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Random Walk Distributed Dual Averaging Method For
Decentralized Consensus Optimization

Abstract
In this paper, we address the problem of dis-
tributed learning over a decentralized network,
arising from scenarios including distributed sen-
sors or geographically separated data centers. We
propose a fully distributed algorithm called ran-
dom walk distributed dual averaging (RW-DDA)
that only requires local updates. Our RW-DDA
method, improves the existing distributed dual
averaging (DDA) method, making it robust to
changes in network topology and amenable to
asynchronous implementations. Our theoretical
analysis shows the algorithm has O(1/

√
t) con-

vergence for non-smooth convex problems. Vari-
ous and valuable practical acceleration tricks are
also introduced in the implementation. Experi-
mental results show that our algorithm outper-
forms competing methods, especially in the pres-
ence of communication link failures.

1. Introduction
With technological advancements in sensors, mobile de-
vices, and data centers, machine learning algorithms are
commonly applied to data distributed across these ma-
chines. However, distributed learning in real world sce-
narios suffers from two issues. First, the various nodes
in a distributed setting may suffer from intermittent net-
work or node failures. For example, geographically sepa-
rated data centers may suffer from communication delays
or dropped packets. Second, the nodes in the distributed
system such as the physical sensors may collect data points
that are not randomly distributed across the nodes resulting
in non-independent and identically distributed (non-i.i.d.)
data across the nodes. Data-centers too, often collect non-
random data, with each data center receiving data that is
biased towards the geography where it is located. Often
due to scale, privacy, or lack of a central coordinating re-
source, randomizing data may not always be possible. As a
result, distributed training across these nodes with the pres-

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ence of biased data at individual machines based on simple
techniques such as averaging of parameters may not work.

In this paper, we propose to solve this problem in the frame-
work of Decentralized Consensus Optimization (DCO),
where all the nodes (agents), with their own utility func-
tions, are connected through a network. The networked
system goal is to optimize the sum of all the utility func-
tions, only through local computations and local informa-
tion exchange with neighbors as specified by the com-
munication graph of all nodes. Such peer-to-peer frame-
work, with applications ranging from large scale machine
learning (Tsianos et al., 2012a; Ling et al., 2012; 2013;
Yuan et al., 2013b) to wireless sensor networks (Nedić &
Ozdaglar, 2009; Dimakis et al., 2010), tends to be scal-
able, simple to implement and robust to intermittent net-
work failures.

Given the importance of DCO, many methods have been
proposed recently (Nedić, 2014). One of the techniques
that gained recent popularity is a class of distributed al-
gorithms that combine the consensus protocols developed
from the control field (Olshevsky & Tsitsiklis, 2009) and
the gradient-type methods from the optimization area (No-
cedal & Wright, 2006). Here, a consensus protocol refers
to a mechanism for information diffusion, where each
agent independently spread their information via locally
weighted averaging of their incoming data. The gradient-
based methods are particularly suitable, since they, in gen-
eral, have a small per-iteration cost and are robust to var-
ious sources of stochastic errors. In contrast with ap-
proaches based on bi-directional communication, e.g. Ran-
domized Gossiping (Boyd et al., 2006) and ADMM-type
distributed methods (Wei & Ozdaglar, 2013), the above
mentioned technique employs only one-directional com-
munication, (where agents only send information and then
proceed with their local computations without expecting a
response from others,) and thus manage to avoid the dead-
lock problem resulting from the bi-direction communica-
tion in practical implementation.

Generally speaking, based on the style of the consensus
step, these methods can be classified as model averaging
methods (Nedić & Ozdaglar, 2009; Ram et al., 2010; 2012;
Yuan et al., 2013a; Jakovetic et al., 2014; Li et al., 2015;
Shi et al., 2015), which average parameters, and dual aver-
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RW-DDA Method For Decentralized Consensus Optimization

aging methods (Duchi et al., 2012; Tsianos et al., 2012a;
Tsianos & Rabbat, 2012), which average (sub)gradients.
Arguably, the dual averaging approach is preferable as it
is more scalable in the size of the network than the pri-
mal one (Duchi et al., 2012). However, the dual method
may suffer from significant performance overheads. In spe-
cific, the dual computation and distributed consensus lead
to high CPU costs when computing the dual variable every
iteration, which makes it impractical when applied to large
datasets as compared to primal model averaging methods.

