
A Non-linear Dimensionality Reduction Method for
Improving Nearest Neighbour Classification

by

Renqiang Min

A dissertation presented to the
Faculty of Department of Computer Science

University of Toronto
In Conformity with the

Requirements for the degree of
Master of Science

Copyright © 2005 by Renqiang Min

 ii

Abstract

A Non-linear Dimensionality Reduction Method for Improving Nearest Neighbour

Classification

Renqiang Min

Master of Science

Department of Computer Science

University of Toronto

2005

Learning in high dimensional spaces is computationally expensive because of the

curse of dimensionality. Consequently, there is a critical need for methods that can produce

good low dimensional representations of the raw data that preserve the significant structure

in the data and suppress noise. This can be achieved by an autoencoder network consisting

of a recognition network that converts high-dimensional data into low-dimensional codes

and a generative network that reconstructs the high dimensional data from its low

dimensional codes.

Experiments with images of digits and images of faces show that the performance of an

autoencoder network can sometimes be improved by using a non-parametric

dimensionality reduction method, Stochastic Neighbour Embedding, to regularize the

low-dimensional codes in a way that discourages very similar data vectors from having

very different codes.

 iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Geoff Hinton, for his

guidance, inspiration and patience during my last two years’ graduate study at the U of T. It

is he who guided me into the area of neural networks, suggested me to work on his idea

about Regularized Autoencoder Network and gave me a lot of help on the research. Many

apologies to Geoff too for the several months’ delay before I finally finished this thesis.

 I would also like to thank members of the machine learning group at the U of T, He

Xuming, Bao Kejie, Yousuf Shamim and Al-Mustansir Mukhles, and my friends at the

Department of Computer Science of the U of T, Lan Hui and Zhu Xiaodan, for their helpful

discussions about my research.

 Last but not least, I would like to thank my parents, and my friends at Nankai

University, Zhang Jian and Jiang Jie, for their support and encouragement.

Renqiang Min

December 2004

 iv

Dedications

To my parents and aunt

 v

Contents

1 Introduction ………………………………………………………………………1

1.1 Object Recognition Using Low-dimensional Codes……………………………..1

1.2 Dimensionality reduction Techniques…………………..………………………..2

1.2.1 Principle Component Analysis………………………….………………..3

1.2.2 Limitations of PCA…………………………….……….………………..4

1.2.3 Independent Component Analysis……………………………...………..5

1.2.4 Fisher’s Linear Discriminant Analysis…………………………………...6

1.2.5 Multidimensional Scaling………………………………………………..7

1.3 Thesis Organization……………………………………………….……………..8

2 Regularized Autoencoder Network………..……………...………………...10

2.1 Non-linear Dimensionality reduction Techniques…………………………...…10

2.1.1 Kernel Principal Component Analysis………………………………….10

2.1.2 ISOMAP………………………………………………………………...11

2.1.3 Locally Linear Embedding………………………………………..……12

2.1.4 Stochastic Neighbour Embedding………………………………………13

2.2 A New Approach to Generating Low Dimensional Codes…………………..…17

2.2.1 Motivation……………..………………………………………………..17

2.2.2 Regularized Autoencoder Network..……………………………………18

2.3 Comparisons of the Autoencoder and SNE-encoder…………………………...20

2.3.1 The Autoencoder Imposes Loose Constraints on the Codes……………21

2.3.2 SNE Imposes Rigid Constraints on the Codes……………………….…22

2.3.3 Geometric Intuitions of SNE…………………………………………...24

2.3.4 Relationship Among the Autoencoder, SNE and SNE-encoder……..…26

3 Optimization Methods………………………………………………………...30

 vi

3.1 Steepest Gradient Descent……………………………………….…..…………30

3.2 Scaled Steepest Gradient Descent………………………….………………...…32

3.3 Conjugate Gradient Descent………………………….…………….…………..33

3.4 Scaled Conjugate Gradient Descent……………………….…………..………..35

4 Experiments on Digit Recognition……………………………………….…37

4.1 Digit Data and the Configurations of Models…………….…………………..…37

4.2 The Training of RAN by Different Optimization Methods on Digit Data……....39

4.2.1 Single Batch Training………………………….……………………….39

4.2.2 Mini-batch Training…………………………………………………….39

4.2.2.1 Mini-batch Data……………………………………..…………39

4.2.2.2 Redundant Mini-batch Data………………….……………………40

4.2.3 Combination of Optimization Method………………………………….43

4.3 Experimental Results of Different Models on Digit Data…………………….…44

5 Experiments on Face Recognition…………………………………………..48

5.1 Some Previous Face Recognition methods……………………………………...48

5.2 The Olivetti Faces……..……………………………………………………..…49

5.3 Performance of Different Optimization Methods on the Olivetti Faces..…….…50

5.3.1 SSGD on the Olivetti Faces……………………………………………..51

5.3.2 CGD on the Olivetti Faces…………………..……………………..……54

5.3.3 SCGD on the Olivetti Faces……………………..……..……………….55

5.3.4 Comparisons of the Optimization Methods……………………....……..56

5.4 The Autoencoder and SNE-encoder on the Olivetti Faces………………...…….61

5.4.1 The Autoencoder on the Olivetti Faces………….……………………...62

5.4.2 SNE-encoder on the Olivetti Faces……………………………………..64

5.4.3 Comparisons of the Autoencoder and SNE-encoder on theOlivetti

Faces……………………………………………………………………64

5.5 Regularized Autoencoder Network on the Olivetti Faces…….…………….…...68

5.6 The FERET Faces……………………………………………………………....70

5.7 Experiments on the FERET Faces………………………………..…….….……72

5.7.1 Unsupervised Clustering on the FERET Faces…………………..……...72

 vii

5.7.2 Face Recognition on the FERET Faces………………………………...73

6 Conclusions………………………………………………………………………75

6.1 Discussion…………………………………………..………………………..…75

6.2 Future Work………………………………………………..…………………...76

Bibliography 78

 viii

List of Tables

2.1 The main characteristics of different dimensionality reduction techniques and the

comparisons. ………………………….…………………………………………18

4.1 The performance of different optimization methods on optimizing RAN using

redundant mini-batch digit data with the mini-batch size 200. …….………………..41

4.2 The clustering results of RAN trained by SSGD using redundant mini-batch digit

data…………………………………………………………………………………..42

4.3 The clustering results of RAN trained by CGD using redundant mini-batch digit

data.…...……………………………………………………………………………..42

4.4 The clustering results of RAN trained by SCGD using redundant mini-batch digit

data…………………………………………………………………………………..42

4.5 The performance of different optimization methods on optimizing RAN using 600

mini-batches of digit data with the mini-batch size 100…………………………….43

4.6 The clustering results of the autoencoder using single batch training on digit data….44

4.7 The clustering results of the autoencoder using mini-batch training on digit data…..44

4.8 The clustering results of SNE on digit data…………………………………………..44

4.9 The clustering results of SNE-encoder on digit data…………………………………45

4.10 The clustering results of PCA on digit data………………………………………….46

4.11 The clustering results of LLE on digit data………………………………………….46

4.12 The clustering results of RAN using single batch training on digit data…………….47

5.1 The summary of the final results produced by three optimization methods on the

Olivetti faces (it’s “cheating” to stop at the best KNNerr by looking at the answer, but

it’s the same “cheat” for all the methods here)……………………………………….56

5.2 The information of the objective function of the autoencoder at the optimal points

found by SSGD, CGD and SCGD…………………………………………..……….60

 ix

5.3 The clustering results when the dimensionality of the code space is small…………..68

5.4 The comparisons of the clustering performance using the codes generated by

Autoencoder, SNE and RAN………………………………………………………..69

5.5 Clustering results on FERET faces using: pixel values, the codes generated by

Autoencoder, the codes generated by SNE and the codes generated by RAN………72

 x

List of Figures

1.1 An illustration of how PCA fails in the case of two elongated Gaussian classes and

LDA performs better by picking a direction that gives good discrimination [Kumar and

Andreou, 1996]……………………………………………………………….………6

2.1 An interpretation for the gradient of the cost function C with respect to the low

dimensional code vector. The left subfigure shows that in the high dimensional space,

xi chooses xj as one of its neighbours, but in the low dimensional code space (here is a

2-d space), yi is far from yj and yj < yi. Here, yi
� yj < 0, pij � qij > 0, pji � qji > 0. Thus,

� C/ yi > 0, and yj will be pull toward yi…………………………………………...16

2.2 The structure of the autoencoder…………………………………………………….19

2.3 Map the three-dimensional coordinates of eight vertices of a cube to a two dimensional

space…………………..……………………………………………………………..25

2.4 Images near the border of classes in which the images have similar shapes. Both the

autoencoder and SNE have difficulty in producing good codes for the images in the

rectangle so that they can be easily separated in the code space……………………..27

2.5 The illustration of two images near the border of classes for which SNE can often

generate good codes for KNN clustering…………………………………………….27

3.1 The behaviour of SGD method when the curvature of the objective function varies a lot

with direction……………………………………………………………….……….31

4.1 Some images of hand-written digits in the digit dataset……………………………...37

4.2 The histogram of the pixel values of a hand-written digit image……………………38

4.3 The configuration of Autoencoder and RAN for digit data………………………….38

5.1 100 face images for 10 individuals in the Olivetti face dataset………………………50

5.2 The structure of the autoencoder for clustering the Olivetti faces……………………50

5.3 The performance of SSGD with large learning rates when optimizing Autoencoder on

 xi

Olivetti face dataset: a) the change of the cost of Autoencoder with epoch number; b)

the change of KNNerrs by 1NN with epoch number……………………………...…52

5.4 The performance of SSGD with two different learning rates when optimizing

Autoencoder on Olivetti faces: (a) the change of the cost of Autoencoder during the

training; (b) the change of KNNerrs (1NN clustering errors in the code space) during

the training…………………………………………………………………………..53

5.5 The performance of SSGD, CGD and SCGD on the Olivetti faces during the training:

(a) the cost of the autoencoder versus epoch number; (b) the KNNerrs versus epoch

number (or iteration number for CGD and SCGD)…………………………………57

5.6 Histogram of adapted learning rates for the weights from the input image to the hidden

layer in the recognition part of the autoencoder……………………………………...58

5.7 The contour of the objective function of the autoencoder on the Olivetti faces in the

region where the optimal point found by SSGD lies. Here, w1 is the direction along

which the objective function of the autoencoder has the smallest gradient and w2 is the

direction along which the objective function of the autoencoder has the largest

gradient at the optimal point found by SSGD…………………..……………………58

5.8 Histograms of the components of the gradients at the points where the best clustering

results found by: (a) SSGD, (b) CGD and (c) SCGD are achieved (To facilitate plotting:

in (a), the bins between –0.2 and 0.2 are removed; in (b), the bins between –0.2 and 0.2

are removed; in (c), the bins between –2 and 2 are removed).……………………….60

5.9 Histogram of pixel values of a face image before normalizing.………………….…..62

5.10 The original faces and their respective reconstructions by the autoencoder………...63

5.11 The training of SNE-encoder on the Olivetti faces: (a) the sum of KL Divergence

versus epoch number; (b) KNNerrs versus epoch number…………………………..64

5.12 Some face images in the Olivetti faces on which both the autoencoder and the

SNE-encoder got wrong in the 1NN clustering. The first row represents the given

images, the second row and the third row respectively represent the nearest neighbours

for the given images found by 1NN using the low dimensional codes generated by the

autoencoder and by the SNE-encoder.…………………...………………...………...65

5.13 Some face images in the Olivetti faces on which the autoencoder got right but the

 xii

SNE-encoder got wrong in the 1NN clustering. The first row represents the given

images, the second row and the third row respectively represent the nearest neighbours

for the given images found by 1NN using the low dimensional codes generated by the

autoencoder and by the SNE-encoder.……………………………..………………...65

5.14 One face image in the Olivetti faces on which the SNE-encoder got right but the

autoencoder got wrong in the 1NN clustering. The first row represents the given

images, the second row and the third row respectively represent the nearest neighbours

for the given images found by 1NN using the low dimensional codes generated by the

autoencoder and by the SNE-encoder………………………………………………..65

5.15 Some processed FERET face images [Teh and Hinton, 2001]………………………71

5.16 Error rates of different models on the four testing sets of the FERET faces………..73

 1

Chapter 1

Introduction

1.1 Object Recognition Using Low Dimensional Codes

In the last few years, machine learning methods have been successfully applied to many

application areas such as information retrieval, image processing, computational biology

and computational chemistry. To analyze and interpret real datasets, we often need to do

clustering or classification in a high dimensional space.

 However, training of models in a high dimensional space can be very

time-consuming because of the curse of dimensionality sometimes [Bishop, 1995]. Also

when K-means and EM are applied to high dimensional data, they are easily trapped in

bad local minima which depend on the initial configurations of the models [Ding, 2002].

To solve this problem, a lot of techniques and methods have been proposed for

dimensionality reduction [Scott, 1992].

 Methods like Principal Component Analysis [Jolliffe, 1986, Jackson, 1991] only give

linear mappings from the high dimensional space to the low dimensional space. In my

thesis, a new approach to generating low dimensional codes will be presented (chapter 2).

It gives a non-linear mapping from the high dimensional data space to the low

dimensional code space, and it also preserves local similarity structure within the data.

The high dimensional data used in this thesis consists of images of objects which are

often complicated and have a large number of pixels. This makes the task of object

 2

recognition difficult. Object recognition itself has many practical applications and has

been explored by a lot of researchers [Lowe, 1999, Beis and Lowe, 1999, Agarwal and

Roth, 2002, Fergus and Perona et al., 2003]. For example, it plays an important role in an

intelligent robot system, in which a recognition system helps a robot to detect objects and

to navigate. In my thesis, I will address the recognition of two kinds of objects:

handwritten-digits (chapter 4) and faces (chapter 5).

An original image taken by a camera has a large number of pixels. To recognize an

object contained in an image, we need to make use of the most discriminative features.

Many pixels in the image do not contribute much to the recognition even in human vision.

For example, in a grey level image of a digit, there may be large background regions

where all the pixel values are almost equal to zero. By mapping an image to a low

dimensional space, we hope to eliminate the redundancy in such regions but we also want

to preserve pairwise underlying similarities between images and to account for most of

the variance in the data. This should allow the low dimensional code to retain the most

important information in the images. A Regularized Autoencoder Network (RAN)

described in Chapter 2 can achieve this.

Generating low dimensional codes could be integrated with subsequent processing

stages. But in most situations, it is used as a preprocessing step, as shown below:

In all the experiments described in this thesis, the low dimensional codes of digits or

faces are generated first, and then in some low dimensional space, we do clustering or

classification. In the following, some methods that can be used to generate

low-dimensional codes of data will be introduced.

1.2 Dimensionality reduction Techniques

Input Image Low-dimensional Codes Recognition

 3

1.2.1 Pr incipal Component Analysis

Principal Component Analysis (PCA) [Jolliffe, 1986, Jackson, 1991] also known as the

Karhunen-Loeve Transform is a classical statistical method. It identifies the axes for a set

of data vectors along which the correlation between components of the data vectors can

be most clearly shown.

Suppose there is a data set M={ X i | i=1, …, N } , where X is an n-dimensional

column vector and X = (x1, … , xn)
T. The mean of the data vector is µ = < X >, here < >

stands for the average over the data set. The data set can be represented by a matrix D =

(X1, X2, …, XN). The covariance matrix of D is C with its element Cij which can be

calculated as shown below.

