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Abstract

A Non-linear Dimensionality Reduction Method for Improving Nearest Neighbour
Classification
Rengiang Min
Master of Science
Department of Computer Science
University of Toronto
2005
Learning in high dimensional spaces is computationally expensive because of the
curse of dimensionality. Consequently, thereisacritical need for methods that can produce
good low dimensional representations of the raw datathat preserve the significant structure
in the data and suppress noise. This can be achieved by an autoencoder network consisting
of arecognition network that converts high-dimensional datainto low-dimensional codes
and a generative network that reconstructs the high dimensiona data from its low
dimensional codes.

Experiments with images of digits and images of faces show that the performance of an
autoencoder network can sometimes be improved by using a non-parametric
dimensionality reduction method, Stochastic Neighbour Embedding, to regularize the
low-dimensional codesin away that discourages very similar data vectors from having

very different codes.
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Chapter 1

| ntroduction

1.1 Object Recognition Using L ow Dimensional Codes

In the last few years, machine learning methods have been successfully applied to many
application areas such as information retrieval, image processing, computational biology
and computational chemistry. To analyze and interpret real datasets, we often need to do
clustering or classification in a high dimensional space.

However, training of models in ahigh dimensional space can be very
time-consuming because of the curse of dimensionality sometimes [Bishop, 1995]. Also
when K-means and EM are applied to high dimensional data, they are easily trapped in
bad local minimawhich depend on theinitial configurations of the models [Ding, 2002].
To solve this problem, alot of techniques and methods have been proposed for
dimensionality reduction [Scott, 1992].

Methods like Principal Component Analysis [Jolliffe, 1986, Jackson, 1991] only give
linear mappings from the high dimensional space to the low dimensional space. In my
thesis, anew approach to generating low dimensional codes will be presented (chapter 2).
It gives a non-linear mapping from the high dimensional data space to the low
dimensional code space, and it also preserves loca similarity structure within the data.

The high dimensional data used in this thesis consists of images of objects which are

often complicated and have alarge number of pixels. This makes the task of object



recognition difficult. Object recognition itself has many practical applications and has
been explored by alot of researchers [Lowe, 1999, Beis and Lowe, 1999, Agarwal and
Roth, 2002, Fergus and Perona et al., 2003]. For example, it plays an important rolein an
intelligent robot system, in which arecognition system helps arobot to detect objects and
to navigate. In my thesis, | will address the recognition of two kinds of objects:
handwritten-digits (chapter 4) and faces (chapter 5).

An original image taken by a camera has alarge number of pixels. To recognize an
object contained in an image, we need to make use of the most discriminative features.
Many pixelsin the image do not contribute much to the recognition even in human vision.
For example, in agrey level image of adigit, there may be large background regions
where al the pixel values are almost equal to zero. By mapping an image to alow
dimensional space, we hope to eliminate the redundancy in such regions but we also want
to preserve pairwise underlying similarities between images and to account for most of
the variance in the data. This should allow the low dimensional code to retain the most
important information in the images. A Regularized Autoencoder Network (RAN)
described in Chapter 2 can achievethis.

Generating low dimensional codes could be integrated with subsequent processing

stages. But in most situations, it is used as a preprocessing step, as shown below:

Inputlmage [P  Low-dimensional Codes |——®|  Recognition

In all the experiments described in thisthesis, the low dimensional codes of digits or
faces are generated first, and then in some low dimensional space, we do clustering or
classification. In the following, some methods that can be used to generate

low-dimensional codes of datawill be introduced.

1.2 Dimensionality reduction Techniques



1.2.1 Principal Component Analysis

Principal Component Analysis (PCA) [Jolliffe, 1986, Jackson, 1991] also known as the
Karhunen-Loeve Transform is a classical statistical method. It identifies the axes for a set
of data vectors along which the correlation between components of the data vectors can
be most clearly shown.

Supposethereisadataset M={ X;|i=1, ..., N }, where X isan n-dimensiona
column vector and X = (X, ... , Xn)'. The mean of the datavector is =< X >, here< >
stands for the average over the data set. The data set can be represented by amatrix D =
(X1, X2, ..., Xn). The covariance matrix of D is C with its element C;; which can be
calcul ated as shown below.