Moreover, the successes of the above mentioned model av-
eraging methods and dual averaging methods heavily rely
on the communication network to be static, which may not
be realistic due to node/edge failures. One exception is
these methods (Tsianos et al., 2012b;a; Nedic & Olshevsky,
2015; Zeng & Yin, 2015) using the push-sum protocol, aka
weighted gossip or sum-weight algorithms (Kempe et al.,
2003; Bénézit et al., 2010; Iutzeler et al., 2013). In the-
ory, push-sum type methods are robust to the change in net-
work topology under the synchronous scenario. However,
as pointed in (Tsianos et al., 2012a), due to the scaling is-
sue, these methods are often numerical instable in practical
asynchronous implementation. Our numerical experiment
in Section 6 also conforms to this observation.

The main contribution of this paper is to propose and im-
plement an efficient dual averaging method, which ad-
dresses the above two issues. Specifically,

• We propose an efficient algorithm, called random
walk distributed dual averaging (RW-DDA) method,
that is robust to the change in the network topology
especially in presence of non-i.i.d. data where simple
techniques may not work.

• We improve RW-DDA performance with an efficient
implementation and discuss general stochastic subgra-
dient optimization tricks that enable dual-space algo-
rithms to run as fast as primal space algorithms such
as model averaging.

• Finally, our experimental results demonstrate that
RW-DDA can be successfully extended to asyn-
chronous and failure-prone settings.

The paper is organized as follows: In section 2, we intro-
duce the RW-DDA algorithm. In section 3, we analyze
RW-DDA convergence. Next, in section 4 we describe ex-
tensions to RW-DDA. In sections 5 and 6, we describe our
implementation and empirical evaluation. Finally, in sec-
tion 7, we conclude the paper.

2. RW-DDA method for DCO
2.1. Problem Statement

In mathematical terms, the optimization problem is defined
on a connected undirected network and solved by n agents
(computers) collectively,

min
x∈X⊆Rd

f̄(x) :=

n∑
i=1

fi(x). (2.1)

The feasible set X is a closed and convex set in Rd and is
commonly known by all agents, whereas fi : X ∈ R is a
convex function privately known by the agent i. Through-
out the paper, we also assume that fi is L-Lipschitz con-
tinuous over X with respect to the Euclidean norm ‖·‖.
The network G = (N , E), with the node set N = [n] :=
{1, 2, · · · , n} and the edge set E ⊆ N × N , specifies the
topological structure on how the information can be spread
among agents through local agent interactions over time. In
specific, each agent i can only send and retrieve informa-
tion from its neighbors N (i) := {j | (j, i) ∈ E} and him-
self.

2.2. RW-DDA

Our random-walk distributed dual averaging (RW-DDA)
method is shown step-by-step in Algorithm 1. Literally,
in RW-DDA, each node i keeps a local estimate xi and a
dual variable zi maintaining an accumulated subgradient.
At iteration t, to update zi, each node needs to collect the
z-values of its neighbors, forms a convex combination with
equal weight of the received information and adds its most
recent local subgradient scaled by |N (i)| + 1. After that,
the dual variables zi is projected to the primal space to ob-
tain xi.

To implement RW-DDA, each node only needs to know its
neighborhood information, which makes the algorithm ro-
bust to the change in network topology, frequently result-
ing from node failure or edge malfunction. As possibly
inferred from the name, our RW-DDA method robustify
the distributed dual averaging (DDA) method (Duchi et al.,
2012), based on the theory of random walk over undirected
graph (Ross, 1996).