Cij = <(xi –
�

i)(xj –
�

j)> (1.1)

By solving the characteristic equation of the covariance matrix C, we can obtain the

eigenvectors that specify the axes having the properties described above and the

corresponding eigenvalues that are respectively indicative of the variance of the dataset

along these axes. Therefore, just by looking at the eigenvalues, we can easily find out

along which axes the dataset has little or no spread. Hence, the principal axes and the

eigenvalues give a good reflection of the linear interdependence between the components

of the data vectors. By choosing some eigenvectors that have the largest eigenvalues, we

can form a subspace A in which the data set has the most significant amounts of variance.

Thus, the dimensionality of the data can be reduced by means of this property of PCA.

 Suppose B has all the eigenvectors of the covariance matrix C as its row vectors, we

can transform a data vector X this way:

 Y = B(X- �) (1.2)

By applying this projection to the original dataset D, we can get an uncorrelated vector

set { Y} . Since B is an orthogonal matrix, the inverse of B is equal to the transpose of B

(BT). We can use Y to obtain the original data vector X like this:

 X = BTY + � (1.3)

In the subspace A consisting of the eigenvectors having the largest eigenvalues, we can

do the similar transformation to the above to get the low dimensional code vector Y’ of

 4

X.

 Y’ = A(X- �) (1.4)

And we can reconstruct X in the way that is similar to (1.3).

 X’ = ATY + � (1.5)

By (1.4) and (1.5), we project the original data vector to the low dimensional space

spanned by A and then we use the low dimensional code to reconstruct the original data.

This projection minimizes the mean-square error between the data and the reconstruction

of the data.

 In practice, dimensionality reduction using PCA can be done efficiently through

singular value decomposition (SVD) [Golub and Loan, 1996].

1.2.2 L imitations of PCA

Every method has its intrinsic limitations, so does PCA.

Firstly, PCA can only identify linear combinations of variables; that is to say, it can

only determine linear interdependencies between components of a sample of data vectors.

In a word, it can only give a linear mapping from some data space to some low

dimensional code space.

Secondly, since we obtain some principal axes by solving the characteristic equation

of a covariance matrix, PCA can only capture the second-order correlation information

between components of the data but ignores the higher-order correlation information

among components of the data.

From the point of view of continuous latent variable models, we can generate data by

first generating a point within a subspace and then adding noise. The coordinates of the

point are the components of the latent variable. In this way, we can obtain the PCA model

by assuming that (1) the subspace in which some points lie is linear; (2) the distribution

of the latent variable is Gaussian; (3) the sensor noise covariance Ψ =
∞
1

I, where I is

the identity matrix. The PCA model is shown as below.

 5

p(z) = Ν (z | 0, I) (1.6)

p(y|z,θ)= Ν (y | µ + Λ z,
∞
1

I) (1.7)

Here y stands for observed data, z stands for latent variable, µ is the mean data vector,

Λ is an N
�

M loading matrix, where N is the dimensions of the data vector and M is the

dimensions of the low dimensional code vector. This explanation of PCA clearly shows

that PCA is a Gaussian model. Therefore, it can’t behave beyond its capability to capture

higher-order statistics in the data.

 Thirdly, when PCA is used for dimensionality reduction, we generate the low

dimensional codes only in order to give a good reconstruction of the data. Thus, the low

dimensional codes may be very powerful in representing the data in each class but very

weak in distinguishing the data belonging to different classes.

1.2.4 Independent Component Analysis

Independent Component Analysis (ICA) [Hyvarinen et al., 2000] has been used to extract

low dimensional codes of natural images, faces, texts, natural sound and so on

[Olshausen and Field, 1996, Bell and Sejnowski, 1996, 1997, Hyvarinen et al., 1998].

From the view of continuous latent variable models, the standard ICA model used for

dimensionality reduction can be generated under the assumption that (1) the subspace in

which some latent points lie is linear; (2) Components of the latent variable have

independent non-Gaussian distributions; (3) the dimension of the latent variable is the

same as that of the data. Undercomplete ICA [Stone and Porrill, 1998] can be used for

dimensionality reduction. The subspace in which the low dimensional codes of data lie,

can be viewed as hidden causes of the data. ICA can capture higher-order statistics in the

data, but the assumptions under which ICA can work confine its applications to any high

dimensional data. In essence, undercomplete ICA produces Independent Components by

unmixing the data, and like PCA it is a linear model.

 6

1.2.3 Fisher ’s L inear Discr iminant Analysis

Figure 1.1: An illustration of how PCA fails in the case of two elongated Gaussian classes and LDA

performs better by picking a direction that gives good discrimination [Kumar and Andreou, 1996].

Fisher’s Linear Discriminant Analysis (LDA) [Kumar and Andreou, 1996] is another

classic dimensionality reduction technique. It differs from PCA and ICA because it is not

trying to model the density of the data. Instead, it is trying to find a low dimensional

space in which classes are well separated. For a k-class N > k dimensional dataset, LDA

gives k-1 orthogonal features that are chosen from all linear transformations of the

 7

original N features. The k-l features span a k-1 dimensional subspace. In the subspace,

LDA makes the between-class distance in the data as large as possible and makes the

within-class scatter in the data as small as possible. Generally, the quotient of the two

terms is optimized to achieve the two goals. Figure 1.1 gives an example that reducing

dimensions in a discriminative model (LDA) perspective is much better than in a

data-representation based model (PCA) perspective. However, LDA only depends on the

means and the variances of the data for each class. If the data has a distribution far from

Gaussian, LDA may not generate a good subspace in which the data can be easily

separated. In addition, LDA can only give a linear mapping, and the dimensionality of the

subspace is limited by the number of classes of the data.

1.2.5 Multidimensional Scaling

Multidimensional Scaling (MDS) [Borg and Groenen, 1997] is a linear Model for

dimensionality reduction. Given the matrix A that stores the square pairwise distances

(here I only discuss the Euclidian distance) between every two data points, MDS

generates the low dimensional codes that best preserve these distances.

 Suppose that D = (X1, X2, … , XN) is an n by N data matrix with each column

denoting one n-dimensional data vector, A is an N by N matrix of squared distances, and

B is a matrix that stores inner products of every two data vectors, then we have

 B = DTD (1.8)

 Bij = X i
T X j (1.9)

 A ij = (X i � X j)
 T (X i � X j)

 = X i
T X i � 2X i

T X i
�

 X j
T X j (1.10)

After centering the matrix A, we will get

 B = �
2

1
A (1.11)

Thus, we can get the matrix B from the square pairwise distance matrix A. Calculate the

eigenvalues and the eigenvectors of B, and we can get

 8

 B = VUV T (1.12)

 D = VU1/2 (1.13)

where U is a diagonal matrix that contains the eigenvalues, and V is a matrix which

contains eigenvectors as its columns. Choosing the eigenvectors corresponding to the first

m (m < n) largest eigenvalues to constitute a low dimensional subspace V’ , the low

dimensional codes of the data matrix D that best preserve the square pairwise distances

will be

 Y = V’ U’1/2 (1.14)

where U’ is the diagonal matrix that contains the first m largest eigenvalues.

 From the above descriptions, we can find that MDS generates low dimensional codes

placing emphasis on preserving the pairwise distances between the data points. If the

rows and the columns of the data matrix D both have mean zero, the projection produced

by MDS will be the same as that produced by PCA. Thus, MDS is a linear Model for

dimensionality reduction having the same limitations as PCA.

1.3 Thesis Organization

This thesis is organized as follows:

- Chapter 2 describes Regularized Autoencoder Network (RAN) in detail. The

Stochastic Neighbour Embedding (SNE) algorithm that is a part of RAN will be

described in section 2.1.4.

- In chapter 3, some optimization methods that can be used to train RAN will be

described.

- Chapter 4 presents some experimental results on digit data using low dimensional

codes generated by RAN and related methods. The performance of some selected

optimization methods used for the training will be compared.

- Chapter 5 first gives a review of previous techniques used for face recognition, and

then shows the performance of some optimization methods used to train RAN on face

data. After that, the experimental results on face recognition using low dimensional

 9

codes generated by RAN will be given, and the result will be compared to the results

produced by some previous face recognition techniques.

- Chapter 6 concludes by summarizing the content of this thesis and proposing future

research directions to extend the current optimization methods and the current RAN

model.

 10

Chapter 2

Regular ized Autoencoder Network

2.1 Non-linear Dimensionality reduction Techniques

Some models for dimensionality reduction have been introduced in chapter 1. However,

these models can only generate linear mappings from the high dimensional space to the

low dimensional space and cannot find non-linear structure in the data as discussed in

chapter 1. Research on non-linear dimensionality reduction methods has been explored

extensively in the last few years. In the following, a brief introduction to several

non-linear dimensionality reduction techniques will be given.

2.1.1 Kernel Pr inciple Component Analysis

Kernel PCA [Scholkopf et al., 1998, Mika and Scholkopf et al, 1999], is a kernel version

of standard PCA. When used for dimensionality reduction, standard PCA generates low

dimensional codes preserving most of the variance in the original data. But sometimes the

data is not separable even in the original high dimensional space no matter how we

redefine the axes of the data. We hope that the data can be separable in a higher

dimensional space and then we can perform standard PCA in that space. Kernel PCA can

help us to achieve this purpose while doing the calculations in a lower dimensional space

by means of the kernel trick.

 11

 Suppose there is a centred data set M={ X i | i=1, …, N } , where X is an n-dimensional

column vector and X = (x1, … , xn)
T. We define a transformation φ (X): Rn→Rm that

maps the data point X to a higher dimensional space in which the data has better

separability. Then the covariance matrix of φ (X) in Rm becomes:

 C =
N

1 �
i φ (X i)φ (X i)

T (2.1)

To find the principal components, we need to solve the characteristic equation of C, Cv =

λ v. Since the eigenvector v of C must lie in the span of φ (X i), i =1, …N, there must

exist a set of coefficients α such that v =
�

i α i φ (X i). Through constructing the

symmetric Gram Matrix K and using the kernel trick,

 φ (X i)
Tφ (X j) = K(i, j) (2.2)

the eigenvectors of C can be obtained by solving the following equation:

 λ Kα =
N

1
K2α (2.3)

And the projection of a data point X i on the k-th principal component v can be calculated

as follows:

 yik = vTX i =
�

j α jK(X i, X j) (2.4)

By choosing the first r principal components to form a low dimensional subspace Rr and

mapping the data to Rr where r < n, we can obtain the low dimensional codes of the data.

2.1.2 ISOMAP

The idea of ISOMAP [Tenenbaum et al., 2000] is to map some high dimensional data to a

non-linear low dimensional subspace in a way that preserves a particular kind of structure

in the data. It is assumed that the data lies on, or near, a lower dimensional manifold that

is embedded in the high dimensional space. The Geodesic Distance between two data

points is defined as the shortest distance along the manifold and the aim is to find a

low-dimensional representation that preserves the Geodesic distances as well as possible.

The Geodesic distances can be estimated by finding shortest paths in a neighbourhood

 12

graph derived from the data. The neighbourhood graph can be constructed by connecting

each data point to its k nearest neighbours. Here is a sketch of the ISOMAP algorithm: (1)

Construct the neighbourhood graph; (2) Calculate Geodesic Distances between every two

data points using a shortest path algorithm; (3) Given these pairwise distances, use MDS

(Chapter 1) to find low dimensional codes that preserve the pairwise Geodesic distances

as well as possible.

 ISOMAP generates low dimensional codes that preserve the non-linear geometry of

the data by preserving the Geodesic Distances between every two data points. It does not

try to find codes that are optimal for reconstructing the individual data points.

2.1.3 Locally L inear Embedding

Locally Linear Embedding (LLE) [Roweis and Saul, 2000, Saul and Roweis, 2003], is a

non-linear dimensionality reduction technique. It generates low dimensional codes that

preserve the local structure in the data and ignore the long-range structure. That is to say,

“nearby points in the high dimensional space remain nearby and similarly co-located with

respect to one another in the low dimensional space.” The LLE algorithm [Saul and

Roweis, 2000] works as follows:

1. Compute the K nearest neighbours of each data point, X i (K is a parameter chosen by

the user).

2. Compute the weights Wij that best reconstruct each data point X i from its K

neighbours, minimizing the cost in Equation (2.5) under the constraints � jWij=1 and

Wij=0 if X j is not a neighbour of X i.

 (W) = i X i � jWij X j
2
 (2.5)

3. Compute the vectors Y i that are best reconstructed by the weights Wij by minimizing

the quadratic form in Equation (2.6) by its bottom nonzero eigenvectors.
�

(Y) = i Y i � jWij Y j
2 (2.6)

 = i Y(Ii � Wi)
2

= trace(Y(Ii � Wi) (Y(Ii � Wi))
T)

 13

 = trace(YMY T)

here M = (Ii � Wi) (Ii � Wi)
T. The constraint that Y should have the mean 0 and the

variance I ensures: (1) different coordinates in the low dimensional subspace will be

uncorrelated to second order; (2) the reconstruction errors for the coordinates will be

measured on the same scale which is of order unity. Under the constraint, Y can be

obtained by calculating the d+1 bottom eigenvectors of M, which correspond to the d

smallest nonzero eigenvalues of M (d is the dimensionality of Y).

Through this algorithm, every data point is mapped into the low dimensional

subspace, in which the high dimensional dot products between the edges in every data

point’s neighbourhood are preserved as well as possible by the low dimensional dot

products. By keeping information from overlapping local neighbourhoods, the global

structure of the whole data is maintained, provided that the local neighbourhoods are

sufficiently connected.

 As has been mentioned above, LLE focuses on generating low dimensional codes

preserving local linear geometry in the data. Although both the weights W and the codes

Y are obtained by minimizing reconstruction errors, the reconstructions here are different

from the ones in PCA. The algorithm does not try to use the low dimensional codes to

reconstruct the original data. LLE doesn’t care how well each particular low dimensional

code represents the original data point.

2.1.4 Stochastic Neighbour Embedding

Stochastic Neighbour Embedding (SNE) [Hinton and Roweis, 2003], which is a special

case of Linear Relational Embedding (LRE) [Paccanaro and Hinton, 2000], is a

probabilistic approach that maps high dimensional data points into a low dimensional

subspace in a way that preserves the relative distances to near neighbours. In SNE,

similar objects in the high dimensional space will be put nearby in the low dimensional

space, and dissimilar objects in the high dimensional space will usually be put far apart in

the low dimensional space.

 14

 The main idea behind the model SNE is to use the pairwise distances between points

in the low-dimensional space to approximate a discrete probability distribution over

neighbours of each data point that is generated by using distances in the high dimensional

space. A Gaussian distribution centred on a point in the high dimensional space is used to

define the probability distribution that the data point chooses other data points as its

neighbours. In the low dimensional space, we generate another discrete distribution in the

same way and the sne cost function measures how well the distribution generated in the

low-dimensional space models the distribution generated in the high-dimensional space.

The cost function is a sum of Kullback-Leibler divergences, one per data point [Hinton

and Roweis, 2003].

In the following, the SNE algorithm will be given. For each data point, i, and each of its

potential neighbours, j, we calculate the probability that i would choose j as its neighbour:

 pij = exp(� dij) k� i exp(� dik) (2.7)

where dij means the dissimilarity between i and j. It maybe computed by the scaled

squared Euclidean distance between two data vectors, xi, xj

 dij = xi � xj
2 2 i

2 (2.8)

where i is the variance of the Gaussian centred at i. It can be set by hand to make the

distribution pi have a predefined entropy.

