
2003; Bénézit et al., 2010; Iutzeler et al., 2013). In the-
ory, push-sum type methods are robust to the change in net-
work topology under the synchronous scenario. However,
as pointed in (Tsianos et al., 2012a), due to the scaling is-
sue, these methods are often numerical instable in practical
asynchronous implementation. Our numerical experiment
in Section 6 also conforms to this observation.

The main contribution of this paper is to propose and im-
plement an efficient dual averaging method, which ad-
dresses the above two issues. Specifically,

• We propose an efficient algorithm, called random
walk distributed dual averaging (RW-DDA) method,
that is robust to the change in the network topology
especially in presence of non-i.i.d. data where simple
techniques may not work.

• We improve RW-DDA performance with an efficient
implementation and discuss general stochastic subgra-
dient optimization tricks that enable dual-space algo-
rithms to run as fast as primal space algorithms such
as model averaging.

• Finally, our experimental results demonstrate that
RW-DDA can be successfully extended to asyn-
chronous and failure-prone settings.

The paper is organized as follows: In section 2, we intro-
duce the RW-DDA algorithm. In section 3, we analyze
RW-DDA convergence. Next, in section 4 we describe ex-
tensions to RW-DDA. In sections 5 and 6, we describe our
implementation and empirical evaluation. Finally, in sec-
tion 7, we conclude the paper.

2. RW-DDA method for DCO
2.1. Problem Statement

In mathematical terms, the optimization problem is defined
on a connected undirected network and solved by n agents
(computers) collectively,

min
x∈X⊆Rd

f̄(x) :=

n∑
i=1

fi(x). (2.1)

The feasible set X is a closed and convex set in Rd and is
commonly known by all agents, whereas fi : X ∈ R is a
convex function privately known by the agent i. Through-
out the paper, we also assume that fi is L-Lipschitz con-
tinuous over X with respect to the Euclidean norm ‖·‖.
The network G = (N , E), with the node set N = [n] :=
{1, 2, · · · , n} and the edge set E ⊆ N × N , specifies the
topological structure on how the information can be spread
among agents through local agent interactions over time. In
specific, each agent i can only send and retrieve informa-
tion from its neighbors N (i) := {j | (j, i) ∈ E} and him-
self.

2.2. RW-DDA

Our random-walk distributed dual averaging (RW-DDA)
method is shown step-by-step in Algorithm 1. Literally,
in RW-DDA, each node i keeps a local estimate xi and a
dual variable zi maintaining an accumulated subgradient.
At iteration t, to update zi, each node needs to collect the
z-values of its neighbors, forms a convex combination with
equal weight of the received information and adds its most
recent local subgradient scaled by |N (i)| + 1. After that,
the dual variables zi is projected to the primal space to ob-
tain xi.

To implement RW-DDA, each node only needs to know its
neighborhood information, which makes the algorithm ro-
bust to the change in network topology, frequently result-
ing from node failure or edge malfunction. As possibly
inferred from the name, our RW-DDA method robustify
the distributed dual averaging (DDA) method (Duchi et al.,
2012), based on the theory of random walk over undirected
graph (Ross, 1996).

Before we delve into the convergence proof for Algorithm
1, we will first make an intuitive explanation to help under-
stand the correctness of RW-DDA.

For notational convenience, we will define the matrix P ∈
Rn×n with Pij being 1

|N (i)+1| for j ∈ N (i) ∪ {i} and 0

otherwise. Clearly P is a row stochastic matrix, i.e. the
sum of every row of P equals 1. We will also define the
vector π ∈ Rd with the i-th entry πi being |N (i)|+1

β , where
β := 2|V|+ |E|. It can easily verified that π is a probability
vector, i.e. πi > 0 and

∑
i∈[n] πi = 1. With these nota-

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

RW-DDA Method For Decentralized Consensus Optimization

Algorithm 1 Random Walk Distributed Dual Averaging
(RW-DDA) Method

Input: a predetermined non-negative non-increasing se-
quence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Subgradient calculation:

gi(t) ∈ ∂fi(xi(t)), for each agent i. (2.2)

2. Dual updates:

zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, (2.3)

for each agent i.