Before we delve into the convergence proof for Algorithm
1, we will first make an intuitive explanation to help under-
stand the correctness of RW-DDA.

For notational convenience, we will define the matrix P ∈
Rn×n with Pij being 1

|N (i)+1| for j ∈ N (i) ∪ {i} and 0

otherwise. Clearly P is a row stochastic matrix, i.e. the
sum of every row of P equals 1. We will also define the
vector π ∈ Rd with the i-th entry πi being |N (i)|+1

β , where
β := 2|V|+ |E|. It can easily verified that π is a probability
vector, i.e. πi > 0 and

∑
i∈[n] πi = 1. With these nota-
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Algorithm 1 Random Walk Distributed Dual Averaging
(RW-DDA) Method

Input: a predetermined non-negative non-increasing se-
quence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Subgradient calculation:

gi(t) ∈ ∂fi(xi(t)), for each agent i. (2.2)

2. Dual updates:

zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, (2.3)

for each agent i.

3. Primal updates:

xi(t+ 1) = PX [−α(t)zi(t+ 1)] (2.4)

:= arg min
x∈X

‖x+ α(t)zi(t+ 1)‖2 ,

for each agent i.

end for

tions, we are able to express (2.3) in a terser way. Imagine
X ⊆ R, so xi(t), zi(t) and gi(t) are now all scalars. Then
we can rewrite the update (2.3) as

z(t+ 1) = Pz(t) +
1

β
diag (π)

−1
g(t)

=
1

β

t∑
s=0

P sdiag (π)
−1
g(t− s), (2.5)

with z(t) = (z1(t), z2(t), · · · , zn(t))
> and g(t) =

(g1(t), g2(t), · · · , gn(t))
>. As we need each node to play

the same role in the system, from (2.5), it is quite reason-
able to require P∞diag (π)

−1
= 1n×n, where P∞ :=

limt→∞P
t and 1n×n is the n by n matrix with all entries

as one. Indeed, we can verify this requirement by the close
connection between P and π, as revealed in the follow-
ing lemma, which can be regarded as a direct consequence
of results for random walk under undirected graph (Ross,
1996). This also justifies the appearance of random walk in
the name of our algorithm.
Lemma 1. π>P = π> andP∞ := limt→∞P

t = 1·π>.

Proof. Consider a discrete-time Markov chain with state
space as V and transition matrix specified by P . It can be
easily seen that this Markov chain is irreducible and ape-
riodic. Therefore, there exists a unique stationary distri-
bution d satisfying d ≥ 0, 1>d = 1, d>P = d> and

P∞ = 1 · d>. Since the probability vector π satisfies the
so-called detailed balance equation, i.e. πiPij = πjPji, π
is the stationary distribution, i.e. d = π.

3. Convergence Analysis
In this section, we will provide an O(1/

√
t)-convergence

result for Algorithm 1 when α(t) is properly chosen as
O(1/

√
t).

We first present two useful lemmas. The first one is stan-
dard in convex analysis. and the second one is from Duchi
et al. (2012), which modifies slightly the result in Nesterov
(2009).

Lemma 2. For any u, v ∈ Rd, ‖PX [u]− PX [v]‖ ≤
‖u− v‖.
Lemma 3. Let {h(t)}∞t=1 ⊂ Rd be an arbitrary sequence
of vectors and {α(t)}∞t=1 be a positive and non-increasing
sequence. Consider the sequences {z̄(t)}∞t=0 with z̄(0) =
0 and {y(t)}∞t=1 constructed as follows:

y(t+ 1) = PX [−α(t)z̄(t)],

z̄(t+ 1) = z̄(t) + h(t), t = 0, 1, 2, . . . .

Then for any x? ∈ X , we have

T∑
t=1

〈h(t),y(t)− x?〉

≤ 1

2

T∑
t=1

α(t− 1) ‖h(t)‖2 +
1

2α(T )
‖x?‖ .

Now, we can proceed to our proof of the RW-DDA method.