In the low dimensional subspace, the same operations are performed. We calculate the

probability, qij, that point i picks point j as its neighbour in a similar way.

 qij = exp(� yi � yj
2) k� i exp(� yi � yk

2) (2.9)

The low dimensional code y here aims at preserving the relative distances of neighbours

in the high dimensional space. We can achieve this by minimizing Equation (2.6) that is a

sum of Kullback-Leiber divergences between the high dimensional and the low

dimensional distributions over neighbours for each data point. Consequently, the two

distributions are almost the same for each point i.

 C = i j pijlog(pij qij) = i KL(P i Q i) (2.10)

Due to that each point i in the low dimensional space keeps its neighbour identities in the

high dimensional space, the global structure of the original dataset is preserved through

integrating the information from overlapping neighbourhoods like LLE. In the paper

 15

[Hinton and Roweis, 2003], it is claimed that SNE is superior to LLE in that SNE has a

tight restriction on preserving distances between every two data points. Analyzing the

term pij qij in Equation (2.10), we will notice that “ making qij large when pij is small

wastes some of the probability mass in the q distribution so there is a cost for modeling a

relatively big distance in the high dimensional space with a relatively small distance in

the low dimensional space, though it is much less than the cost of modeling a relatively

small distance with a relatively big one” .

 To calculate the low dimensional codes, we need to derive the derivative of the cost

C with respect to the code y.

 C/ yi = (i j pijlog(pij qij)) yi (2.11)

 = (j pijlog(pij qij) + j pjilog(pji qji)) yi (2.12)

Let

 C1 = j pijlog(pij qij), C2 = j pjilog(pji qji)) (2.13)

So

 C/ yi = C1/ yi + C2/ yi (2.14)

C1/ yi = (j (pijlog pij � pijlog qij)) / yi

 = � j (pijlog qij) / yi

 = � j (pij qij
-1(qij/ yi)) (2.15)

From Equation (2.9), we obtain that

 qij k� i exp(� yi � yk
2) = exp(� yi � yj

2)

Calculate the derivatives with respect to yi on both sides of the equal sign �

(qij/ yi) k� i exp(� yi � yk
2) + (-2)qij k� i (yi � yk) exp(� yi � yk

2) =

 (yi � yj) exp(� yi � yj
2) (-2)

Divided by k� i exp(� yi � yk
2) on both sides, we can get

 qij/ yi
�

 (-2)qij k� i ((yi � yk) qik)= (-2)qij(yi � yj)

Therefore,

 qij/ yi = (-2)qij(yi � yj) � (-2) qij k� i (qik(yi � yk)) (2.16)

Substitute the term qij/ yi in Equation (2.15) using Equation (2.16), we get

 C1/ yi = � j (pij qij
-1((-2)qij(yi � yj) � (-2) qij k� i (qik(yi � yk))))

= 2 j pij (yi � yj) � k� i (qik(yi � yk))

 16

� 2 j (yi � yj)(pij � qij)
�
2.17 �

In the same way, we can obtain that

 C2/ yi = 2 j (yi � yj)(pji � qji) (2.18)

By combining Equation (2.14), (2.17) and (2.18), we get

 C/ yi = 2 j (yi � yj) (pij � qij + pji � qji) (2.19)

From Equation (2.19), the derivative C/ yi can be viewed as “a sum of forces pulling yi

toward yj or pushing it away depending on whether j is observed to be a neighbour more

or less often than desired” . Figure 2.1 shows how the gradient information influences the

updating of the low dimensional codes.

Figure 2.1: An interpretation for the gradient of the cost function C with respect to the low dimensional

code vector. The left subfigure shows that in the high dimensional space, xi chooses xj as one of its

neighbours, but in the low dimensional code space (here is a 2-d space), yi is far from yj and yj < yi. Here, yi

� yj < 0, pij � qij > 0, pji � qji > 0. Thus, ��� C/� yi > 0, and yj will be pull toward yi.

 There are many optimization methods that can be used to minimize the cost C using

the gradient C/ y. Steepest Gradient Descent is not efficient and can easily get stuck in

bad local minima. There is a method suggested by [Hinton and Roweis, 2003] that adds

random noise that decreases with time when updating the low dimensional codes of the

data. The low dimensional codes are initialized by random values very close to 0, and

SNE updates the codes making use of the gradient information. Thus, SNE can be viewed

as a non-linear model.

x
i

y

y

j

i

x
j

 17

 Summarizing the descriptions above, we find that SNE generates low dimensional

codes that preserve the global structure in the data in a probabilistic way, and it is

superior to LLE in keeping the relative distances between every two data points.

2.1.4.1 SNE-encoder

If we implement a three-layer neural network with the cost function of SNE, we will get a

new model called SNE-encoder. In SNE-encoder, the first layer represents input data, the

second layer contains non-linear Sigmoid activation functions, and the third layer

represents low dimensional codes. The structure of SNE-encoder is the same as that of

the recognition part of Regularized Autoencoder Network that will be discussed in the

next section.

2.2 A New Approach to Generating Low Dimensional
Codes

2.2.1 Motivation

So far, several kinds of models for dimensionality reduction have been discussed: Linear

and Non-linear. Table 2.1 shows the main characteristics of the different models we have

described in the previous sections. To sum up, when used for dimensionality reduction:

PCA, ICA, Fisher’s LDA, and MDS are all linear models; Kernel PCA, ISOMAP and

LLE are non-linear Models. Here, ICA means undercomplete ICA. Most non-linear

models can capture both non-linear and linear structures in the data while linear models

can only capture linear structures in the data. Thus, generally speaking, non-linear models

are more powerful than linear models.

 18

 Non-linear or

Linear

Main Advantages or Limitations

PCA Linear Preserves most variance of the data; Can only capture

second-order correlations between components of the data

vectors

ICA Linear Captures higher-order statistics in the data; Works well only

when the data sources are independent

LDA Linear Cannot handle data in which the individual classes are far

from Gaussian or in which the classes have different

covariances

MDS Linear Best preserves the pairwise distances between every two

data points

Kernel

PCA

Non-linear The Gram Matrix grows with the number of data points

ISOMAP Non-linear Preserves the global manifold structure of the data by

preserving the Geodesic distances between every two data

points

LLE Non-linear Preserves the locally linear structure in the data

SNE Non-linear Preserves the relative distances to near neighbours

Table 2.1: The main characteristics of different dimensionality reduction techniques and the comparisons.

 But we want to have a non-linear model that has the advantages of both SNE and

PCA and will improve nearest neighbour classification.

2.2.2 Regular ized Autoencoder Network

 19

Before describing Regularized Autoencoder Network (RAN), we will first introduce the

autoencoder.

The autoencoder discussed here is a five layer neural network. It consists of a

recognition network and a generative network. The recognition network implemented by

the first three layers will generate low dimensional codes for the input images and the

generative network implemented by the last three layers will produce reconstructions of

the input images. The recognition network can be viewed as an encoder converting the

input into a low dimensional code and the generative network can be viewed as a decoder

converting the code back into a reconstruction of the input. The units in the second layer

and in the fourth layer have Sigmoid activation functions. Figure 2.2 illustrates the

structure of the autoecoder.

Figure 2.2: The structure of the autoencoder.

Input
Image

Reconstructed

Image

Code

 20

 In the thesis, the objective function of the autoencoder is the sum of square

reconstruction errors for face data and the cross entropy function for digit data. The

autoencoder can be viewed as a non-linear generalization of PCA if the objective function

is the sum of square reconstruction errors over all the training cases.

 The autoencoder captures variance in the data as PCA does. Both the autoencoder

and PCA focus on generating faithful reconstructions for input data except that the

autoencoder gives a non-linear mapping while PCA gives a linear mapping. However, we

want to have a model that can not only capture the variance in the data but can also

preserve local structure within the data that is important for clustering. A natural way is to

combine the autoencoder and SNE together, and we call this model the Regularized

Autoencoder Network (RAN).

 RAN has the same structure as the autoencoder. It consists of a recognition network

and a generative network as shown in Figure 2.2. We combine the objective function of

the autoencoder and the objective function of SNE in (2.10) with a multiplier τ before

it to get the objective function of RAN as shown in (2.20):

 C = Cauto + τ sneCsne (2.20)

In (2.20), Cauto can either be the cross entropy over the training data or be sum of square

reconstruction errors over the training data. In the objective function of RAN, the second

part τ sneCsne can be viewed as a penalty term on the activities of units in the third layer

of RAN. By varying the value of τ sne, we can make the model suitable for learning data

with different properties. If τ sne is set to be very small, the behaviour of RAN will be

similar to that of the autoencoder; if τ sne is set to be very large, the behaviour of RAN

will be similar to that of SNE. Therefore, if we hope that RAN will have both the

advantages of the autoencoder and the advantages of SNE, τ sne must be carefully

chosen.

2.3 Compar isons of the Autoencoder and SNE-encoder

 21

In this section, we will describe a unifying implementation view of the autoencoder and

SNE-encoder, that is, as neural networks. From the point of the view of the

implementation, we will give comparisons of the autoencoder and SNE-encoder. Besides

that, we will also discuss how and why the autoencoder and SNE can give guidance to

each other during the training, which will give some explanations for why Regularized

Autoencoder Network works well.

2.3.1 The Autoencoder Imposes Loose Constraints on the
Codes

 In the previous sections, we have described the fundamentals of SNE, SNE-encoder

and the autoencoder. To facilitate subsequent discussions, we will describe the

implementation of SNE-encoder and the autoencoder in a formal way first; And all the

input data in this thesis refers to digit images or face images, so we call the high

dimensional space as pixel space and the low dimensional code space as code space. As

discussed earlier, the autoencoder is a five-layer neural network that implements

non-linear Principal Component Analysis (PCA). As described earlier, SNE-encoder can

be implemented by a three-layer neural network. The second layer contains non-linear

Sigmoid activation functions as in the autoencoder. The implementation framework of

SNE-encoder is the same as the recognition part of the autoencoder, except that

SNE-encoder has a cost function to constrain the low dimensional codes while the

autoencoder utilizes the gradient information backpropagated from the generative part to

update the low dimensional codes. Now consider the five-layer autoencoder, the first

three layers can be viewed as a non-linear continuous function r, which maps some input

image x from a pixel space to a code space to produce a vector y.

 y = r (x) r: Rn → Rm (2.21)

Here n is the dimensionality of the pixel space and m is the dimensionality of the code

space. The last three layer of the autoencoder can be viewed as a non-linear continuous

function g, which maps some code y to the pixel space to generate the reconstruction

 22

image x̂ for some input image x.

 x̂ = g (y) g: Rm → Rn (2.22)

Combining (2.21) and (2.22), we will have

 x̂ = g (r (x)) (2.23)

For the autoencoder, we shall assume that the cost is the sum of the square reconstruction

errors over all the input data1, that is,

 C = Σ i (xi - x̂ i)
2 (2.24)

We are seeking low dimensional codes y that account for the variance of the input images

in the pixel space. Since x̂ is an approximation of x, the function g can be viewed as an

approximation of the inverse of the function r from (2.23). Because the second layer and

the fourth layer are non-linear hidden units, the cost function (2.24) is not strictly concave

with respect to the weights w in the autoencoder, and there may be many local minima.

That is to say, there may be many continuous mapping functions g and r that can give

locally optimal reconstructions of input images.

Under the cost (2.24), we just penalize the large reconstruction errors regardless of

what the distance between every two input images might be. As a result, there exist some

risks that the low-dimensional codes distort the geometric structure within some input

data points. This will happen especially when we have not enough images for each class

and the autoencoder cannot capture enough information about the mean of the images for

each class or when the dimensionality of the code space is too small and the code cannot

capture enough variance of the input image data.

2.3.2 SNE-encoder Imposes Rigid Constraints on the Codes

 Now we turn to discussions of the implementation of SNE-encoder. Let’s call the

mapping function of SNE-encoder from the pixel space to the code space as 'r , that is,

1 In the thesis, for face data, the cost is the sum of reconstruction errors; for digit data, the cost is cross entropy.

 23

 y = 'r (x) 'r : Rn → Rm (2.25)

Function 'r for SNE-encoder is similar to function r for the autoencoder except that 'r

has extra constraints on the low dimensional codes while function r has some loose

constraints on the codes imposed by the information from function g.

Noticing the cost function of SNE (also the cost function of SNE-encoder) in (2.10) that

constrains low dimensional codes, we write it here again:

 C = i j pijlog(pij qij) = i KL(P i Q i) (2.10)

At the same time, the following constraints hold:

 Σ j pij = 1, Σ j qij = 1 (2.26)

, where pij = pji and qij = qji.Using Lagrangian multiplier, we can easily obtain that the cost

C in (2.10) will be minimized when pij = qij. That is to say, we must find good

distributions for every Qi in the code space to approximate the corresponding P i in the

pixel space to minimize the cost of SNE-encoder. From the view of equations and

referring to (2.7) and (2.9), to make pij = qij is to solve the following problem:

pij = exp(� yi � yj
2) k� i exp(� yi � yk

2) (2.27)

Recalling that pij = pji, we will have an equation group composed of
2

)1(−NN

equations that have the same form as (2.27). Suppose that the dimensionality of the pixel

space is m, the dimensionality of the code space is n, and the number of input images is N

(we will follow this assumption all the time in this thesis), there will be n
�

N unknown

variables for the equation group. Generally, n is much smaller than
2

1-N
. We may think

that there must exist many redundant or conflicting equations in the equation group.

Therefore, we can’t find an exactly accurate solution in most situations, and we must

compromise to get an approximated solution.

For the autoencoder, we know that the cost in (2.24) will be minimized when we

have N good reconstructions of the input images. There are n
�

N unknown variables and

m
�

N equations. If m <<
2

1-N
, we draw a conclusion that SNE has far more constraints

on the low dimensional codes than the autoencoder.

 24

The above argument may seem to be correct. However, let’s consider the MDS

model in which distances between every two input data points are Euclidean distances

and the PCA model. We use these two models to generate the mapping from the pixel

space to the code space as discussed above. Using the above argument, MDS imposes

2

)1(−NN
 constraints on the low dimensional codes while PCA imposes m

�
N

constraints on the codes. By the argument, they will generate different low dimensional

codes. However, these two models are equivalent and they will generate the same low

dimensional codes. Therefore, the argument is definitely not correct. Actually, the number

of equations cannot be indicative of degree of constraint because there are some

redundant or conflicting equations in the equation group, which has been mentioned in

previous discussions. The number of effective equations can be indicative of degree of

constraint but not just simply the number of equations.

As a matter of fact, the autoencoder imposes loose constraints on the codes because

function g must be learned and we have many choices for g. We cannot define a concrete

equation group from the view of equations. It is not like PCA or MDS in which the codes

can be calculated directly when minimizing some cost function. But for SNE-encoder, it

is not the case. The low dimensional codes are directly influenced by the distributions Q

in the code space. Constrained by (2.26), the probabilities must be divided appropriately

among every code’s neighbours. In another word, the poor low dimensional codes will

waste probability mass and then influence the generation of some other low dimensional

codes. That is to say, the codes produced by SNE are results of compromise among the

codes of some neighbouring input images.

2.3.3 Geometr ic Intuitions of SNE and SNE-encoder

Minimizing the cost of SNE and SNE-encoder in (2.10) can produce codes that will

almost preserve the distances between input images pairwise in the pixel space. When the

dimensionality of the pixel space and the dimensionality of the code space are the same,

 25

SNE and SNE-encoder can produce codes that will perfectly preserve the distances. Of

course, the dimensionality of the code space is often far smaller than that of the pixel

space. We can only expect to have some approximations to the
2

)1(−NN
 distances.