3. Primal updates:

xi(t+ 1) = PX [−α(t)zi(t+ 1)] (2.4)

:= arg min
x∈X

‖x+ α(t)zi(t+ 1)‖2 ,

for each agent i.

end for

tions, we are able to express (2.3) in a terser way. Imagine
X ⊆ R, so xi(t), zi(t) and gi(t) are now all scalars. Then
we can rewrite the update (2.3) as

z(t+ 1) = Pz(t) +
1

β
diag (π)

−1
g(t)

=
1

β

t∑
s=0

P sdiag (π)
−1
g(t− s), (2.5)

with z(t) = (z1(t), z2(t), · · · , zn(t))
> and g(t) =

(g1(t), g2(t), · · · , gn(t))
>. As we need each node to play

the same role in the system, from (2.5), it is quite reason-
able to require P∞diag (π)

−1
= 1n×n, where P∞ :=

limt→∞P
t and 1n×n is the n by n matrix with all entries

as one. Indeed, we can verify this requirement by the close
connection between P and π, as revealed in the follow-
ing lemma, which can be regarded as a direct consequence
of results for random walk under undirected graph (Ross,
1996). This also justifies the appearance of random walk in
the name of our algorithm.
Lemma 1. π>P = π> andP∞ := limt→∞P

t = 1·π>.

Proof. Consider a discrete-time Markov chain with state
space as V and transition matrix specified by P . It can be
easily seen that this Markov chain is irreducible and ape-
riodic. Therefore, there exists a unique stationary distri-
bution d satisfying d ≥ 0, 1>d = 1, d>P = d> and

P∞ = 1 · d>. Since the probability vector π satisfies the
so-called detailed balance equation, i.e. πiPij = πjPji, π
is the stationary distribution, i.e. d = π.

3. Convergence Analysis
In this section, we will provide an O(1/

√
t)-convergence

result for Algorithm 1 when α(t) is properly chosen as
O(1/

√
t).

We first present two useful lemmas. The first one is stan-
dard in convex analysis. and the second one is from Duchi
et al. (2012), which modifies slightly the result in Nesterov
(2009).

Lemma 2. For any u, v ∈ Rd, ‖PX [u]− PX [v]‖ ≤
‖u− v‖.
Lemma 3. Let {h(t)}∞t=1 ⊂ Rd be an arbitrary sequence
of vectors and {α(t)}∞t=1 be a positive and non-increasing
sequence. Consider the sequences {z̄(t)}∞t=0 with z̄(0) =
0 and {y(t)}∞t=1 constructed as follows:

y(t+ 1) = PX [−α(t)z̄(t)],

z̄(t+ 1) = z̄(t) + h(t), t = 0, 1, 2,

Then for any x? ∈ X , we have

T∑
t=1

〈h(t),y(t)− x?〉

≤ 1

2

T∑
t=1

α(t− 1) ‖h(t)‖2 +
1

2α(T)
‖x?‖ .

Now, we can proceed to our proof of the RW-DDA method.

Lemma 4. Consider the sequences {xi(t)} and {zi(t)}
generated by RW-DDA (Algorithm 1). Then for any x? ∈
X and for each node i ∈ [n], we have

f̄ (x̂i (T))− f̄(x?)

≤ L2n

2βT

T∑
t=1

α(t− 1) +
β

2nTα(T)
‖x?‖2

+
L

T

T∑
t=1

α(t)

 2

n

n∑
j=1

‖z̄(t)− zj(t)‖ + ‖z̄(t)− zi(t)‖

 ,

(3.1)

where x̂i(T) = 1
T

∑T
t=1 xi(t) and z̄(t) =

∑n
i=1 πizi(t).

Proof. For simplicity, we assume X ⊆ R, so
xi(t), zi(t) and gi(t) are now all scalars. Denote
z(t) = (z1(t), . . . , zn(t))> ∈ Rd, and g(t) =
(g1(t), . . . , gn(t))> ∈ Rd.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

RW-DDA Method For Decentralized Consensus Optimization

Based on the dynamics (2.3), we can write

z(t+ 1) = Pz(t) +
1

β
diag (π)

−1
g(t). (3.2)

Then one has the π-weighted average

z̄(t+ 1) = π>z(t+ 1) = π>Pz(t) +
1

β
π>diag (π)

−1
g(t)

= π>z(t) +
1

β
1>g(t) = z̄(t) +

1

β
1>g(t),

where we have used the fact that π>P = π> in Lemma 1.