Lemma 4. Consider the sequences {xi(t)} and {zi(t)}
generated by RW-DDA (Algorithm 1). Then for any x? ∈
X and for each node i ∈ [n], we have

f̄ (x̂i (T ))− f̄(x?)

≤ L2n

2βT

T∑
t=1

α(t− 1) +
β

2nTα(T )
‖x?‖2

+
L

T

T∑
t=1

α(t)

 2

n

n∑
j=1

‖z̄(t)− zj(t)‖ + ‖z̄(t)− zi(t)‖

 ,

(3.1)

where x̂i(T ) = 1
T

∑T
t=1 xi(t) and z̄(t) =

∑n
i=1 πizi(t).

Proof. For simplicity, we assume X ⊆ R, so
xi(t), zi(t) and gi(t) are now all scalars. Denote
z(t) = (z1(t), . . . , zn(t))> ∈ Rd, and g(t) =
(g1(t), . . . , gn(t))> ∈ Rd.
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Based on the dynamics (2.3), we can write

z(t+ 1) = Pz(t) +
1

β
diag (π)

−1
g(t). (3.2)

Then one has the π-weighted average

z̄(t+ 1) = π>z(t+ 1) = π>Pz(t) +
1

β
π>diag (π)

−1
g(t)

= π>z(t) +
1

β
1>g(t) = z̄(t) +

1

β
1>g(t),

where we have used the fact that π>P = π> in Lemma 1.

Now define

y(t+ 1) = PX [−α(t)z̄(t)], t = 0, 1, 2, . . . , (3.3)

and we start to bound our target f(x̂i(T ))− f(x?),

f(x̂i(T ))− f(x?)

≤ 1

T

T∑
t=1

(
f(xi(t))− f(x?)

)

≤ 1

T

T∑
t=1

(
f(y(t))− f(x?)

)
+

1

T

T∑
t=1

(
f(xi(t))− f(y(t))

)

≤ 1

nT

T∑
t=1

n∑
i=1

(
fi(y(t))− fi(x?)

)
+
L

T

T∑
t=1

‖xi(t)− y(t)‖ ,

(3.4)

where the first inequality is due to convexity, and last line
holds as f is L-Lipschitz.

Now let us fucus on the term fi(y(t))− fi(x?),

fi(y(t))− fi(x?)

=

(
fi(y(t))− fi(xi(t))

)
+

(
fi(xi(t))− fi(x?)

)
≤ L ‖y(t)− xi(t)‖ + 〈gi(t), xi(t)− x∗〉
= L ‖y(t)− xi(t)‖ + 〈gi(t), xi(t)− y(t)〉+ 〈gi(t), y(t)− x?〉
≤ L ‖y(t)− xi(t)‖ + L ‖y(t)− xi(t)‖ + 〈gi(t), y(t)− x?〉
≤ 2L ‖y(t)− xi(t)‖ + 〈gi(t), y(t)− x?〉 , (3.5)

where the second inequality holds as fi is L-Lipschitz and
gi(t) ∈ ∂fi(xi(t)), and the second last line is due to
‖gi‖ ≤ L.

Substituting (3.5) into (3.4), we obtain

f(x̂i(T ))− f(x?) ≤ 1

nT

T∑
t=1

n∑
i=1

〈gi(t), y(t)− x?〉

+
L

T

T∑
t=1

(
2

n

n∑
i=1

‖y(t)− xi(t)‖ + ‖y(t)− xi(t)‖
)
.

(3.6)

Next, we will look at the two terms in (3.6) respectively.
For the first term,

1

nT

T∑
t=1

n∑
i=1

〈gi(t), y(t)− x?〉

=
β

nT

T∑
t=1

〈
1>g(t)

β
, y(t)− x?

〉

≤ β

2nT

T∑
t=1

α(t− 1)

∥∥∥∥1>g(t)

β

∥∥∥∥2 +
β

2nTα(T )
‖x?‖2

≤ L2n

2βT

T∑
t=1

α(t− 1) +
β

2nTα(T )
‖x?‖2 , (3.7)

where the second line results from Lemma 3 (with
1>g(t)/β playing the role of h(t) in Lemma 3).