Whether we can have very good approximations or not depends on the internal geometric

structure of the input image data set and the dimensionality of the code space.

 Let’s consider the eight vertices on a cube that lies in a three-dimensional space

shown in Figure 2.3, can we use SNE and SNE-encoder to map the coordinates of all the

vertices to a two-dimensional space at the same time the distances between pairs of

vertexes are preserved?

Figure 2.3: Map the three-dimensional coordinates of eight vertices of a cube to a two dimensional space.

The answer is no. Here is a simple and intuitive explanation: looking at Vertex A, B,

C and D, we can find that the length of Segment AC, CD and DA are equal. In a

two-dimensional space, Vertex A, C and D must form an equilateral triangle. Vertex B has

the same distance to Vertex A, C and D, so B must lie at the centroid of the triangle, but

we cannot make the ratio of the distance CD over the distance BC be 1.

A

B

C

D

x

y

z

 26

For some points in a three-dimensional space, if they can be mapped to a

two-dimensional space and the corresponding distances can be preserved, these points

must lie on a plane. By analogy, if some points in an m dimensional space can be mapped

to an n dimensional space (n<m) preserving the corresponding distances, there must exist

a special transformation to the m dimensional coordinate system. By the transformation,

we can find m new base vectors to form a new coordinate system, in which the last (m-n)

components of the new coordinates of all the points are all zero or very tiny. Such kind of

transformation doesn’t always exist. For example, we cannot find a good transformation

that succeeds in mapping coordinates of the vertexes of the cube above. The larger the

dimensionality of the code space is, the more flexibility the codes will have. When the

dimensionality of the code space is too small (n equals 1 or 2 for face images), many

geometric structures within local neighbourhoods of input images cannot be preserved.

2.3.4 Relationship among the Autoencoder, SNE and
SNE-encoder

Function 'r in SNE-encoder has almost the same framework as that of function r in the

autoencoder. If we put another two-layer units above the SNE-encoder framework

referring to the autoencoder, we will get a new five-layer neural network. If we make the

last three layers have a very good approximation to the inverse function of 'r under the

cost of the autoencoder in (2.24), the new five-layer neural network can be viewed as an

autoencoder with some constraints on the low dimensional codes. According to Fourier

Theorem that any continuous function can be approximated arbitrarily well by a set of

harmonic functions, theoretically speaking, the last three-layer units can surely have a

good approximation to the inverse function of function 'r if there are enough hidden

units in the fourth layer.

 Enlightened by the above argument, we train the first three layers of units using the

cost of SNE, and stop the training when the first three layers of parameters are not very

far from a good local minimum, and then we train the last two layers of parameters with

 27

the low dimensional codes and the first three layers of parameters fixed, and then we stop

the training before the convergence of the last two layers of parameters, and now we

throw the SNE penalty on the low dimensional codes and train the five-layer neural

network as an autoencoder. What will happen? Mostly, the low dimensional codes

produced by the special training process will converge to the codes produced by

SNE-encoder alone, provided that the number of hidden units in the second layer and in

the fourth layer is enough for the autoencoder alone and SNE-encoder alone to work well.

That is to say, the last three-layer neural network gives a very good approximation to the

inverse function of function 'r in SNE-encoder. It also suggests that the autoencoder

will behave almost the same way as SNE-encoder if we put some constraints in the code

space and give the autoencoder enough guidance. And, it reflects that a five-layer

autoencoder is very flexible in generating low dimensional codes.

Figure 2.4: Images near the border of classes in which the images have similar shapes. Both the

autoencoder and SNE have difficulty in producing good codes for the images in the rectangle so that they

can be easily separated in the code space.

Figure 2.5: The illustration of two images near the border of classes for which SNE can often generate good

1
2

1 2
A B

 28

codes for KNN clustering.

 We have discussed that the plasticity that the autoencoder gives to the low

dimensional codes can lead to good things and can also lead to bad things. Thus, if we set

the degree of constraint on the codes appropriately and combine the advantages of the

autoencoder and SNE on recognizing images, we will have the model Regularized

Autoencoder Network (RAN). If the input images for each class are enough for the

autoencoder to capture the image information for each class, we set a small degree of

constraint in the code space so that the constraint will not ruin the good things produced

by the flexibility of the autoencoder; otherwise, we set a big degree of constraint in the

code space. In this way, minimizing the cost of SNE will dominate the training of RAN,

and the reconstruction term will function as a weak constraint on the codes. Noticing that

the low dimensional codes produced by SNE are often results of compromise when m < n,

we expect that, in general, the compromise that gives good reconstructions of input

images will produce better codes than that that gives bad reconstructions.

 The autoencoder focuses on giving faithful representations of input images while

SNE and SNE-encoder focuses on preserving local relationships between images.

Although both of them have their own characteristics on recognizing images near borders

of classes using low dimensional codes, they both behave randomly when performing

these tasks. Under the cost functions in (2.10) and (2.24), both models produce codes that

are closely related to Euclidean distances between pairs of input images. In another words,

both models cannot easily differentiate the images near the border of classes in which

images have similar shapes. As is shown in Figure 2.4, images in class 1 and class 2 have

similar shapes (it means that the input image vectors for the two classes have similar

distribution in the pixel space), and the Euclidean distances between pairs of images in

the rectangle (near the border) are not very different compared to the inter-class

differences. For such cases, both the autoencoder and SNE have difficulty in producing

good low dimensional codes by which images belonging to different classes can be easily

separated. Figure 2.5 illustrates two images A and B near the border of classes in the pixel

space for which SNE and SNE-encoder can generate good codes for KNN clustering

 29

while the autoencoder often fails to this. During the training of SNE and SNE-encoder,

the forces pulling the data point A toward class 1 are much bigger than those toward class

2, and the forces pulling the data point B toward class 2 are much bigger than those

toward class 1. Therefore, it is more likely that A and B will be respectively clustered into

the right classes by SNE and SNE-encoder although A and B choose each other as their

nearest neighbours.

 30

Chapter 3

Optimization Methods

We have discussed the RAN model in previous sections, and we now describe how the

model can be trained. In the following sections, we describe the optimization methods

that we tried: Steepest Gradient Descent (SGD), Scaled Steepest Gradient Descent

method (SSGD), Conjugate Gradient Descent (CGD) and Scaled Conjugate Gradient

Descent (SCGD). These methods will be compared on particular datasets in chapter 4 and

5.

3.1 Steepest Gradient Descent

Steepest Gradient Descent (SGD) is widely used for training neural networks. The

algorithm works like this: the initial value of the weight vector w0 for a neural network is

set to be some value, which is often chosen randomly. Typically, small initial weights are

used to avoid strongly biasing the learning. At iteration k, we compute the search

direction pk, which is the negative gradient of the objective function calculated at wk, and

then we update the weight vector along the search direction pk as follows:

 wk+1 = wk + ∆ wk (3.1)

 ∆ wk = �� �� η gk (3.2)

We keep updating the weight vector according to the rule in (3.1) and (3.2) until we are

close to a minimum and the objective function of the neural network is approximately

 31

locally optimized so that the gradient g is near 0. The parameter η here is called the

learning rate, and in practice, its value is often set by hand.

 If η is set to be too large, the update ∆ wk for the weight vector w will be large

each iteration, and the error may increase; if η is set to be too small, the update for the

weight vector will be small each iteration, and the training will take a long time.

Therefore, the value for the learning rate must be carefully chosen.

 In practice, the standard SGD method is usually very inefficient. When the condition

number of the Hessian matrix of an objective function is large, the curvature of the

objective function will vary significantly with direction. Under such a situation, the

search direction along the gradient will not point to the minimum at most points on the

error surface. Therefore, it will take many updates for SGD to achieve the minimum.

Figure 3.1 illustrates the behaviour of SGD method when the curvature of the objective

function varies a lot with direction. Adding a momentum term to the update of the weight

vector at each iteration as in (3.3) will partly solve this problem [Bishop, 1995].

 ∆ wk = �� �� η gk + µ ∆ wk-1 (3.3)

In the long valley of the error surface where the curvature in one direction differs a lot

from that in another direction, adding the momentum term to the update along the

steepest descent direction makes the algorithm achieve the minimum faster because

successive updates along the direction given by the momentum tends to cancel and they

actually result in bigger step size toward the minimum each iteration.

Figure 3.1: The behaviour of SGD method when the curvature of the objective function varies a lot with

direction.

 Although adding a momentum term improves the performance of SGD when the

Hessian has large condition number, the speed of convergence is still slow and the

algorithm remains inefficient.

 32

3.2 Scaled Steepest Gradient Descent

Scaled Steepest Gradient Descent (SSGD) method is an enhanced version of SGD. It was

designed for optimizing an objective function of which the Hessian has a large condition

number.

When we optimize the objective function of a neural network, at each update of the

weight vector, instead of simply moving a fixed step size along the steepest descent

direction as in (3.2), we have an extra learning rate for each weight in the network, which

can be adapted automatically. Then the update rule becomes:

 ∆ wik = �� �� η ξ ik gik (3.4)

Here ∆ wik denotes the update of the i th component of the weight vector that is a weight

in the neural network in iteration k, ξ ik denotes the gain on the learning rate for the

weight in iteration k, and gik denotes the i th component of the gradient vector that is the

gradient of the objective function with respect to the weight in iteration k. When the

derivative of the objective function with respect to a weight has the same sign in

consecutive iterations, it means that the update still has a component in the old direction

and it is likely to be a steady downhill direction, so we should increase gain ξ for the

weight; otherwise, it means oscillation has occurred, so we should decrease the gain for

the weight. Noticing that the sign of ∆ wik is the converse of the sign of gik, therefore, we

can adapt the gains for different weights in the neural network according to the rule in

(3.5).

 ξ ik-1 + ω 1 if ∆ wik-1 gik ≤ 0

 ξ ik = (3.5)
(1 –ω 2) ξ ik-1 if ∆ wik-1 gik > 0

Here ω 1, ω 2 are small positive numbers set by hand. To avoid the gains becoming

extremely small, we also have the rule in (3.6) to update them after they are adapted by

the rule in (3.5).

 ξ ik = max (ω 3, ξ ik) (3.6)

 33

Here ω 3 is a small positive number. An upper bound can also be imposed on the gains

ξ ik to avoid the gains becoming extremely large, but it is not used in the thesis.

 During the training of RAN, ω 1 is set to be 0.01, ω 2 is set to be 0.02 and ω 3 is set

to be 0.05. And momentum term is also used. In fact, the update for each weight in RAN

is as in (3.7).

 ∆ wik = �� �� η ξ ik gik + µ ∆ wik-1 (3.7)

 In the long valley of the weight space where the curvature of the objective function

changes significantly with direction, different learning rates in different directions

adapted by SSGD method help to find the minimum in a fast and stable way.

3.3 Conjugate Gradient Descent

The linear Conjugate Gradient Descent (CGD) method [Nocedal and Wright, 1999] was

first proposed for optimizing quadratic functions. A set of vectors p1, p2,…, pn are said to

constitute a conjugate set with respect to a non-singular symmetric matrix A if they

satisfy (3.8).
T
ip Apj

 =0 ∀ ij: i ≠ j, i=1,…, n (3.8)

Suppose that we have a quadratic objective function of a simple linear neural network,

E(w): Rn→R, CGD can generate n exact search directions composed of a conjugate set

with respect to the Hessian of E, which can be calculated recursively as in (3.9).

 pk+1 = -rk+ β k+1pk (3.9)

where

rk = gk (3.10)

β k+1 =
T
kr 1+ rk /

T
kp rk (3.11)

rk+1 = rk + α kE”(wk)pk (3.12)

α k = T
kp rk /

T
kp E”(wk)pk (3.13)

Here gk is the gradient of E calculated at wk and E” (wk) means the Hessian of the

quadratic function E.When k = 0, r0 is the gradient of the objective function E at the

starting point w0, and the value of w0 is chosen at random. Along these search directions,

 34

if we update the vector w as in (3.14), the quadratic function E can be optimized within n

steps [Nocedal and Wright, 1999].

 wk+1 = wk -α k pk (3.14)

From the above descriptions, we can find that we only need the information obtained in

the previous iteration to calculate the weight vector wk+1 at iteration.

However, the above algorithm only works well for minimizing convex quadratic

objective functions. For a general non-quadratic objective function of a general neural

network, E(w): Rn → R, Fletcher and Reeves showed that, by approximating the

conjugate search directions described above and by using line search to calculate the step

size that satisfies the Wolf Conditions, we can obtain a good non-linear version of CGD

[Nocedal and Wright, 1999]. Here the Wolf conditions can ensure that sufficient decrease

in each step will be made and the updated vector gk +1 will not be too far away from

stationary points of the objective function E. There are many variants of the non-linear

CGD method, and most of them only differ in the choice of the parameter β k+1 in (3.11),

which will result in different approximations to the conjugate search directions. One of

the most important invariants was proposed by Fletcher and Reeves, theβ k+1 is defined

as in (3.15).

β k+1 = T
kg 1+ (gk+1 � gk) /

T
kg gk (3.15)

Here gk+1 is the gradient of the non-linear objective function E calculated at wk+1.

 To make line search fast, we often utilize the information about the function values

and the gradients at the previous tried points to fit a quadratic or cubic function, then we

find the minimum of the interpolation function and use it as a new trial point. During the

evaluation of each trial point, we must calculate the function value and the gradient of the

objective function at the point, which is expensive. Therefore, we often set a limit to the

number of function evaluations allowed in each line search.

 Despite that, using CGD with step sizes calculated by line searches to train neural

networks that have a huge number of weights or objective functions that are

computationally expensive to evaluate is still slow and often takes a long time. And the

performance of the method is sensitive to the parameters used in the line search

procedure.

 35

3.4 Scaled Conjugate Gradient Descent

Scaled Conjugate Gradient Descent (SCGD) was introduced to avoid line searches along

the conventional conjugate search directions [Moller, 1993].

 SCGD works in a similar way to the linear version of CGD except that it

approximates the step size term containing the Hessian in (3.13) and it introduces a

strategy to make the Hessian of the non-linear objective function always positive definite

during each update of the weight vector.

Within the neighbourhood of each updated weight vector, SCGD generates quadratic

approximations to the objective function as in (3.16).

Eqw (y) = E(w+y) =E(w) + E’ (w)Ty +
2

1
yTE”(w)y (3.16)

And SCGD gives step size like linear CGD based on the quadratic approximations by

approximating the term that is the product of the Hessian E”(wk) and the search direction

vector pk as in (3.17).

 sk = E”(wk)pk= [E’ (wk +σ kpk) �� �� E’(wk)]/ σ k (3.17)

Here E’ (wk) is the gradient of the objective function E and 0 <σ k << 1. By adding some

multiple of the unit matrix to the Hessian E”(wk), we can ensure that the Hessian will be

positive definite. Then we will have

 sk = [E’ (wk +σ kpk) �� �� E’(wk)]/σ k + λ pk (3.18)

We denote the denominator in (3.13) by δ k, and we will have

 δ k = T
kp E”(w)pk (3.19)

If the Hessian is not positive definite, we will have δ k < 0, then we raise λ to make the

Hessian positive definite, then the updated δ k will become

 δ k2 = δ k + (λ k 2 � λ k) pk
T

 pk > 0 (3.20)

From (3.20), we can easily get

 λ k2 > λ k � δ k /
T
kp pk (3.21)

It is not known that how to set λ k2 to get an optimal step size. In [Moller, 1993], λ k2 is

 36

set to be 2(λ k -δ k /
T
kp pk). SCGD also measures how good the quadratic approximation

at each update is using the formula in (3.22) to increase or reduce the parameter λ .