Now define

y(t+ 1) = PX [−α(t)z̄(t)], t = 0, 1, 2, . . . , (3.3)

and we start to bound our target f(x̂i(T))− f(x?),

f(x̂i(T))− f(x?)

≤ 1

T

T∑
t=1

(
f(xi(t))− f(x?)

)

≤ 1

T

T∑
t=1

(
f(y(t))− f(x?)

)
+

1

T

T∑
t=1

(
f(xi(t))− f(y(t))

)

≤ 1

nT

T∑
t=1

n∑
i=1

(
fi(y(t))− fi(x?)

)
+
L

T

T∑
t=1

‖xi(t)− y(t)‖ ,

(3.4)

where the first inequality is due to convexity, and last line
holds as f is L-Lipschitz.

Now let us fucus on the term fi(y(t))− fi(x?),

fi(y(t))− fi(x?)

=

(
fi(y(t))− fi(xi(t))

)
+

(
fi(xi(t))− fi(x?)

)
≤ L ‖y(t)− xi(t)‖ + 〈gi(t), xi(t)− x∗〉
= L ‖y(t)− xi(t)‖ + 〈gi(t), xi(t)− y(t)〉+ 〈gi(t), y(t)− x?〉
≤ L ‖y(t)− xi(t)‖ + L ‖y(t)− xi(t)‖ + 〈gi(t), y(t)− x?〉
≤ 2L ‖y(t)− xi(t)‖ + 〈gi(t), y(t)− x?〉 , (3.5)

where the second inequality holds as fi is L-Lipschitz and
gi(t) ∈ ∂fi(xi(t)), and the second last line is due to
‖gi‖ ≤ L.

Substituting (3.5) into (3.4), we obtain

f(x̂i(T))− f(x?) ≤ 1

nT

T∑
t=1

n∑
i=1

〈gi(t), y(t)− x?〉

+
L

T

T∑
t=1

(
2

n

n∑
i=1

‖y(t)− xi(t)‖ + ‖y(t)− xi(t)‖
)
.

(3.6)

Next, we will look at the two terms in (3.6) respectively.
For the first term,

1

nT

T∑
t=1

n∑
i=1

〈gi(t), y(t)− x?〉

=
β

nT

T∑
t=1

〈
1>g(t)

β
, y(t)− x?

〉

≤ β

2nT

T∑
t=1

α(t− 1)

∥∥∥∥1>g(t)

β

∥∥∥∥2 +
β

2nTα(T)
‖x?‖2

≤ L2n

2βT

T∑
t=1

α(t− 1) +
β

2nTα(T)
‖x?‖2 , (3.7)

where the second line results from Lemma 3 (with
1>g(t)/β playing the role of h(t) in Lemma 3).

Regarding the second term in (3.6), note that

‖y(t)− xi(t)‖ = ‖PX [−α(t)z̄(t)]− PX [−α(t)z̄i(t)]‖
≤ ‖−α(t)(z̄(t)− zi(t))‖ ≤ α(t) ‖z̄(t)− zi(t)‖ . (3.8)

by Lemma 2.

Finally, substituting (3.7) and (3.8) into (3.6) yields our de-
sired (3.1).

Lemma (4) provides a nice characterization of the devia-
tion from the optimal value over all nodes. The first two
terms in (3.1) are common optimization error terms per-
taining to subgradient algorithms. The third term reflects
the nature of distributed optimization, where each node has
its own estimate of the average gradient that deviates from
each other. Next, we will show an upper bound for the de-
viation term ‖z̄(t)− zi(t)‖.