Regarding the second term in (3.6), note that

‖y(t)− xi(t)‖ = ‖PX [−α(t)z̄(t)]− PX [−α(t)z̄i(t)]‖
≤ ‖−α(t)(z̄(t)− zi(t))‖ ≤ α(t) ‖z̄(t)− zi(t)‖ . (3.8)

by Lemma 2.

Finally, substituting (3.7) and (3.8) into (3.6) yields our de-
sired (3.1).

Lemma (4) provides a nice characterization of the devia-
tion from the optimal value over all nodes. The first two
terms in (3.1) are common optimization error terms per-
taining to subgradient algorithms. The third term reflects
the nature of distributed optimization, where each node has
its own estimate of the average gradient that deviates from
each other. Next, we will show an upper bound for the de-
viation term ‖z̄(t)− zi(t)‖.

Lemma 5. Consider the sequences {xi(t)} and {zi(t)}
generated by RW-DDA (Algorithm 1). Define z̄(t) =
π>z(t). Then we have,

‖z̄(t)− zi(t)‖ ≤
L

βπmin

√
1− πi
πi

1

1− σ2(P )
, (3.9)

where πmin = min{πi} and σ2(·) denotes the second
largest singular value.

Proof. For simplicity, we assume X ⊆ R,
so xi(t) and zi(t) are now scalars. Denote
z(t) = (z1(t), z2(t), · · · , zn(t))

> and g(t) =

(g1(t), g2(t), · · · , gn(t))
>. Also, in the following

proof, we will omit the superscript w for notational
convenience.
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Due to (2.3), we have, for t = 1, 2, . . . ,

z(t) =
1

β
diag (π)

−1
g(t− 1) + Pz(t− 1)

=
1

β

t∑
s=1

P s−1diag (π)
−1
g(t− s). (3.10)

So,

zi(t) =
1

β

t∑
s=1

e>i P
s−1diag (π)

−1
g(t− s), and

z̄(t) = π>z(t) =
1

β

t∑
s=1

π>P s−1diag (π)
−1
g(t− s)

=
1

β

t∑
s=1

π>diag (π)
−1
g(t− s). (3.11)

Thus,

‖z̄(t)− zi(t)‖

=
1

β

∥∥∥∥∥
t∑

s=1

(
π> − e>i P s−1) diag (π)

−1
g(t− s)

∥∥∥∥∥
≤ L

βπmin

t∑
s=1

∥∥π> − e>i P s−1∥∥
1
. (3.12)

Based on the Prop. 3 of (Diaconis & Stroock, 1991),

∥∥π> − e>i P s−1∥∥
1
≤
√

1− πi
πi

σs−12 . (3.13)

Substitute (3.13) into (3.12), we have

‖z̄(t)− zi(t)‖ ≤
L

βπmin

t∑
s=1

√
1− πi
πi

σs−12

≤ L

βπmin

√
1− πi
πi

1

1− σ2(P )
,

which completes the proof.

Finally, we are ready to present the convergence theorem
by combining Lemma 4 and Lemma 5.

Theorem 1. Consider the sequences {xi(t)} and {zi(t)}
generated by RW-DDA (Algorithm 1). Define the running
average at each node i as x̂i(T ) = 1

T

∑T
t=1 xi(t). Then

for any x? ∈ X with ‖x?‖ ≤ R, and for each node i ∈ [n],
one has

f̄ (x̂i (T ))− f̄(x?) ≤ 2LR√
nT (1− σ2(P )π

3/4
min

(3.14)

when the step size α(t) is chosen as β(πmin)
3/4
√

1−σ2(P )R

4L
√
n

·
1√
t
.

Proof. Let us choose α(t) in the form of c/
√
t, where c is

to be optimized later.

Plugging (3.9) into (3.1), we reach

f̄ (x̂i (T ))− f̄(x?)