∆ k = [E(wk) - E(wk +α k pk)] / E(wk)-Eqw(α k pk) (3.22)

Where Eqw(α kpk) is the quadratic approximation to the objective function at wk +α kpk.If

∆ k < 0.25, λ k=4λ k; ∆ k > 0.75, λ k=0.5λ k. The smaller the λ , the bigger the step

size.

 SCGD can minimize non-linear objective functions of neural networks along some

approximated conjugate search directions, but the mechanism used to increase and reduce

the parameter λ is not accurate, and it doesn’t guarantee that the update of the weight

vector always stays in the trust region.

 37

Chapter 4

Exper iments on Digit Recognition

4.1 Digit Data and the Configurations of Models

The digit data used here contains 9000 hand-written digit images with the greyscale from

0 to 1. There are 900 images for each of the 10 digits. In the experiments, we divided the

digit data into three disjoint datasets with each containing 3000 digit images and 300

images for each digit. We label the three digit datasets as: set 1, set 2 and set 3. The size

of each image is 16 by 16. Figure 4.1 shows 100 images for 10 digits.

Figure 4.1: Some images of hand-written digits in the digit dataset.

 In the pixel space, the hold-one-out clustering error by 4NN is 180 out of 3000 on set

1, 200 out of 3000 on set 2, and 196 out of 3000 on set 3.

Since most of the pixel values of a digit image are either near 0 or near 1, we used

logistic outputs for the units in the fifth layer of an autoencoder and we used

 38

cross-entropy instead of the sum of square reconstruction errors as the objective function

of the autoencoder because it makes the calculations of derivatives easier. Figure 4.2

shows the histogram of the pixel values of a handwritten digit image. Figure 4.3

Figure 4.2: The histogram of the pixel values of a hand-written digit image.

Figure 4.3: The configuration of the autoencoder and RAN for digit data.

illustrates the configuration of an autoencoder. Through a lot of experiments, we find that

the following configuration of the autoencoder works very well on digit recognition: the

200

20

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

 39

number of hidden units in the second layer is 200, the number of hidden units in the third

layer (i.e., the dimensionality of the code space) is 20, and the number of hidden units in

the fourth layer is 100. The structure of RAN is the same as that of the autoencoder

except that we use the SNE cost to regularize the activities of the units in the third layer.

4.2 The Training of RAN by Different Optimization
methods on Digit Data

4.2.1 Single batch Training

When 3000 training cases are used as one batch to train RAN: even if the learning rates

are carefully chosen, the training by SSGD is slow, and the training by CGD and SCGD

is intolerably slow because choosing step sizes to optimize the objective function of RAN

on the 3000 training cases is very difficult. SSGD works better than the other two

methods do under this situation.

 However, the objective function of a SNE-encoder is easy to minimize using the

3000 training cases as one batch and the training is fast.

4.2.2 Mini-batch Training

We used mini-batch data to train RAN and we found that the training was much faster

than that using all the data as one batch.

4.2.2.1 Mini-batch Data

Many experiments on training RAN have been done on different data sets with

mini-batch data in which one of the training cases is assigned to only one mini-batch. The

results show that: (1) SSGD has the best performance. (2) CGD doesn't work on

 40

mini-batch data with big mini-batch size (the number of cases in one mini-batch),

because it is very expensive to get an allowable step length along the search direction to

satisfy the Strong Wolf Conditions or because the training oscillates on different

mini-batches and no progress can be made. When CGD is applied on the whole data set

with 3000 cases as mentioned in section 4.1 (the extreme situation), it takes almost one

minute to evaluate the objective function value of RAN on our machine, and the method

is often trapped into a bad region and the value of the objective function cannot be

reduced. (3) With the right mini-batch size, the performance of SCGD is comparable to

that of SSGD. Training by SCGD is faster than that by SSGD.

4.2.2.2 Redundant Mini-batch Data

In those experiments on mini-batches described in section 4.2.2.1, one training case is

only assigned to one mini-batch, and we will lose some similarity information between

some pairs of training cases and only a small amount of the pairwise similarity

information is used during the training. Thus, we did the following to get a new kind of

mini-batch data called redundant mini-batch data: permute the 3000 training cases

randomly, divide the 3000 cases into several mini-batches with the same size, and repeat

doing the above process until we get the desired number of mini-batches. When

redundant mini-batch data is used during the training of RAN, much more pairwise

similarity information will be utilized when minimizing the KL divergence part over the

mini-batches.

In the following, we will show the experimental results on set 1 using 15 times

redundant mini-batch data in which the mini-batch size is 200 and there are 225

mini-batches altogether. Table 3.1 gives the summary of the experimental results.

 Table 4.1 shows that SSGD finds the best parameters for RAN by which we can

generate the best low dimensional codes for KNN clustering. We set τ sne (the coefficient

in front of the cost of SNE) to be 150. Here, in SSGD, we set the learning rates to be

5.0e-5; in SCG, we used the following strategy to control the line searches on each

mini-batch: set the maximum number called L of line searches allowed on every

 41

mini-batch each time to be not very small (we set it to be 10 here). At the same time,

make sure that not much time is wasted on some batches without finding a successful line

search. That is to say, L cannot be set to be a large number; in SCGD, we set the

parameter λ , used for adjusting the Hessian of the objective function and the step size

along the P-R Conjugate Gradient search direction, to be 5.0e-3. We allowed a big step

size at first and let the method automatically reduce λ by itself when necessary. And the

maximum number of successful searches on each mini-batch each time is 10.

 4NN Errs Time Cost (hour)

SSGD 90 2.2

CGD 120 11.3 (Training oscillates on

different mini-batches)

SCGD 98 1.2

Table 4.1: The performance of different optimization methods on optimizing RAN using redundant

mini-batch digit data with the mini-batch size 200.

 We also used the three digit datasets mentioned in section 4.1 to give more detailed

comparisons of the three optimization methods. We use one of the three sets as a

validation set to determine when to stop training and use the other two corresponding sets

as test sets to test different methods. Each dataset is used to generate 225 mini-batches of

data with the mini-batch size 200. On the validation set, we stop the training when the

best KNN error is found2, and we use the sum of the reconstruction errors of the 3000

training cases in the validation set at that point as criteria to stop the training on the other

two test sets. We set τ sne to be 150. Table 4.2, table 4.3 and table 4.4 give the detailed

clustering results of RAN corresponding to SSGD, CGD and SCGD. The rows of these

tables represent the clustering errors out of 3000 corresponding to different validation

sets indicated respectively by the first entries of the rows. The columns of these tables

2 We found in preliminary experiments that 4NN nearly always give the lowest clustering errors on the digit data.

 42

represent the clustering errors out of 3000 corresponding to different test sets indicated

respectively by the top entries of the columns. The entries in the diagonal of these tables

represent the clustering errors out of 3000 on the validation sets. From these tables, we

find that SSGD has the best performance on training RAN among the three methods.

In the experiments as shown in table 4.1 and table 4.3, we cannot make CGD work

well on redundant mini-batch data with the mini-batch size 200, so we try to use

redundant mini-batch data with smaller mini-batch size. We do the permutation of the

3000 training cases first, and then we divide them into 30 mini-batches with the

mini-batch size 100. Repeat the above process 20 times, and we will get 600 mini-batches

with each batch containing 100 training cases.

SSGD Set 1 Set 2 Set 3

Set 1 90 114 129

Set 2 96 111 131

Set 3 96 114 122

Table 4.2: The clustering results of RAN trained by SSGD using redundant mini-batch digit data.

CGD Set 1 Set 2 Set 3

Set 1 120 175 180

Set 2 130 171 175

Set 3 125 180 165

Table 4.3: The clustering results of RAN trained by CGD using redundant mini-batch digit data.

SCGD Set 1 Set 2 Set 3

Set 1 98 132 155

Set 2 113 114 143

Set 3 123 136 133

Table 4.4: The clustering results of RAN trained by SCGD using redundant mini-batch digit data.

 43

In the experiments on the redundant mini-batch data with the mini-batch size 100,

the settings for SSGD, CGD and SCGD are the same as those described above. We set

τ sne to be 150. Table 4.5 shows the results produced by the three methods when training

RAN on the redundant mini-batch data with mini-batch size 100.

 Table 4.5 again shows that RAN trained by SSGD generates better low dimensional

codes for KNN clustering than RAN trained by the other two methods (in the table, K

equals to 4). We also find that SCGD is the fastest one among the three and CGD is the

slowest one among the three.

 4NN Errs Computational Cost (hour)

SSGD 102 0.7

CGD 104 1.4

SCGD 104 0.3

Table 4.5: The performance of different optimization methods on optimizing RAN using 600 mini-batches

of digit data with the mini-batch size 100.

4.2.3 Combining Different Optimization Methods

One kind of combination of optimization methods is: during the training of RAN on one

of the three datasets, run CGD first until it's impossible for it to make any progress, and

then run SSGD. We used 600 redundant mini-batches with mini-batch size 100 so each

case occurs in two mini-batches, and run CGD for 25 epochs. In the last 5 epochs, CGD

does not make any progress. Then, we continue to run SSGD on the same redundant

mini-batch data set for 10 epochs. The best KNN clustering error is not as good as that

produced by SSGD alone. The combination of first running SSGD and then running CGD

is not good either.

 We also tried the combination of SSGD and SCGD to train RAN, but the

performance of the combination is not superior to that of SSGD alone.

 44

4.3 Exper imental Results of Different Models on Digit
Data

The autoencoder

(single batch

training)

Set 1 Set 2 Set 3

Set 1 102 117 127

Set 2 116 105 140

Set 3 109 117 124

Table 4.6: The clustering results of the autoencoder using single batch training on digit data.

The autoencoder

(mini-batch training)

Set 1 Set 2 Set 3

Set 1 97 125 126

Set 2 107 111 135

Set 3 100 126 123

Table 4.7: The clustering results of the autoencoder using mini-batch training on digit data.

SNE (single batch

training)

Set 1 Set 2 Set 3

Set 1 132 148 148

Set 2 140 143 149

Set 3 139 149 144

Table 4.8: The clustering results of SNE on digit data.

In this section, we will compare the performance of the RAN model to the performance

of the autoencoder model, the SNE model, the SNE-encoder model, the PCA model and

the LLE model on the three digit datasets. We’ ll do the experiments of validation and test

 45

as described in section 4.2.2.2 for each model. Since SSGD is the best method that has

been found, we use SSGD to train the autoencoder, RAN, SNE and SNE-encoder in all

the experiments described in this section.

SNE-encoder (single

batch training)

Set 1 Set 2 Set 3

Set 1 130 140 135

Set 2 140 136 138

Set 3 133 140 132

Table 4.9: The clustering results of SNE-encoder on digit data.

 Table 4.6 shows the clustering results for the autoencoder. During the training on

each dataset, the 3000 training cases are used as one batch. On the validation set, we stop

the training when the best KNN clustering error is found, and then we use the sum of the

reconstruction errors at that point as criteria to stop the training on the test sets.

Mini-batch training is also tried on the autoencoder. The 225 redundant mini-batches of

data with mini-batch size 200 used to train RAN are used to train the autoencoder. Table

4.7 shows the detailed results.

Table 4.8 and table 4.9 show the clustering results for SNE and SNE-encoder

respectively. The dimensionality of the code space here in the two models is the same as

that in RAN. The structure of the SNE-coder model is the same as that of the recognition

part of RAN discussed in section 4.1. We use all the 3000 training cases as one batch in

each dataset to train these two models and we use the sum of the KL-Divergence over the

3000 training cases in the validation set at the point that the best KNN clustering error is

found as criteria to stop the training on the test sets.

 Table 4.10 and 4.11 show the KNN clustering results generated by PCA and LLE. On

the validation set, we find the best dimensionality of the code space through which the

best KNN clustering error can be obtained, and we perform PCA or LLE and KNN on the

test sets using the dimensionality of the code space found. We find that the clustering

performance of LLE is better when the number of neighbors K in the LLE model is just

 46

slightly larger than the dimensionality of the code space than that when K is much larger

than the dimensionality of the code space. That is to say, only when the local structure

within the neighborhoods in the high-dimensional space is almost perfectly preserved in

the low-dimensional space, KNN works best using the codes generated by LLE. Despite

that, LLE has the worst performance on clustering among the models discussed.

PCA Set 1 Set 2 Set 3 dimensionality

of code space

Set 1 120 133 145 32

Set 2 148 116 144 27

Set 3 128 139 130 27

Table 4.10: The clustering results of PCA on digit data.

LLE Set 1 Set 2 Set 3 dimensionality

of code space

Set 1 362 494 388 16

Set 2 399 420 376 15

Set 3 425 448 339 14

Table 4.11: The clustering results of LLE on digit data.

 Now we turn to the discussion of the clustering performance of RAN. Table 4.2

shows the clustering results of RAN using mini-batch training by SSGD. In the RAN

model here, the cost of SNE is used as a regularization term. Comparing table 4.2 to the

tables in this section, we find that RAN has the best performance on clustering digit data.

It slightly improves the clustering performance of the autoencoder.

 We also tried to train the RAN model as described above using single batch training

on one dataset, that is, we use 3000 training cases as one batch to train RAN. The training

is very slow because the calculation of the probability distributions in the code space is

very expensive. We tried different coefficients in front of the cost of SNE, but the

 47

clustering performance is not so good as that of the autoencoder trained using single

batch training.

RAN (single batch

training)

Set 1 Set 2 Set 3

Set 1 98 104 116

Set 2 105 93 115

Set 3 104 104 107

Table 4.12: The clustering results of RAN using single batch training on digit data.

 However, we can train RAN using a large single batch of digit data in another way:

set the coefficient τ sne in front of the SNE cost to be an appropriate value, train RAN as

usual for some epochs, and then reduce the coefficient τ sne slowly to 0, and then train

the whole network as an autoencoder. Here, SNE is used to help initialize the autoencoder.

Table 4.12 gives the clustering results of RAN trained this way. In the experiment, τ sne

is initially set to be 3000. When the number of epoch is greater than 50, we set τ sne =

τ sne × 0.99 on each epoch. We find that RAN trained this way often produces better

clustering performance than that of the autoencoder using single batch training.

There is another method to train RAN using a large single batch of digit data: run the

autoencoder to completion first and then add the SNE regularization term with slowly

increasing τ sne. We find that RAN trained by this method works almost as well as RAN

trained by the above method. When set 3 is used as the validation set, the best clustering

error produced by RAN trained by this method is 107 out of 3000. But this method is

more difficult to control than the above method because we must decide when to stop the

training of the autoencoder.

 Comparing the results in table 4.12 and table 4.2 to the clustering results generated

by some other models, we find that RAN has the best clustering performance on digit

data. From these tables, we also find that PCA has the second best clustering performance,

SNE-encoder produces better codes for KNN clustering than SNE alone, and the codes

produced by LLE are not suitable for KNN clustering.