Lemma 5. Consider the sequences {xi(t)} and {zi(t)}
generated by RW-DDA (Algorithm 1). Define z̄(t) =
π>z(t). Then we have,

‖z̄(t)− zi(t)‖ ≤
L

βπmin

√
1− πi
πi

1

1− σ2(P)
, (3.9)

where πmin = min{πi} and σ2(·) denotes the second
largest singular value.

Proof. For simplicity, we assume X ⊆ R,
so xi(t) and zi(t) are now scalars. Denote
z(t) = (z1(t), z2(t), · · · , zn(t))

> and g(t) =

(g1(t), g2(t), · · · , gn(t))
>. Also, in the following

proof, we will omit the superscript w for notational
convenience.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

RW-DDA Method For Decentralized Consensus Optimization

Due to (2.3), we have, for t = 1, 2, . . . ,

z(t) =
1

β
diag (π)

−1
g(t− 1) + Pz(t− 1)

=
1

β

t∑
s=1

P s−1diag (π)
−1
g(t− s). (3.10)

So,

zi(t) =
1

β

t∑
s=1

e>i P
s−1diag (π)

−1
g(t− s), and

z̄(t) = π>z(t) =
1

β

t∑
s=1

π>P s−1diag (π)
−1
g(t− s)

=
1

β

t∑
s=1

π>diag (π)
−1
g(t− s). (3.11)

Thus,

‖z̄(t)− zi(t)‖

=
1

β

∥∥∥∥∥
t∑

s=1

(
π> − e>i P s−1) diag (π)

−1
g(t− s)

∥∥∥∥∥
≤ L

βπmin

t∑
s=1

∥∥π> − e>i P s−1∥∥
1
. (3.12)

Based on the Prop. 3 of (Diaconis & Stroock, 1991),

∥∥π> − e>i P s−1∥∥
1
≤
√

1− πi
πi

σs−12 . (3.13)

Substitute (3.13) into (3.12), we have

‖z̄(t)− zi(t)‖ ≤
L

βπmin

t∑
s=1

√
1− πi
πi

σs−12

≤ L

βπmin

√
1− πi
πi

1

1− σ2(P)
,

which completes the proof.

Finally, we are ready to present the convergence theorem
by combining Lemma 4 and Lemma 5.

Theorem 1. Consider the sequences {xi(t)} and {zi(t)}
generated by RW-DDA (Algorithm 1). Define the running
average at each node i as x̂i(T) = 1

T

∑T
t=1 xi(t). Then

for any x? ∈ X with ‖x?‖ ≤ R, and for each node i ∈ [n],
one has

f̄ (x̂i (T))− f̄(x?) ≤ 2LR√
nT (1− σ2(P)π

3/4
min

(3.14)

when the step size α(t) is chosen as β(πmin)
3/4
√

1−σ2(P)R

4L
√
n

·
1√
t
.

Proof. Let us choose α(t) in the form of c/
√
t, where c is

to be optimized later.

Plugging (3.9) into (3.1), we reach

f̄ (x̂i (T))− f̄(x?)

≤ L2n

β
√
T
· c+

β

2n
√
T
R2 · 1

c
+

6L2

√
Tβπ

3/2
min(1− σ2(P))

· c

≤ 7L2

√
Tβπ

3/2
min(1− σ2(P))

· c+
β

2n
√
T
R2 · 1

c
, (3.15)

where we have used the fact that
∑T
t=1 t

−1/2 ≤∫ T
t=0

t−1/2dt =
√
T .

The claimed result holds directly as we optimize the upper
bound (3.15) with respect to the parameter c.

4. Extension
Our RW-DDA method can be easily adapted to incorpo-
rate stochastic gradients to solve an optimization problem
with a convex regularizer (e.g. `1, nuclear norm). In spe-
cific, Algorithm 2, a natural modification of RW-DDA (Al-
gorithm 1), is capable of solving

min
x

1

n

n∑
i=1

fi(x) + φ(x), (4.1)

where φ(x) is a convex regularizer. Its convergence proof
follows directly from combining our analysis above and
arguments used in previous literature (Xiao, 2009; Duchi
et al., 2012), which we omit here.