≤ L2n

β
√
T
· c+

β

2n
√
T
R2 · 1

c
+

6L2

√
Tβπ

3/2
min(1− σ2(P ))

· c

≤ 7L2

√
Tβπ

3/2
min(1− σ2(P ))

· c+
β

2n
√
T
R2 · 1

c
, (3.15)

where we have used the fact that
∑T
t=1 t

−1/2 ≤∫ T
t=0

t−1/2dt =
√
T .

The claimed result holds directly as we optimize the upper
bound (3.15) with respect to the parameter c.

4. Extension
Our RW-DDA method can be easily adapted to incorpo-
rate stochastic gradients to solve an optimization problem
with a convex regularizer (e.g. `1, nuclear norm). In spe-
cific, Algorithm 2, a natural modification of RW-DDA (Al-
gorithm 1), is capable of solving

min
x

1

n

n∑
i=1

fi(x) + φ(x), (4.1)

where φ(x) is a convex regularizer. Its convergence proof
follows directly from combining our analysis above and
arguments used in previous literature (Xiao, 2009; Duchi
et al., 2012), which we omit here.

5. Implementation
In this section, we describe RW-DDA implementation. We
implement our algorithms over the MALT framework (Li
et al., 2015). MALT provides distributed machine learning
over shared memory for SVM-SGD and Torch. We im-
plement RW-DDA, simple model averaging and PS-DDA
over SVM SGD. We implement model averaging such that
each machine calculates the partial gradient and sends it to
other machines via a push operation. Each machine av-
erages the received gradients in a reduce step and updates
its model weight vector(w) locally. In our implementation,
RW-DDA and model averaging communicate variables in
a one-sided fashion without requiring an acknowledgment
and we use the MALT’s one-sided primitives over RDMA
to perform this low latency communication.

For our RW-DDA implementation, on every node k, we
loop over the local training examples. For every iteration
t, we choose an example i, and calculate the local gradient
gi and update the current model xtk. In distributed opti-
mization across multiple nodes, we perform a push oper-
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Algorithm 2 Generalized Random Walk Distributed Dual
Averaging (GRW-DDA) Method

Input: a predetermined nonnegative nonincreasing se-
quence {α(t)}.
Initialization: xi(0) = zi(0) = 0, for all i ∈ [n].
for t = 0, 1, 2, . . . , do

1. Stochastic subgradient calculation:

E [gi(t)] ∈ ∂fi(xi(t)), for each agent i. (4.2)

2. Dual updates:

zi(t+ 1) =

∑
j∈N (i)∪{i} zj(t) + gi(t)

|N (i)|+ 1
, (4.3)

for each agent i.

3. Primal updates:

xi(t+ 1) = Proxtα(t)φ(·)[−α(t)zi(t+ 1)] (4.4)

= arg min
x

1

2
‖x+ α(t)zi(t+ 1)‖2 + tα(t)φ(x),

for each agent i.

end for

ation of the computed gradients and perform a reduce op-
eration on the received gradients. In the reduce step, we
sum any incoming gradient contributions (dual vectors) as
zt

′

k =
∑
j∈Ik zj and incorporate gradient gi into dual zk

as zt+1
k =

zt′
k +gi

|Ik|+1 . After processing a batch of examples
on every machine (about 500-5000), we push dual gradient
zt+1
k via out-edgesOk. We also choose learning rate ηtk and

apply the dual gradient zt+1
k as xt+1

k = −ηtk · zi. Finally,
each node also maintains and updates the running average
or the consensus model as x̂t+1

k =
∑t+1
i=1 x

i
k/(t + 1) =

t
t+1 x̂

t
k + 1

t+1x
t+1
k .