 48

Chapter 5

Exper iments on Face Recognition

5.1 Some Previous Face Recognition methods

Face recognition has been explored by a lot of researchers and many face recognition

methods have been presented. The Correlation method [Brunelli and Poggio, 1993] gives

the similarity score as the angle between two images represented as vectors of pixel

intensities. The Eigenface method [Turk and Pentland, 1991] projects face images onto a

subspace spanned by principal components capturing most of the variance in the face

data, and then computes similarity scores of projected images. The Fisherface method

[Belmumeur et al., 1996] projects face images to a subspace which maximizes the

inter-class variances and at the same time minimizes the intra-class variances. Each

individual can be viewed as one class. Then it returns the similarity score of projected

images. The δ ppca [Moghaddam et al., 1998] method models image differences

including intra-individual differences and extra-individual differences using an eigenface

density estimation technique. It gives similarity score of two images based on the a

posteriori probability of membership in the intra-individual class. The RBM [Teh and

Hinton, 2001] method returns similarity score of two images based on the negative free

energy when the RBM is fed with the two images.

 And there are many other types of methods such as template-based methods,

deformable models, feature-based methods etc [Yuille, 1991, Pentland et al., 1994,

Samaria, 1994, Wiskott et al., 1997, Lawrence et al., 1997]. There are lots of methods

 49

proposed for finding features of complicated images, and one of them that we should

mention is the method introduced by Lowe that uses the SIFT keys to find local scale

invariant features [Lowe, 1999]. In section 5.7.2, we will compare the performance of

RAN on face recognition to those of some methods mentioned here.

5.2 The Olivetti Faces

The Olivetti face dataset was constructed by AT&T Laboratory Cambridge. The Matlab

file for the face dataset used in this thesis can be found in [Roweis webpage]. In the

image set, there are 10 face images for each of 40 individuals. All the images were taken

against a dark homogeneous background with the individuals in upright frontal positions.

For each individual, the images in the face set are different from each other in lighting

conditions, orientation (a small degree of rotations or different poses), expression (with

eyes or mouth open/closed), with glasses/without glasses, or a combination of these

variations. Figure 5.1 shows some face images in the face image set. By using the Olivetti

faces in addition to the FERET faces, we can have some confidence that our results are

not due to the peculiarities of one dataset.

For the face images contained in the Matlab file, the hairstyle and part of the contour

for each face is cut off. The size of the processed face images is 64 by 64 pixels. Besides,

we used Nearest Neighbour Interpolation, which is a sampling method that determines

the pixel value of a point in the sampled image from the closest pixel to the centroid of a

block in the original image, to sample the processed images. The size of the sampled

images is 41 by 41 pixels, and all the consequent experiments are based on the sampled

faces. That is to say, the dimensionality of the pixel space for the experiments conducted

on the Olivetti faces in the thesis is 1681. The best hold-one-out clustering error by 1NN

in the pixel space is 22 out of 400.

 50

Figure 5.1: 100 face images for 10 individuals in the Olivetti face dataset.

5.3 Per formance of Different Optimization Methods on
the Olivetti Faces

Figure 5.2: The structure of the autoencoder for clustering the Olivetti faces.

We have compared the performance of Scaled Steepest Gradient Descent (SSGD),

Conjugate Gradient Descent (CGD) and Scaled Conjugate Gradient Descent (SCGD) for

clustering digits in chapter 4. In this section, we will use the above methods to optimize

an autoencoder on the Olivetti face data to check which optimization method is the most

robust one in face recognition. We compare different methods by comparing the

Input

Reconstructed

Face

(100)

Code

(20)

Face

(300)

 51

hold-one-out clustering errors using the codes calculated at different local minima that

are found by different optimization methods, and we also compare the computational cost

of the different methods. Through lots of experiments, we found that the best

configuration on the autoencoder for clustering the Olivetti faces is as follows numrhid =

300, numghid = 100, and numydims = 20. Here numrhid refers to the number of hidden

units in the second layer, numghid refers to the number of hidden units in the fourth layer,

and numydims refers to the dimensionality of the code space (i.e. the number of hidden

units in the third layer). Figure 5.2 shows the structure of the autoencoder mentioned

above. In all the consequent experiments on face data, the cost of the autoencoder is the

sum of reconstruction errors. And here, the 400 face images are used as one batch to train

the autoencoder.

5.3.1 SSGD on the Olivetti Faces

When Scaled Steepest Gradient Descent (SSGD) is used to train the autoencoder, the

training is very sensitive to the learning rates. When the learning rates are too large, the

update steps obtained from the partial second-order information of the derivatives will

not help a lot and the update will oscillate in some regions of the weight space; we will

have many cost spikes during the training; it is very easy to get stuck at some poor local

minima. Under the above situation, Figure 5.3 (a) shows how the cost of the autoencoder

changes with the epoch number and Figure 5.3 (b) shows what the KNNerr (the

hold-one-out clustering error in the code space) will look like. From the two figures, we

can find that the cost fluctuates many times during the training and the clustering error

remains very large. The cost is 1.19e+41 at epoch 4700 while it is 1.17e+04 at epoch

3000. Between epoch 3000 and epoch 4700, there is a huge cost spike. In all, large

learning rates make it very hard for the autoencoder to achieve good local minima once

the training is trapped into some region.

 52

(a)

(b)

Figure 5.3: The performance of SSGD with large learning rates when optimizing Autoencoder on Olivetti

face dataset: a) the change of the cost of Autoencoder with epoch number; b) the change of KNNerrs by

1NN with epoch number.

4450 4500 4550 4600 4650 4700
0

0.5

1

1.5

2

2.5

3
x 10

52

epoch number

C
os

t o
f A

ut
oe

nc
od

er

The change of the cost of Autoencoder with epoch number

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
200

220

240

260

280

300

320

340

360

380

epoch number

K
N

N
er

rs

The change of KNNerrs with epoch number

 53

(a)

(b)

Figure 5.4: The performance of SSGD with two different learning rates when optimizing Autoencoder on

Olivetti faces: (a) the change of the cost of Autoencoder during the training; (b) the change of KNNerrs

(1NN clustering errors in the code space) during the training.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
x 10

4

epoch number

C
os

t o
f A

ut
oe

nc
od

er

learning rates=5.0e−5
learning rates=5.0e−6

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

120

epoch number

K
N

N
er

rs

the change of KNNerrs during the training

learning rates=5.0e−5
learning rates=5.0e−6

 54

But when the learning rates are too tiny, the training will be unbearably slow. Only if

the learning rates are appropriately set, the update steps calculated based on the partial

second-order information of the derivatives will lead the weights to achieve good local

minima and the cost of the autoencoder will decrease smoothly.

 In Figure 5.4, the comparison of the training with two different learning rates is

shown. Figure 5.4 (a) shows how the cost of the autoencoder changes with the epoch

number when SSGD with two different learning rates is used. Figure 5.4 (b) presents the

change of KNNerrs with epoch number under SSGD with different learning rates.

In these experiments, momentum is also used to make the updates of the weights

more stable. We used small momentum (0.5) in the early phase of the training and big

momentum (0.95) in the final phase of the training, which is the same as what we did in

the experiments on digit data.

When the learning rates for both the recognition part and the generative part of the

autoencoder are set to be 5.0e-6 as shown in Figure 5.4 by dashed lines, the best 1NN

clustering error is 12 out of 400 at epoch 3500. That is to say, the error rate is 3.0%. At

this point, the cost of the autoencoder is 2.27e+03. If the learning rates are set to be

bigger as shown in Figure 5.4 by solid lines, the cost of the autoencoder will fluctuate and

will not change smoothly although the cost will mainly decrease. Under SSGD, it takes

the autoencoder about 1.6 hours to achieve the best clustering result on our machine. In a

word, when the learning rates and the momentum are set appropriately, the cost of the

autoencoder will change very smoothly as the training proceeds, and we will get good

clustering results on the face data.

5.3.2 CGD on the Olivetti Faces

In the experiments testing the performance of CGD on the Olivetti face data, we used the

code developed by C.E. Rasmussen. The code implements the CGD with cubic and

quadratic interpolation presented in chapter 2. We modified some constants for line

searches in the code to make it suitable to minimize the specific objective function under

 55

discussion. Because the dimensionality of the weight vector in the autoencoder is huge,

the total time cost for CGD’s minimizing the objective function on each dimension once

will be unbearably long. Thus, We just run CGD on the whole training face data, and if

the total number of successful line searches is achieved or the value of the objective

function is below some threshold, we will stop the training. The best result is presented

by dashed line in Figure 5.3 by which we will compare the performance of SSGD, CGD

and SCGD later. Under CGD, the best clustering error is 17 out of 400, and it takes about

2.9 hours to achieve the best clustering result on our cluster machine.

We also tried mini-batch training using CGD on the Olivetti faces, but the result is

not good. Since the size of the training data is not large and the objective function on the

whole training set is not very hard to minimize, it is easy to understand why the

stochastic update given by mini-batches will not be very helpful in searching for better

local minima.

5.3.3 SCGD on the Olivetti Faces

During the training of the autoencoder by SCGD, we restart the method at the updated

weight vector several times. We restart the method at iteration 200, iteration 400, iteration

800 and iteration 1600. During the first 200 iterations, we set the parameter λ to be

5.0e+4, and we set it to be 5.0e+5 in the consequent iterations. Here, λ is used for

adjusting the Hessian of the objective function and the step size along the P-R Conjugate

Gradient search direction, which we have discussed in chapter 2. We raise or lower λ at

every updated point in the weight space by seeing if we have a good quadratic

approximation to the objective function at that point, but the objective function of the

autoencoder is far from quadratic in many regions of the weight space and λ is reduced

very fast. Avoiding that λ is set to be too small, we restart the method several times.

Because SCGD always reduces the objective function as the training proceeds, we set

bigger λ to have bigger step size in order to accelerate the training.

 Under the setting above, SCGD decreases the cost of the autoencoder very fast. After

 56

2100 iterations, we will get the best clustering result as shown by dotted line in Figure 5.3.

The best KNNerrs is 14 out of 400, and it takes about 1.0 hour to achieve this result on

our machine. When using SCGD to train the autoencoder, we needn’t do line searches,

which is why it is much faster than CGD.

5.3.4 Compar isons of the optimization methods

We give a short summary of the hold-one-out clustering results produced by SSGD, CGD

and SCGD on the Olivetti faces in Table 5.1. From the table, we can find that SSGD

produces the best clustering result while SCGD is the fastest optimization method. CGD

is the slowest optimization method and it has the worst performance among the three.

 We also give the change of the cost of the autoencoder and the change of the

KNNerrs during the training by the three methods in Figure 5.5.

Optimization method KNNerrs (out of 400) Computational Cost (hour)

SSGD 12 1.6

CGD 17 2.9

SCGD 14 1.0

Table 5.1: The summary of the final results produced by three optimization methods on the Olivetti faces

It’s “cheating” to stop at the best KNNerr by looking at the answer, but it’s the same “cheat” for all the

methods here.

 In Figure 5.5 (a)3, it clearly shows again that SCGD is the fastest method. We can

find that CGD decreases the cost of the autoencoder faster than SSGD in the early phase

3 In figure 5.5 (a), the costs of Autoencoder in the first 20 epochs (iterations) are not shown because they are much
larger than those in later epochs (iterations) and showing them at the same time makes it difficult to show the costs in
later epochs (iterations) in an appropriate scale.

 57

of the training. It’s normal because CGD has several line searches each iteration that is

(a)

(b)

Figure 5.5: The performance of SSGD, CGD and SCGD on the Olivetti faces during the training: (a) the

cost of the autoencoder versus epoch number; (b) the KNNerrs versus epoch number (or iteration number

0 1000 2000 3000 4000 5000 6000 7000
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
The change of the cost of Autoencoder with epoch number

epoch number

th
e

co
st

 o
f A

ut
oe

nc
od

er

SSGD
CGD
SCGD

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
12

14

16

18

20

22

24

26
The change of KNNerrs with epoch number

epoch number

K
N

N
er

rs

SSGD
CGD
SCGD

 58

for CGD and SCGD).

Figure 5.6: Histogram of adapted learning rates for the weights from the input image to the hidden layer in

the recognition part of the autoencoder.

Figure 5.7: The contour of the objective function of the autoencoder on the Olivetti faces in the region

where the optimal point found by SSGD lies. Here, w1 is the direction along which the objective function

of the autoencoder has the smallest gradient and w2 is the direction along which the objective function of

the autoencoder has the largest gradient at the optimal point found by SSGD.

0 5 10 15 20 25 30 35 40
0

2000

4000

6000

8000

10000

12000
Histogram of some of the adapted learning rates

−3
−2

−1
0

1
2

−3

−2

−1

0

1

2
2000

2500

3000

3500

4000

4500

w1w2

th
e

co
st

 o
f t

he
 a

ut
oe

nc
od

er

the optimal point found by SSGD

 59

equivalent to several epochs in SSGD. However, SSGD becomes faster than CGD in the

late phase of the training although CGD has line searches. SSGD becomes faster and

faster because the learning rates are adapted to have different updating amount on

different components of the weight vector. Figure 5.6 shows the adapted learning rates for

the weights from the input image to the hidden layer in the recognition part of the

autoencoder.

 Again from Figure 5.5, we can find that there are no large cost spikes during the

training and all the three methods decrease the cost of the autoencoder very smoothly to

achieve the best clustering results.

 Although SCGD is the fastest method among the three, it doesn’t give the best

clustering result. Besides that, we simply use the quadratic approximation to measure

how and when to raise or lower the parameter λ in method. There is no mechanism to

make the step size always in the trust region at each update of the weight vector. It will

make the performance of the method very unstable. The local minima of the objective

function of the autoencoder must lie in a region in which the curvature of the objective

function in one direction varies a lot as we move in another direction as shown in Figure

5.7.

Table 5.2 shows the cost of the autoencoder, the maximum curvature, the minimum

curvature and the ratio of the two curvatures at the points found by SSGD, CGD and

SCGD.

Figure 5.7 shows the contour of the objective function of the autoencoder trained on

the Olivetti faces in the region where the optimal point found by SSGD lies. Here, we just

chose two representative directions, of which w1 is the direction along which the

objective function of the autoencoder has the smallest gradient and w2 is the direction

along which the objective function of the autoencoder has the largest gradient at the

optimal point found by SSGD. In Figure 5.7, the curvature of the objective function along

the direction w2 changes significantly as we move along the direction w1. It is very

difficult for SCGD to find the local minima in such regions because we will obviously

have poor quadratic approximations to the objective function in these regions and it is

 60

very likely that λ is lowered a lot and the method will jump off the local minima

because it does not do a line search.

 Height Max Curvature Min Curvature MaxCur/MinCur

SSGD 2.27e+03 2.88e+03 1.32e-01 2.17e+04

CGD 2.13e+03 1.22e+03 1.78e-01 6.86e+03

SCGD 2.41e+03 1.02e+04 9.51e-06 1.07e+09

Table 5.2: The information of the objective function of the autoencoder at the optimal points found by

SSGD, CGD and SCGD.

 (a) (b)

(c)

Figure 5.8: Histograms of the components of the gradients at the points where the best clustering results

−1.5 −1 −0.5 0 0.5 1
0

50

100

150

200

250

300

350

400

450

−5 −4 −3 −2 −1 0 1 2
0

100

200

300

400

500

600

700

−30 −20 −10 0 10 20 30
0

50

100

150

200

250

300

350

400

 61

found by: (a) SSGD, (b) CGD and (c) SCGD are achieved (To facilitate plotting: in (a), the bins between

–0.2 and 0.2 are removed; in (b), the bins between –0.2 and 0.2 are removed; in (c), the bins between –2

and 2 are removed).

 We can also compare the performance of the three methods by investigating the

gradient of the objective function of the autoencoder with respect to the weight vector at

the points where the best clustering results found by different methods are achieved.

Figure 5.6 shows the gradient information corresponding to the three methods.