5. Implementation
In this section, we describe RW-DDA implementation. We
implement our algorithms over the MALT framework (Li
et al., 2015). MALT provides distributed machine learning
over shared memory for SVM-SGD and Torch. We im-
plement RW-DDA, simple model averaging and PS-DDA
over SVM SGD. We implement model averaging such that
each machine calculates the partial gradient and sends it to
other machines via a push operation. Each machine av-
erages the received gradients in a reduce step and updates
its model weight vector(w) locally. In our implementation,
RW-DDA and model averaging communicate variables in
a one-sided fashion without requiring an acknowledgment
and we use the MALT’s one-sided primitives over RDMA
to perform this low latency communication.

For our RW-DDA implementation, on every node k, we
loop over the local training examples. For every iteration
t, we choose an example i, and calculate the local gradient
gi and update the current model xtk. In distributed opti-
mization across multiple nodes, we perform a push oper-

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

RW-DDA Method For Decentralized Consensus Optimization

Algorithm 2 Generalized Random Walk Distributed Dual
Averaging (GRW-DDA) Method

Input: a predetermined nonnegative nonincreasing se-
quence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Stochastic subgradient calculation:

E [gi(t)] ∈ ∂fi(xi(t)), for each agent i. (4.2)

2. Dual updates:

zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, (4.3)

for each agent i.

3. Primal updates:

xi(t+ 1) = Proxtα(t)φ(·)[−α(t)zi(t+ 1)] (4.4)

= arg min
x

1

2
‖x+ α(t)zi(t+ 1)‖2 + tα(t)φ(x),

for each agent i.

end for

ation of the computed gradients and perform a reduce op-
eration on the received gradients. In the reduce step, we
sum any incoming gradient contributions (dual vectors) as
zt

′

k =
∑
j∈Ik zj and incorporate gradient gi into dual zk

as zt+1
k =

zt′
k +gi

|Ik|+1 . After processing a batch of examples
on every machine (about 500-5000), we push dual gradient
zt+1
k via out-edgesOk. We also choose learning rate ηtk and

apply the dual gradient zt+1
k as xt+1

k = −ηtk · zi. Finally,
each node also maintains and updates the running average
or the consensus model as x̂t+1

k =
∑t+1
i=1 x

i
k/(t + 1) =

t
t+1 x̂

t
k + 1

t+1x
t+1
k .

To improve performance, we perform the following three
optimizations. First, instead of calculating the full gradient
on every iteration, we only compute the sparse gradient and
separately correct the regularizer (Bottou, 2012). Second,
instead of sending z (or w for model averaging) after every
update step to all other nodes, we send it infrequently to
reduce communication costs. Each node locally processes
examples (usually 500-5000), and then communicates z.
We adjust the learning rate parameter η to account for the
batched communication. Finally, we maintain a running
sum average over the dual, and only compute this sum only
during reduce (incoming z parameters). Furthermore, in
our asynchronous implementation if there are no incom-
ing dual variables (z), we skip updating the average. We

describe our distributed implementation in Algorithm ??.
We find that the above optimizations give us significant
speedups (over 200X) allowing the dual space algorithms
that we implement, to operate as fast as primal space algo-
rithms.

6. Experiments
We now evaluate the RW-DDA algorithm for training SVM
using the RCV1 dataset. We evaluate RW-DDA according
to the following criteria:

1. Performance: How does RW-DDA compare with ex-
isting primal and dual methods? We evaluate per-
formance for the case when data is not randomly
distributed across the machines (non-i.i.d case) with
dense and sparse networks.

2. Fault tolerance: How does RW-DDA behave with
non-i.i.d. data and in the presence of link failures?

We perform all experiments on a four machine research
cluster connected via an infiniBand backplane. We run
multiple processes, across these four machines, and we re-
fer to each process as a rank (from the HPC terminology).
We run multiple ranks on each machine, especially for
models with less than 1M parameters, where a single model
replica is unable to saturate the network and CPU. Each
machine has an Intel Xeon 8-core, 2.2 GHz IvyBridge pro-
cessor with support for SSE 4.2/AVX instructions, and 64
GB DDR3 DRAM. Each machine is connected via a Mel-
lanox Connect-V3 56 Gbps infiniBand cards. Our 56 Gbps
infiniBand network architecture provides a peak through-
put of slightly over 40 Gbps after accounting for the bit-
encoding overhead for reliable transmission. All machines
share storage using a 10 TB NFS partition that we use for
loading input data. Each process loads a portion of data
depending on the number of processes. For all our ex-
periments, we partition the input data and assign positive
or negative subsets to each node. Hence, we perform all
our training with a sampling bias over non-i.i.d data unless
mentioned otherwise. All reported times do not account the
initial one-time cost for the loading the data-sets in mem-
ory. All times are reported in seconds.