To improve performance, we perform the following three
optimizations. First, instead of calculating the full gradient
on every iteration, we only compute the sparse gradient and
separately correct the regularizer (Bottou, 2012). Second,
instead of sending z (or w for model averaging) after every
update step to all other nodes, we send it infrequently to
reduce communication costs. Each node locally processes
examples (usually 500-5000), and then communicates z.
We adjust the learning rate parameter η to account for the
batched communication. Finally, we maintain a running
sum average over the dual, and only compute this sum only
during reduce (incoming z parameters). Furthermore, in
our asynchronous implementation if there are no incom-
ing dual variables (z), we skip updating the average. We

describe our distributed implementation in Algorithm ??.
We find that the above optimizations give us significant
speedups (over 200X) allowing the dual space algorithms
that we implement, to operate as fast as primal space algo-
rithms.

6. Experiments
We now evaluate the RW-DDA algorithm for training SVM
using the RCV1 dataset. We evaluate RW-DDA according
to the following criteria:

1. Performance: How does RW-DDA compare with ex-
isting primal and dual methods? We evaluate per-
formance for the case when data is not randomly
distributed across the machines (non-i.i.d case) with
dense and sparse networks.

2. Fault tolerance: How does RW-DDA behave with
non-i.i.d. data and in the presence of link failures?

We perform all experiments on a four machine research
cluster connected via an infiniBand backplane. We run
multiple processes, across these four machines, and we re-
fer to each process as a rank (from the HPC terminology).
We run multiple ranks on each machine, especially for
models with less than 1M parameters, where a single model
replica is unable to saturate the network and CPU. Each
machine has an Intel Xeon 8-core, 2.2 GHz IvyBridge pro-
cessor with support for SSE 4.2/AVX instructions, and 64
GB DDR3 DRAM. Each machine is connected via a Mel-
lanox Connect-V3 56 Gbps infiniBand cards. Our 56 Gbps
infiniBand network architecture provides a peak through-
put of slightly over 40 Gbps after accounting for the bit-
encoding overhead for reliable transmission. All machines
share storage using a 10 TB NFS partition that we use for
loading input data. Each process loads a portion of data
depending on the number of processes. For all our ex-
periments, we partition the input data and assign positive
or negative subsets to each node. Hence, we perform all
our training with a sampling bias over non-i.i.d data unless
mentioned otherwise. All reported times do not account the
initial one-time cost for the loading the data-sets in mem-
ory. All times are reported in seconds.

We compare RW-DDA and model averaging over the
MALT framework (Li et al., 2015) with the applicable op-
timizations described in the previous section. Model aver-
aging is computationally efficient because of its simple up-
date step. We also implement failure resiliency in both the
algorithms by appropriately detecting the number of nodes
sending parameters and correctly computing a scaling fac-
tor. We run all our experiments over six ranks. Each rank
represents a process that may span multiple machines and
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(a) i.i.d data (b) non-i.i.d data (c) non-i.i.d data + 
30% failure probability

(d) non-i.i.d data + 
60% failure probability

(e) non-i.i.d data + 
10% failure probability 
w/ sparse node graph

(f) non-i.i.d data + 
90% failure probability 
w/ sparse node graph

Figure 1. This figure shows the convergence of RW-DDA with model averaging for 6 parallel ranks (processes across machines)
and all ranks exchange parameters with one another. Each rank communicates z or w after processing a local epoch (slightly over
3300 examples). Figure (a) shows performance over i.i.d data where RW-DDA and model averaging compare favorably. Figure
(b) shows this performance for non-i.i.d data. Figure (c) and (d) show convergence comparisons for 30% and 60% probability of
packet losses. We find that RW-DDA converges in both cases. Figures (e) and (f) illustrate performance comparisons for sparse
node graph where each machine only exchanges parameters with N/2 machines.

Figure 2. This figure compares model-averaging, RW-DDA
and PS-DDA for 30% probability of packet loss. We demon-
strate results for average convergence across ranks and we
find that PS-DDA suffers from numerical instability in the
scalar that results in incorrect convergence.

each rank trains over a subset of data. For our experiments,
the six ranks span across three machines.