 Figure 5.8 (a) shows that the components of the gradient at the point found by SSGD

are distributed in a small neighbourhood centred at 0, and the maximum absolute value of

the components is below 0.2; Figure 5.8 (b) shows that the components of the gradient at

the point found by CGD are distributed in a larger region centred at 0 and the maximum

absolute value of the components is near 4; Figure 5.8 (c) shows that lots of components

of the gradient at the point found by SCGD are very far from 0 and the maximum

absolute value of the components is near 30. We also used SCGD to train the autoencoder

until the cost is below 1000 and it cannot be reduced a lot, we investigate the gradient

information and find that the components are also distributed in a large region and the

maximum absolute value of the components is near 8. These results show that it is

difficult for SCGD to reach the small neighbourhood centred at a good local minimum of

the objective function of the autoencoder although it can reduce the objective function

very fast. By contrast, adapted learning rates make it easier for SSGD to reach a good

local minimum.

 We also tried the combination of SSGD and CGD, as well as the combination of

SSGD and SCGD, but the results are not good.

 From the above discussions, we conclude that SSGD is the most effective method in

minimizing the objective function of the autoencoder among the three methods.

5.4 The Autoencoder and SNE-encoder on the Olivetti
faces

 62

Through the experiments on optimization, we find that SSGD method is the most robust

method among the three methods mentioned. In the following experiments, SSGD

method is used to optimize Autoencoder, SNE-ENCODER and Regularized Autoencoder

Network (RAN).

5.4.1 The Autoencoder on the Olivetti faces

Figure 5.9: Histogram of pixel values of a face image before normalizing.

As is shown in Figure 5.9, the pixel values of face images are much more Gaussian than

those of the digit images, so we use linear outputs in the last layer of an autoencoder.

Before training the autoencoder, we normalize the images so that the pixel value for each

position on the face image is centred at 0 over all the training images.

 In section 5.3.1, we have mentioned that the best clustering error rate using the codes

generated by the autoencoder can achieve 3.0% for Olivetti faces and it takes about 1.6

hours to reach the best result using SSGD. The configuration of the autoencoder for

achieving the best clustering result is: there are 300 hidden units in the second layer, 20

hidden units in the third layer (i.e., the dimensionality of the code space), and 100 hidden

units in the fourth layer. We also mentioned that the learning rates must be carefully

chosen to make the cost of the autoencoder mainly decrease very smoothly and then the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

 63

good clustering results can be obtained. It suggests that the Hessian of the objective

function of the autoencoder are very badly conditioned. Thus, it makes the training very

difficult and sensitive to the learning rates.

Figure 5.10: The original faces and their respective reconstructions by the autoencoder.

At the best local minimum achieved, the sum of square reconstruction errors over the

400 face images is 2.27e+03. Therefore, the average sum of square reconstruction errors

for each image is 5.68 and the average squared error for each pixel value is 0.0034.

 Figure 5.10 shows some face images and their corresponding reconstructions by the

autoencoder. Each original image is shown in the top row and its reconstructed image is

shown at the corresponding location in the bottom row below it. The left four columns

show the images with the smallest sums of square reconstruction errors, and the right four

columns show the images with the largest sums of square reconstruction errors. If we

look at the face images and their respective reconstructed images in the right four

columns by eyes, we can see that the images and their reconstructions are very similar.

An interesting thing here is that the reconstructed images do not have obvious glasses

even if its original face image is with glasses. This happens because most of the face

images are not with glasses. The autoencoder captures enough information from the

training data and it will generate the reconstructions as shown in Figure 5.6. When there

are enough face images for each individual, the autoencoder can capture enough

information from each face image. Consequently, the autoencoder can generate very good

low dimensional codes for most of the input images.

 64

5.4.2 SNE-encoder on the Olivetti faces

(a) (b)

Figure 5.11: The training of SNE-encoder on the Olivetti faces: (a) the sum of KL Divergence versus epoch

number; (b) KNNerrs versus epoch number.

We used a three-layer SNE-encoder here as discussed in chapter 2, in which numrhid =

300 (the number of hidden units) and numydims = 20 (the dimensionality of the code

space). On the Olivetti face dataset, the training of SNE-encoder is not sensitive to the

learning rates. We set the learning rates to be 1.5 for all the weights, and it takes less than

3 minutes to achieve the best clustering error on our machine on which we have tested the

performance of the autoencoder and of three optimization methods. If we set the learning

rates to be small, we can get the same good results as we get using large learning rates,

but it will take more time.

Figure 5.11 illustrates the training of the SNE-encoder on the Olivetti face dataset. It

shows that the cost of the SNE-encoder reduces very fast with the epoch number and

there is no cost spike although the learning rates are large. When the sum of KL

Divergence is below 0.10, we will get the best hold-one-out clustering error (1NN), 16

out of 400. That is, the clustering error rate is 4.0%.

5.4.3 Compar isons of the autoencoder and SNE-encoder

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
The change of the sum of KL Divergence during the training of SNE−encoder

epoch number

th
e

su
m

 o
f K

L
D

iv
er

ge
nc

e

0 10 20 30 40 50 60 70
15

20

25

30

35

40

45

50

55

60

epoch number

K
N

N
er

rs

The change of KNNerrs during the training of SNE−encoder

 65

Figure 5.12: Some face images in the Olivetti faces on which both the autoencoder and the SNE-encoder

got wrong in the 1NN clustering. The first row represents the given images, the second row and the third

row respectively represent the nearest neighbours for the given images found by 1NN using the low

dimensional codes generated by the autoencoder and by the SNE-encoder.

Figure 5.13: Some face images in the Olivetti faces on which the autoencoder got right but the

SNE-encoder got wrong in the 1NN clustering. The first row represents the given images, the second row

and the third row respectively represent the nearest neighbours for the given images found by 1NN using

the low dimensional codes generated by the autoencoder and by the SNE-encoder.

Figure 5.14: One face image in the Olivetti faces on which the SNE-encoder got right but the autoencoder

 66

got wrong in the 1NN clustering. The first row represents the given images, the second row and the third

row respectively represent the nearest neighbours for the given images found by 1NN using the low

dimensional codes generated by the autoencoder and by the SNE-encoder.

From the discussions in section 5.4.1 and section 5.4.2, we will see that the autoencoder

can generate better low dimensional codes for KNN clustering than SNE-encoder while

the training of SNE-encoder is much faster than that of the autoencoder. We know that the

training of the autoencoder is slow and sensitive to learning rates because the Hessian of

the objective function of the autoencoder is ill-conditioned. Besides that, the size of the

Olivetti face set is not large and the calculations of probability distributions in the code

space is not expensive, so it is understandable that the training of SNE-encoder is very

fast. The results support our argument in chapter 2 that the codes generated by

SNE-encoder are in a more constrained region than the codes generated by the

autoencoder.

 When we check the clustering results on the Olivetti faces using the codes generated

by the autoencoder and SNE-encoder further, we find that: there are 11 face images for

which both the autoencoder and SNE-encoder generate bad codes; there are 5 face

images for which the autoencoder generates good codes but SNE-encoder generates bad

codes; and there is 1 face image for which SNE-encoder generates a good code but the

autoencoder generates a bad code. Here, good codes mean the codes that favour accurate

KNN clustering, and bad codes mean the codes that are not suitable for KNN clustering.

Among the input data set, the subset for which the autoencoder fails to generate good

codes overlaps a lot with that for which SNE-encoder fails to generate good codes. We

have tried to give some intuitive explanations to this in chapter 2.

 Figure 5.12, figure 5.13 and figure 5.14 illustrate some clustering results generated

by the autoencoder and SNE-encoder. In each of the three figures, the first row represents

the given images, the second row represents the nearest neighbours for the given images

above them found by 1NN using the low dimensional codes generated by the autoencoder,

and the third row represents the nearest neighbours for the given images in the

corresponding columns found by 1NN using the low dimensional codes generated by the

 67

SNE-encoder. Figure 5.12 shows some face images in the Olivetti faces on which both

the autoencoder and the SNE-encoder got wrong in the clustering. Looking at the images

in the second row and in the third row, we can find that they have very similar

expressions and poses to the corresponding given images in the first row. Figure 5.13

shows some face images in the Olivetti faces on which the autoencoder got right but the

SNE-encoder got wrong in the clustering. Figure 5.14 shows one face image in the

Olivetti faces on which the SNE-encoder got right but the autoencoder got wrong in the

clustering.

 In the previous experiments, the dimensionality of the code space is big enough for

the autoencoder to capture the main variance of the data and for SNE-encoder to give

very good approximations in the code space to the probability distributions that each face

image chooses other face images as its neighbours in the pixel space. But what if the

dimensionality of the code space doesn’t satisfy the above constraint? Table 5.2 gives

some results produced by the autoencoder, SNE-encoder when the dimensionality of the

code space is small.

 When the dimensionality of the code space is small, we also tried to set numrhid (the

number of hidden units in the second layer) = 600, numghid (the number of hidden units

in the fourth layer) =100 and numrhid =300, numghid = 100 to train the autoencoder, but

the results we obtained are not as good as those shown in Table 5.2. There are only 400

images in Olivetti faces, thus, if we set the number of hidden units in the second layer of

the autoencoder to be large, it is very easy for the autoencoder to be overfitted. Suppose

that we will map the 400 faces to a two dimensional space and the number of hidden

units in the second layer and in the fourth layer is large enough for the autoencoder to

give perfect reconstructions, it is very likely that the low dimensional codes are

distributed in a small densely populated region. Obviously, the performance will be very

bad if we use these codes for KNN clustering.

 Table 5.3 clearly shows that SNE-encoder generates much better codes for KNN

clustering than the autoencoder does when the dimensionality of the code space is small.

From the table, we can see that we can get very good low dimensional codes by

SNE-encoder even if we map the images to a three dimensional or five dimensional space

 68

noticing that the clustering error in the pixel space is 22 out of 400.This is because the

SNE-encoder is optimizing a function which preserves the information used by KNN in

the original space.

Autoencoder

(KNNerrs)

SNE-encode

r (KNNerrs)

numydims numrhid Numghid

(only for the

autoencoder)

104 79 2 300 300

75 23 3 300 300

45 18 5 300 300

Table 5.3: The clustering results when the dimensionality of the code space is small.

5.5 Regular ized Autoencoder Network on the Olivetti
Faces

In section 5.4, we discussed the experimental results generated by the autoencoder and

SNE-encoder. We find that the autoencoder and SNE-encoder have their respective

characteristics and they can be complementary to each other.

 Since SNE-encoder guides the low dimensional codes to the desired region faster

than the autoencoder while the autoencoder can generate better codes, we will make

SNE-encoder lead the training of RAN in the early phase and make the autoencoder lead

the training in the late phase.

 There are two methods to realize this idea. The first method is: Set τ sne in Equation

(2.20) to be big at first and reduce it fast as the training proceeds so that τ sne is near 0

after several hundred epochs’ training; the second method is: train the recognition

network of RAN using the cost of SNE first; fix the weights of the recognition network,

and feed the best low dimensional codes produced by the recognition network so far to

the generative network, and train the generative network; finally, unfreeze the weights of

 69

the recognition network, and train the recognition network and the generative network

together.

 In the experiment using the first method, we set τ sne to be 1.0e+4 at first. After

epoch 300, we set τ sne = τ sne × 0.99. After 2000 epochs’ training, we will get the best

clustering result. The best hold-one-out clustering error is 13 out of 400, and it takes

about 1.3 hours on our cluster machine.

In the experiment using the second method, we set the learning rates to be 5.0e-7 and

τ sne to be 8.0e+5 (during the training of SNE-encoder, this coefficient can be viewed as a

time to the learning rates). We train the recognition network using the cost of

SNE-encoder 50 epochs and then fix the weights we have obtained so far. Then we train

the generative network 1250 epochs. During this phase, we set the learning rates to be

5.0e-6 to accelerate the training. After that, we unfreeze the weights of the recognition

network and train the recognition network and the generative network together as

Autoencoder (τ sne = 0 and this training starts from epoch 1300). At epoch 3500, we get

the best clustering result with the error 12 out of 400.

Table 5.4 presents the clustering results using the codes generated by Regularized

Autoencoder It also gives comparisons to the performance of the autoencoder and

SNE-encoder. It shows that the training of Regularized Autoencoder is slightly faster than

that of the autoencoder, and it generates better codes than SNE-encoder.

numydims = 20 KNNerrs (out of 400) Computational Cost (hour)

Autoencoder 12 1.61

SNE-encoder 16 0.047

RAN (method 1) 13 1.44

RAN (method 2) 12 1.30

Table 5.4: The comparisons of the clustering performance using the codes generated by Autoencoder, SNE

and RAN. We cheat by using the lowest error obtained during training, but it is the same cheat for all

methods.

 70

 Method 2 makes the training faster and it seems to be much better than method 1.

However, it is difficult to find the best point at which we should stop training the

recognition network and start training the generative network when we use this method 2.

Besides that, when we should stop training the generative network is also a problem. In

the early phase of the training, if we train the recognition network using the cost of SNE

to achieve very good clustering results and then we repeat the remaining steps in method

2, we will get the same clustering results as those produced by SNE-encoder alone. This

happens perhaps because we are trapped into the region in which the minima of the

objective function of SNE lie. Method 1 doesn’t give the results so well as method 2, but

it makes the training much more stable. Using this method, the training of RAN is not as

sensitive to the learning rates as that of the autoencoder.

 When the cost of SNE is adjusted by setting τ sne not very large and high perplexity

is applied when calculating the probabilities in the pixel space, the clustering

performance is not good.

 Now we turn to the experiments on small dimensionality of the code space. When

numydims = 2, the clustering error using the codes generated by RAN (method 1) is 73

out of 400; when numydims = 5, the clustering error is 17 out of 400. Referring to Table

5.2, we can find that the results are better than those corresponding to the autoencoder

and SNE-encoder alone.

 RAN cannot give better low dimensional codes for KNN clustering on Olivetti faces

than the autoencoder when the dimensionality of the code space is 20 because there are

enough images for each individual in the dataset and the autoencoder alone can capture

enough information about the variance of the data and so that the codes generated by the

autoencoder alone are good enough for KNN clustering. But RAN helps to make the

training more stable and make it easier to find the minima.

5.6 The FERET Faces

The FERET database was constructed for defining a standard procedure for measuring

the performance of face recognition algorithms [Phillips et al., 1999]. The FERET face

 71

dataset used in this thesis is the same dataset used for testing the performance of

rate-coded Restricted Boltzmann machines [Teh and Hinton, 2001]. The FERET face set

contains 1002 frontal face images taken over a period of several years under different

lighting conditions. 818 of them are used as the training set and the other 184 of them are

divided into four disjoint test sets.

The ∆ expression test set contains 110 face images of different individuals. They all

have another image in the training set that was taken under the same conditions at the

same time but with a different expression.

The ∆ days test set contains 40 images from 20 individuals with each having two

face images. Each individual has two images taken from the same session in the training

set and has two images taken from another session 4 days earlier or later in the ∆ days

test set.

The ∆ months test set is similar to the ∆ days test set except that the time between

the sessions was at least three months and the lighting conditions vary. There are 20

images of 10 individuals in this set.

The ∆ glasses test set contains 14 images of 7 different individuals. Each individual

has a pair of face image in the training set and another pair of face images in the

∆ glasses test set. The difference between the two pairs of face images for each individual

is that one pair has glasses but the other does not.