We compare RW-DDA and model averaging over the
MALT framework (Li et al., 2015) with the applicable op-
timizations described in the previous section. Model aver-
aging is computationally efficient because of its simple up-
date step. We also implement failure resiliency in both the
algorithms by appropriately detecting the number of nodes
sending parameters and correctly computing a scaling fac-
tor. We run all our experiments over six ranks. Each rank
represents a process that may span multiple machines and

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

RW-DDA Method For Decentralized Consensus Optimization

(a) i.i.d data (b) non-i.i.d data (c) non-i.i.d data +
30% failure probability

(d) non-i.i.d data +
60% failure probability

(e) non-i.i.d data +
10% failure probability
w/ sparse node graph

(f) non-i.i.d data +
90% failure probability
w/ sparse node graph

Figure 1. This figure shows the convergence of RW-DDA with model averaging for 6 parallel ranks (processes across machines)
and all ranks exchange parameters with one another. Each rank communicates z or w after processing a local epoch (slightly over
3300 examples). Figure (a) shows performance over i.i.d data where RW-DDA and model averaging compare favorably. Figure
(b) shows this performance for non-i.i.d data. Figure (c) and (d) show convergence comparisons for 30% and 60% probability of
packet losses. We find that RW-DDA converges in both cases. Figures (e) and (f) illustrate performance comparisons for sparse
node graph where each machine only exchanges parameters with N/2 machines.

Figure 2. This figure compares model-averaging, RW-DDA
and PS-DDA for 30% probability of packet loss. We demon-
strate results for average convergence across ranks and we
find that PS-DDA suffers from numerical instability in the
scalar that results in incorrect convergence.

each rank trains over a subset of data. For our experiments,
the six ranks span across three machines.

6.1. Performance

We compare the average training error over all ranks w.r.t.
wall clock time in Figure 1 (a) and (b). In this section, we
compare the performance of RW-DDA and model averag-
ing without failures. We choose a densely connected net-
work graph where each machine synchronizes parameters
with all other machines. Figure (a) shows the convergence
for i.i.d. data where both model averaging and RW-DDA
converge correctly. For non-i.i.d. data, we find that RW-
DDA converges faster in time, and achieves a stable ac-
curacy better than model averaging. Hence, we find that
with our optimizations, our dual-order method, RW-DDA,
performs as good as primal order model averaging. From
the optimizations described in Section 5, we are able to ob-
tain more than 200X speedup from the original RW-DDA
implementation. Furthermore, for the non-i.i.d. dataset,
RW-DDA converges correctly unlike model averaging.

6.2. Fault Tolerance

We now compare RW-DDA performance in the presence
of intermittent link failures. Each outgoing packet may
fail with a specific user-defined probability. The failures
are asymmetric i.e. nodes with positive examples are less
likely to fail than those with negative examples. We re-

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

RW-DDA Method For Decentralized Consensus Optimization

peat our experiments for different overall failure probabil-
ity goals. For our fault tolerance experiments, we remove
the barrier before the update step, since some packets may
never arrive due to failures and a barrier will lead to infinite
wait. Hence, we perform our fault tolerance experiments by
running the algorithms asynchronously.

Figure 1 (c) and (d) show RW-DDA and model conver-
gence with 30% and 60% packet loss probability where all
machines communicate with one-another forming a dense
communication graph of nodes. We find that RW-DDA is
more robust to link failures and offers correct convergence
which model averaging is unable to achieve. To account
for fewer incoming z parameters due to the asynchrony, we
appropriately re-scale the gradient or the averaging fraction
by counting the number of incoming z or g parameters.