6.1. Performance

We compare the average training error over all ranks w.r.t.
wall clock time in Figure 1 (a) and (b). In this section, we
compare the performance of RW-DDA and model averag-
ing without failures. We choose a densely connected net-
work graph where each machine synchronizes parameters
with all other machines. Figure (a) shows the convergence
for i.i.d. data where both model averaging and RW-DDA
converge correctly. For non-i.i.d. data, we find that RW-
DDA converges faster in time, and achieves a stable ac-
curacy better than model averaging. Hence, we find that
with our optimizations, our dual-order method, RW-DDA,
performs as good as primal order model averaging. From
the optimizations described in Section 5, we are able to ob-
tain more than 200X speedup from the original RW-DDA
implementation. Furthermore, for the non-i.i.d. dataset,
RW-DDA converges correctly unlike model averaging.

6.2. Fault Tolerance

We now compare RW-DDA performance in the presence
of intermittent link failures. Each outgoing packet may
fail with a specific user-defined probability. The failures
are asymmetric i.e. nodes with positive examples are less
likely to fail than those with negative examples. We re-
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peat our experiments for different overall failure probabil-
ity goals. For our fault tolerance experiments, we remove
the barrier before the update step, since some packets may
never arrive due to failures and a barrier will lead to infinite
wait. Hence, we perform our fault tolerance experiments by
running the algorithms asynchronously.

Figure 1 (c) and (d) show RW-DDA and model conver-
gence with 30% and 60% packet loss probability where all
machines communicate with one-another forming a dense
communication graph of nodes. We find that RW-DDA is
more robust to link failures and offers correct convergence
which model averaging is unable to achieve. To account
for fewer incoming z parameters due to the asynchrony, we
appropriately re-scale the gradient or the averaging fraction
by counting the number of incoming z or g parameters.

We now provide performance comparisons with undirected
sparse communication graphs i.e. where all nodes may
not communicate with one another. Instead of commu-
nicating with all other machines (or processes), each ma-
chine only communicates with N/2 other machines such
that the network graph of all machines is connected and the
graph is undirected, where N is the total number of nodes.
We compare RW-DDA and model-averaging over a sparse
communication graph in Figure 1 (e) and (f) with 10% and
90% packet loss probability. We find that model averaging
does not converge correctly in Figure 1 (f) while RW-DDA
achieves correctly.

Comparisons with PS-DDA We implement Push-Sum
DDA (Tsianos et al., 2012a) in our framework and apply
the same optimizations as RW-DDA to improve its perfor-
mance. Figure 2 compares model averaging, RW-DDA and
PS-DDA for failures with 30% probability of packet loss
for a specific rank, with non-i.i.d. data. PS-DDA requires
sending an additional scaling component. Additionally, in
the asynchronous case or in presence of failures, PS-DDA
suffers from numerical instability (Tsianos et al., 2012a).
In asynchronous mode, since different nodes operate at dif-
ferent speeds, the scalar may become very small due to re-
peated re-scaling. To prevent this from happening, in our
implementation, we reset the scalar to its initial value (1.0)
if it becomes too large or too small. As a result, of the nu-
merical instability we find that PS-DDA is unable to con-
verge in the presence of packet losses and non-i.i.d. data.
However, we find that PS-DDA performs comparably with
RW-DDA in absence of failures (not shown in figure).

To summarize, from our evaluation we find that RW-DDA
has good convergence properties and our implementation
of RW-DDA is robust and efficient.

7. Conclusions
Distributed learning over a large number of distributed sen-
sors or geographically separated data centers which suf-
fers from sampling biases and communication link failures
across nodes. Existing dual averaging approaches are slow,
and may not converge correctly in the presence of link-
failures, which are not uncommon in distributed settings.
We present RW-DDA, a distributed learning algorithm that
is robust to failures. Our analysis shows the algorithm has
O(1/

√
t) convergence for non-smooth convex problems.

Our experiments show that RW-DDA converges as fast as
primal averaging algorithms and provides smooth conver-
gence.
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