 Since the original face images have irrelevant information such as parts of shoulder

and neck etc, the images were normalized by Y. W. Teh. The detailed normalization

procedures can be found in the paper [Teh and Hinton, 2001]. Figure 5.15 shows some

processed face images. After normalization, the dimensionality of the pixel space is 1768.

Figure 5.15: Some processed FERET face images [Teh and Hinton, 2001].

 72

5.7 Exper iments on the FERET Faces

5.7.1 Unsupervised Cluster ing on the FERET Faces

We train Autoencoder, SNE and Regularized Autoencoder Network (RAN) on the 1002

face images, and then we use the good low dimensional codes to calculate the

hold-one-out clustering errors on the dataset.

 The configuration of the networks achieving the best clustering result is as follows:

numrhid = 600, numydims = 180 and numrhid = 200.

There are not enough images for each class to allow the autoencoder to capture

enough information about the mean of the faces for each individual. The codes produced

by the autoencoder are therefore not good for KNN clustering on this dataset. During the

training of RAN, if we adjust τ sne appropriately, it can produce good results. The

training of RAN is as follows: in the first 100 epochs, we set τ sne to be 0; after epoch

100, we set τ sne to be 1500 and make the minimization of the cost of SNE dominate the

training. The best clustering error using the codes generated by RAN is 95 out of 1002.

Table 5.5 shows the clustering results using the codes generated by the autoencoder,

SNE-encoder and RAN on the FERET faces.

 In Pixel Space Autoencoder SNE-encoder RAN

Clustering Err 174 151 110 95

Error Rate (%) 17.37 15.07 10.98 9.48

Table 5.5: Clustering results on FERET faces using: pixel values, the codes generated by Autoencoder, the

codes generated by SNE and the codes generated by RAN.

 73

5.7.2 Face Recognition on FERET faces

Figure 5.16: Error rates of different models on the four testing sets of the FERET faces.

From section 5.7.1, we find that RAN can generate the best low dimensional codes for

KNN clustering for the FERET faces among the three models. Therefore, we will use

RAN to train the face images in the training set described in section 5.6 to find good

parameters of RAN. Then, we use the trained RAN to calculate the low dimensional

codes of the face images in the training set and in the test set. For each image in the test

set, after we find its nearest neighbour in the training set using the low dimensional codes

we have obtained, we assign the testing image to the individual that its nearest neighbour

belongs to.

0

5

10

15

20

25

30
∆expression

er
ro

r
ra

te
s

(%
)

corr eigen fisher δppca RBM RAN
0

5

10

15

20

25

30
∆days

er
ro

r
ra

te
s

(%
)

corr eigen fisher δppca RBM RAN

0

5

10

15

20

25

30
∆glasses

er
ro

r
ra

te
s

(%
)

corr eigen fisher δppca RBM RAN
0

10

20

30

40

50

60

70

80

90

100
∆months

er
ro

r
ra

te
s

(%
)

corr eigen fisher δppca RBM RAN

 74

There are 818 face images in the training set, and there are 112 individuals that only have

one image each in the training set. In order to make SNE work better, we preprocessed

the training set: we add some Gaussian noise to the 112 images and put the 112 “noisy”

images into the training set. Before the preprocessing, the clustering error on the training

set using the codes generated by SNE is 79 out of 706 (we only take into account the

individuals that have two or more images in the training set). After the preprocessing, the

clustering error is 74 out of 706.

Through many experiments, we find that the best configuration of RAN that

produces the best clustering result on the training set is the same as that described in

section 5.7.1: numrhid = 600, numydims = 180 and numrhid = 200. We set τ sne to be 0

in the first 3800 epochs’ training. After epoch 3800, we set τ sne to be 1500. At epoch

4000, we will get the best clustering error 66 out of 930 (including the 112 “noisy”

images) on the training set. Then we stop the training of RAN and use the parameters of

RAN to do recognition on the test sets. The recognition error rates on the four testing sets

by RAN are shown in Figure 5.16.

 By Figure 5.16, we compared the performance of RAN to that of five other face

recognition methods described in the paper [Teh and Hinton, 2001].

From Figure 5.16, we can find that RAN has comparable performance to the other

face recognition methods. Although it gives perfect results on the ∆ glasses set, it fails to

recognize face images with different expressions accurately. Pair training is used in the

training of RBM. It lets the model know which parts of face images are unimportant and

might have variable values. Therefore, RBM does best on the ∆ expression set among all

the methods. RAN does better than most of the other methods on the ∆ days set and on

the ∆ months set.

 75

Chapter 6

Conclusions

Analysis of high dimensional data is often encountered in object recognition. But

learning in the original high dimensional space is often very expensive and

computationally intolerable sometimes. So object recognition using low dimensional

codes becomes important.

 We proposed a method called Regularized Autoencoder Network that consists of a

recognition network producing low dimensional codes, a generative network giving

reconstructions of the input data from the codes, and a regularizer called SNE that

encourages similar input vectors to have similar codes. It can generate low dimensional

codes that have a better reflection of the pairwise underlying similarities in the input data

than the raw data themselves.

 We tried learning the parameters of Regularized Autoencoder Network using Scaled

Steepest Gradient Descent, Conjugate Gradient Descent and Scaled Conjugate Gradient

Descent. Among the three methods, Scaled Steepest Gradient Descent has the best

performance on optimizing the network.

6.1 Discussion

SSGD has the best performance on optimizing the objective function of an autoencoder.

The adapted learning rates help to stably find a local minimum of the objective function.

 76

Although SCGD is fast in optimization, it has no well-defined mechanism to control the

parameter λ in the method, which will influence the step size a lot during the training.

In another words, the mechanism that increases and reduces the step size in the method

doesn’t guarantee that the update is always in the trust region during the training.

 We used SSGD to optimize the objective function of the autoencoder, SNE and RAN.

RAN has the best performance on generating low dimensional codes of digits and faces

for recognition. When there are enough images for each class, RAN results in more stable

training although it generates almost the same good codes as the autoencoder does. When

the size of the training set is large, the objective function of the autoencoder is difficult to

minimize and we often cannot find a good local minimum; but for RAN, we can find a

good local minimum of it very easily under such a situation; when there are not enough

images for each class, generally, RAN generates better codes than the autoencoder does

because the autoencoder cannot capture enough information about the data for each class.

The autoencoder fails to generate good codes for KNN clustering for some images

although the codes produced allow accurate reconstructions. RAN partly solves this

problem and improves the clustering performance a little on these images.

 RAN is an unsupervised learning algorithm. During the training, we needn’t know

the label information for each training case. The codes generated are very suitable for

clustering. In addition, the probability matrix, which gives the probabilities that each

image chooses other images as its neighbours, is highly dependent on the training data.

When doing classification, the RAN trained doesn’t have good generalization on the

images that are not very similar to the corresponding training images, for example, on

face images having exaggerated expressions. Since both the autoencoder and SNE fail to

generate good codes for some images such as face images with different expressions and

hand-written digit images with peculiarities, it’s understandable that the combination of

them, RAN, cannot generate good codes for these images either. Also, the computation of

the probability matrix is expensive when the training set is very large.

6.2 Future Work

 77

On optimization, one direction of future work is to extend SCGD to make it work as well

as SSGD. Instead of using quadratic approximation to measure when to increase or lower

the parameter λ , we could introduce the mechanism of adapted learning rates into

SCGD method when optimizing non-linear objective functions. Another direction of

future work on optimization is to extend the Stochastic Conjugate Gradient Descent

method proposed by [Schraudolph and Graepel, 2003]. The drawback of that method is

that we need to construct an m-dimensional (m is smaller than the dimensionality of the

input data space) Krylov subspace at each update of the weight vector, which is

expensive. If we can have some cheap and good approximations to the Krylov subspaces,

the Stochastic Conjugate Gradient Descent method may be very effective in optimizing

the objective function of the autoencoder and RAN.

 On Regularized Autoencoder Network, one direction of future research is related to

the probability matrix calculated on the training set. The probability matrix mentioned so

far contains the probabilities that each data point chooses all other data points as its

neighbours. We can simplify the matrix to make it contain the probabilities that each data

point chooses its k nearest neighbours as neighbours.

 We notice that RBM has very good performance on recognizing face images with

varying expressions because it trains on pairs of images belonging to the same individual.

Therefore, another direction of future work on RAN can extend the current RAN model

to make it suitable for training on pairs of training cases belonging to the same class.

 78

Bibliography

[Agarwal and Roth, 2002] S. Agarwal and D. Roth. Learning a Sparse Representation for

Object Detection. Proceedings of the European Conference on Computer Vision (ECCV),

2002.

[Beis and Lowe, 1999] J. Beis and D. Lowe. Indexing without invariants in 3D object

recogniton. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.

1000-1015, 1999.

[Bell and Sejnowski, 1996] A. Bell and T. Sejnowski. Learning higher-order structure of

a natural sound. Network: Computation in Neural Systems, 7:261-266, 1996.

[Bell and Sejnowski, 1997] A. Bell and T. Sejnowski. The independent components of

natural scenes are edge filters. Vision Research, 37:3327-3338, 1997.

[Belmumeur et al., 1996] P. Belmumeur, J. Hesanha and D. Kriegman. Eigenfaces versus

fisherfaces: recognition using class specific linear projection. European Conference on

Computer Vision, 1996.

[Bishop, 1995] Neural Networks for Pattern Recognition. Oxford University Press,

1995.

[Borg and Groenen, 1997] I. Borg and P. Groenen. Modern Multidimensional Scaling -

Theory and Applications. Springer, 1997.

 79

[Brunelli and Poggio, 1993] R. Brunelli and T. Poggio. Face recognition: features versus

templates. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15(10):1042-1052, 1993.

[Ding, 2002] C. Ding, X. He, H. Zha and H.Simon. Adaptive dimension reduction for

clustering high dimensional data. Proc. 2nd IEEE Int'l Conf. Data Mining, pp.147-154,

Maebashi, Japan, 2002.

[Fergus and Perona et al., 2003] A. Fergus, P. Perona, and A. Zisserman. Object class

recognition by unsupervised scale-invariant learning. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2003.

[Golub and Loan, 1996] G. Golub and C. Loan. Matrix Computations, 3rd edition. Johns

Hopkins, Baltimore, 1996.

[Hyvarinen et al., 1998] A. Hyvarinen, E. Oja, P. Hoyer, and J. Hurri. Image feature

extraction by sparse coding and independent component analysis. In Proceeding

International Conference on Pattern Recognition (ICPR'98), pages 1268-1273, Brisbane,

Australia, 1998.

[Hyvarinen et al., 2000] A. Hyvarinen, J. Karhunen and O. Oja. Independent Component

Analysis, New York: Wiley-Interscience, 2000.

[Hinton and Roweis, 2003] G. Hinton and S. Roweis. Stochastic Neighbour Embedding.

Advances in Neural Information Processing Systems 15, pp. 833-840. MIT Press,

Cambridge, MA, 2003.

[Jackson, 1991] J. Jackson, A User’s Guide to Principal Component Analysis. New

York: John Wiley and Sons, 1991.

 80

[Jolliffe, 1986] I. Jolliffe. Principle Component Analysis. Springer Verlag, 1986.

[Kumar and Andreou, 1996] N. Kumar, A. Andreou. A Generalization of Linear

Discriminant Analysis in Maximum Likelihood Framework. Proceedings of the Joint

Statistical Meeting, Statistical Computing section, Chicago, Aug 4-8, 1996.

[Lawrence et al., 1997] S. Lawrence, C.Giles, A. Tsoi, and A. Back. Face recognition: A

convolutional neural network approach. IEEE Transactions on Neural Networks, vol. 8,

no. 1, pp. 98-113, 1997.

[Lowe, 1999] D. Lowe. Object recognition from local scale-invariant features.

Proceeding of the International Conference on Computer Vision, Corfu, 1999.

[Mika et al., 1999] S. Mika, B. Scholkopf, A. Smola, K. Muller, M. Scholz, and G. Ratsch.

Kernel PCA and de-noising in feature spaces. Advances in Neural Information

Processing Systems, volume 11, pages 536-542. MIT Press, Cambridge, MA, 1999.

[Moghaddam et al., 1998] B. Moghaddam, W. Wahid, and A. Pentland. Beyond

eigenfaces: probabilistic matching for face recognition. IEEE International Conference

on Automatic Face and Gesture Recognition, 1998.

[Moller, 1993] A scaled conjugate gradient algorithm for fast supervised learning. Neural

Networks 6(4), pp. 525-533.

[Nocedal and Wright, 1999] J. Nocedal and S. Wright. Numerical Optimization. Springer

Verlag, 1999.

[Olshausen and Field, 1996] B. Olshausen and D. Field. Emergence of simple-cell

receptive field properties by learning a sparse code for natural images. Nature,

381:607-609, 1996.

 81

[Paccanaro and Hinton, 2000] A. Paccanaro and G. Hinton. Extracting Distributed

Representations of Concepts and Relations from Positive and Negative Propositions.

Proceedings of the International Joint Conference on Neural Networks, IJCNN 2000.

[Pentland et al., 1994] A. Pentland, B. Moghaddam, and T. Starner. View-based and

modular eigenspaces for face recogniton. IEEE Conference on Computer Vision and

Pattern Recognition, 1994.

[Phillips et al., 1999] P. Phillips, H. Moon, S.Rizvi, and P. Rauss. The FERET Evaluation

Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 1999.

[Roweis and Saul, 2000] S. Roweis and L. Saul. Nonliear dimensionality reduction by

locally linear embedding. Science, 290, 2000.

[Roweis webpage] http://www.cs.toronto.edu/~roweis/data.html

[Samaria, 1994] F. Samaria. Face Recognition Using Hidden Markov Models. PhD thesis,

University of Cambridge, 1994.

[Saul and Roweis, 2003] L. Saul and S. Roweis. Think Globally, Fit Locally:

Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning

Research, v4, pp. 119-155, 2003.

[Scholkopf et al., 1998] B. Scholkopf, A. Smola, and K. Muller. Nonlinear Component

Analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.

[Schraudolph and Graepel, 2003] N. Schraudolph and T. Graepel. Combining Conjugate

Direction Methods with Stochastic Approximation of Gradients. Proc. 9th Intl. Workshop

 82

Artificial Intelligence and Statistics, Key West, 2003

[Scott, 1992] D. Scott. Mutivariate Density Estimation: Theory, Practice, and

Visualization. John Wiley, 1992.

[Stone and Porrill, 1998] J. Stone and J. Porrill. Undercomplete Independent Component

Analysis for signal separation and dimension reduction. Technical report, Department of

Psychology, Sheffield University, 1998.

[Teh and Hinton, 2001] Y. Teh, G. Hinton. Rate-coded Restricted Boltzmann Machines

for Face Recognition. Advances in Neural Information Processing Systems 13, MIT Press,

Cambridge, MA, 2001

[Tenenbaum et al., 2000] J. Tenenbaum, V. Silva and J. Langford. A global geometric

framework for nonlinear dimensionality reduction. Science, pp. 2319-2323, 2000.

[Turk and Pentland, 1991] M. Turk and A. Pentland. Eigenfaces for recogniton. Journal

of Cognitive Neuroscience, 3(1):71-86, 1991.

[Wiskott, 1997] L. Wiskott,and M. Fellous, N. Kruger, and C. Malsburg. Face

Recognition by Elastic Bunch Graph Matching. IEEE Transactions of PAMI,

19(7):775--779, 1997.

[Yuille, 1991] A. Yuille. Deformable Templates for Face Recognition. Journal of

Cognitive Neuroscience, vol. 3, no. 1, pp. 59-79, 1991.