We now provide performance comparisons with undirected
sparse communication graphs i.e. where all nodes may
not communicate with one another. Instead of commu-
nicating with all other machines (or processes), each ma-
chine only communicates with N/2 other machines such
that the network graph of all machines is connected and the
graph is undirected, where N is the total number of nodes.
We compare RW-DDA and model-averaging over a sparse
communication graph in Figure 1 (e) and (f) with 10% and
90% packet loss probability. We find that model averaging
does not converge correctly in Figure 1 (f) while RW-DDA
achieves correctly.

Comparisons with PS-DDA We implement Push-Sum
DDA (Tsianos et al., 2012a) in our framework and apply
the same optimizations as RW-DDA to improve its perfor-
mance. Figure 2 compares model averaging, RW-DDA and
PS-DDA for failures with 30% probability of packet loss
for a specific rank, with non-i.i.d. data. PS-DDA requires
sending an additional scaling component. Additionally, in
the asynchronous case or in presence of failures, PS-DDA
suffers from numerical instability (Tsianos et al., 2012a).
In asynchronous mode, since different nodes operate at dif-
ferent speeds, the scalar may become very small due to re-
peated re-scaling. To prevent this from happening, in our
implementation, we reset the scalar to its initial value (1.0)
if it becomes too large or too small. As a result, of the nu-
merical instability we find that PS-DDA is unable to con-
verge in the presence of packet losses and non-i.i.d. data.
However, we find that PS-DDA performs comparably with
RW-DDA in absence of failures (not shown in figure).

To summarize, from our evaluation we find that RW-DDA
has good convergence properties and our implementation
of RW-DDA is robust and efficient.

7. Conclusions
Distributed learning over a large number of distributed sen-
sors or geographically separated data centers which suf-
fers from sampling biases and communication link failures
across nodes. Existing dual averaging approaches are slow,
and may not converge correctly in the presence of link-
failures, which are not uncommon in distributed settings.
We present RW-DDA, a distributed learning algorithm that
is robust to failures. Our analysis shows the algorithm has
O(1/

√
t) convergence for non-smooth convex problems.

Our experiments show that RW-DDA converges as fast as
primal averaging algorithms and provides smooth conver-
gence.

References
Bénézit, F., Blonde, V., Thiran, P., Tsitsiklis, J., and Vetterli,

M. Weighted gossip: Distributed averaging using non-doubly
stochastic matrices. In Information theory proceedings (isit),
2010 ieee international symposium on, pp. 1753–1757. IEEE,
2010.

Bottou, L. Stochastic gradient descent tricks. In Neural Networks:
Tricks of the Trade, pp. 421–436. Springer, 2012.

Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D. Randomized
gossip algorithms. IEEE/ACM Transactions on Networking
(TON), 14(SI):2508–2530, 2006.

Diaconis, P. and Stroock, D. Geometric bounds for eigenvalues of
markov chains. The Annals of Applied Probability, pp. 36–61,
1991.

Dimakis, A. G., Kar, S., Moura, J., Rabbat, M. G., and Scaglione,
A. Gossip algorithms for distributed signal processing. Pro-
ceedings of the IEEE, 98(11):1847–1864, 2010.

Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual averaging
for distributed optimization: convergence analysis and network
scaling. Automatic control, IEEE Transactions on, 57(3):592–
606, 2012.

Iutzeler, F., Ciblat, P., and Hachem, W. Analysis of sum-weight-
like algorithms for averaging in wireless sensor networks.
Signal Processing, IEEE Transactions on, 61(11):2802–2814,
2013.

Jakovetic, D., Xavier, J., and Moura, J. M. Fast distributed gradi-
ent methods. Automatic Control, IEEE Transactions on, 59(5):
1131–1146, 2014.

Kempe, D., Dobra, A., and Gehrke, J. Gossip-based computation
of aggregate information. In Foundations of Computer Science,
2003. Proceedings. 44th Annual IEEE Symposium on, pp. 482–
491. IEEE, 2003.

Li, H., Kadav, A., Kruus, E., and Ungureanu, C. Malt: distributed
data-parallelism for existing ml applications. In Proceedings of
the Tenth European Conference on Computer Systems. ACM,
2015.

Ling, Q., Xu, Y., Yin, W., and Wen, Z. Decentralized low-rank
matrix completion. In Acoustics, Speech and Signal Processing
(ICASSP), 2012 IEEE International Conference on, pp. 2925–
2928. IEEE, 2012.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

RW-DDA Method For Decentralized Consensus Optimization

Ling, Q., Wen, Z., and Yin, W. Decentralized jointly sparse
optimization by reweighted minimization. Signal Processing,
IEEE Transactions on, 61(5):1165–1170, 2013.

Nedić, A. Distributed optimization. In Encyclopedia of Systems
and Control, pp. 1–12. Springer London, 2014.

Nedić, A. and Ozdaglar, A. Distributed subgradient methods for
multi-agent optimization. Automatic Control, IEEE Transac-
tions on, 54(1):48–61, 2009.

Nedic, Angelia and Olshevsky, Alex. Distributed optimization
over time-varying directed graphs. Automatic Control, IEEE
Transactions on, 60(3):601–615, 2015.

Nesterov, Y. Primal-dual subgradient methods for convex prob-
lems. Mathematical programming, 120(1):221–259, 2009.

Nocedal, J. and Wright, S. Numerical optimization. Springer
Science & Business Media, 2006.

Olshevsky, A. and Tsitsiklis, J. N. Convergence speed in dis-
tributed consensus and averaging. SIAM Journal on Control
and Optimization, 48(1):33–55, 2009.

Ram, S. S., Nedić, A., and Veeravalli, V. V. Distributed stochas-
tic subgradient projection algorithms for convex optimization.
Journal of optimization theory and applications, 147(3):516–
545, 2010.

Ram, S. S., Nedić, A., and Venugopal, V. V. A new class of dis-
tributed optimization algorithms: Application to regression of
distributed data. Optimization Methods and Software, 27(1):
71–88, 2012.

Ross, S. Stochastic processes, volume 2. John Wiley & Sons New
York, 1996.

Shi, W, Ling, Q., Wu, G., and Yin, W. Extra: An exact first-order
algorithm for decentralized consensus optimization. SIAM
Journal on Optimization, 25(2):944–966, 2015.

Tsianos, K. and Rabbat, M. G. Distributed dual averaging for
convex optimization under communication delays. In Ameri-
can Control Conference (ACC), 2012, pp. 1067–1072. IEEE,
2012.

Tsianos, K., Lawlor, S., and Rabbat, M. G. Consensus-based
distributed optimization: Practical issues and applications in
large-scale machine learning. In Communication, Control, and
Computing (Allerton), 2012 50th Annual Allerton Conference
on, pp. 1543–1550. IEEE, 2012a.

Tsianos, K., Lawlor, S., and Rabbat, M. G. Push-sum distributed
dual averaging for convex optimization. In Decision and Con-
trol (CDC), 2012 IEEE 51st Annual Conference on, pp. 5453–
5458. IEEE, 2012b.

Wei, E. and Ozdaglar, A. On the O(1/k) convergence of asyn-
chronous distributed alternating direction method of multipli-
ers. In Global Conference on Signal and Information Process-
ing (GlobalSIP), 2013 IEEE, pp. 551–554. IEEE, 2013.

Xiao, L. Dual averaging method for regularized stochastic learn-
ing and online optimization. In Advances in Neural Informa-
tion Processing Systems, pp. 2116–2124, 2009.

Yuan, K., Ling, Q., and Yin, W. On the convergence of decentral-
ized gradient descent. arXiv preprint arXiv:1310.7063, 2013a.

Yuan, K., Ling, Q., Yin, W., and Ribeiro, A. A linearized bregman
algorithm for decentralized basis pursuit. In Signal Processing
Conference (EUSIPCO), 2013 Proceedings of the 21st Euro-
pean, pp. 1–5. IEEE, 2013b.

Zeng, J. and Yin, W. Extrapush for convex smooth decen-
tralized optimization over directed networks. arXiv preprint
arXiv:1511.02942, 2015.