Cij=<(xi —1i)(x —uj)> (1.1)
By solving the characteristic equation of the covariance matrix C, we can obtain the
eigenvectors that specify the axes having the properties described above and the
corresponding eigenval ues that are respectively indicative of the variance of the dataset
along these axes. Therefore, just by looking at the eigenvalues, we can easily find out
along which axes the dataset has little or no spread. Hence, the principa axes and the
eigenvalues give a good reflection of the linear interdependence between the components
of the data vectors. By choosing some eigenvectors that have the largest elgenvalues, we
can form a subspace A in which the data set has the most significant amounts of variance.
Thus, the dimensionality of the data can be reduced by means of this property of PCA.

Suppose B has all the eigenvectors of the covariance matrix C asits row vectors, we
can transform a data vector X this way:

Y =B(X-u) (1.2
By applying this projection to the original dataset D, we can get an uncorrelated vector
set {Y}. Since B is an orthogonal matrix, theinverse of B is equal to the transpose of B
(BT). We can use Y to obtain the original data vector X like this:

X =B'Y +u (1.3)
In the subspace A consisting of the eigenvectors having the largest eigenvalues, we can

do the similar transformation to the above to get the low dimensional code vector Y’ of



Y =A(X-1) (1.4)
And we can reconstruct X in the way that is similar to (1.3).

X' =A'Y +1u (1.5)
By (1.4) and (1.5), we project the original data vector to the low dimensional space
spanned by A and then we use the low dimensional code to reconstruct the original data.
This projection minimizes the mean-square error between the data and the reconstruction
of the data

In practice, dimensionality reduction using PCA can be done efficiently through

singular value decomposition (SVD) [Golub and Loan, 1996].

1.2.2 Limitationsof PCA

Every method hasitsintrinsic limitations, so does PCA.

Firstly, PCA can only identify linear combinations of variables; that isto say, it can
only determine linear interdependencies between components of a sample of data vectors.
Inaword, it can only give alinear mapping from some data space to some low
dimensional code space.

Secondly, since we obtain some principal axes by solving the characteristic equation
of a covariance matrix, PCA can only capture the second-order correlation information
between components of the data but ignores the higher-order correlation information
among components of the data.

From the point of view of continuous latent variable models, we can generate data by
first generating a point within a subspace and then adding noise. The coordinates of the
point are the components of the latent variable. In this way, we can obtain the PCA model

by assuming that (1) the subspace in which some pointslieislinear; (2) the distribution

: . . . . 1 .
of the latent variable is Gaussian; (3) the sensor noise covariance W= —I, wherel is
[00]

the identity matrix. The PCA mode is shown as below.



pP(z)= N(z]|0,1) (1.6)

PO 6)= N (v 4 + Az, 1) (17

Herey stands for observed data, z stands for latent variable, 4 isthe mean data vector,
N isan N XM loading matrix, where N is the dimensions of the data vector and M isthe
dimensions of the low dimensional code vector. This explanation of PCA clearly shows
that PCA isa Gaussian model. Therefore, it can’t behave beyond its capability to capture
higher-order statisticsin the data.

Thirdly, when PCA is used for dimensionality reduction, we generate the low
dimensional codes only in order to give a good reconstruction of the data. Thus, the low
dimensional codes may be very powerful in representing the datain each class but very

weak in distinguishing the data belonging to different classes.

1.2.4 Independent Component Analysis

Independent Component Analysis (ICA) [Hyvarinen et a., 2000] has been used to extract
low dimensional codes of natural images, faces, texts, natural sound and so on
[Olshausen and Field, 1996, Bell and Sgjnowski, 1996, 1997, Hyvarinen et a., 199§].
From the view of continuous latent variable models, the standard ICA model used for
dimensionality reduction can be generated under the assumption that (1) the subspace in
which some latent pointslieis linear; (2) Components of the latent variable have
independent non-Gaussian distributions; (3) the dimension of the latent variable is the
same as that of the data. Undercomplete ICA [Stone and Porrill, 1998] can be used for
dimensionality reduction. The subspace in which the low dimensional codes of datalie,
can be viewed as hidden causes of the data. ICA can capture higher-order statisticsin the
data, but the assumptions under which ICA can work confine its applications to any high
dimensional data. In essence, undercomplete ICA produces Independent Components by

unmixing the data, and like PCA it isalinear model.



1.2.3 Fisher’sLinear Discriminant Analysis

Figure 1.1: Aniillustration of how PCA failsin the case of two elongated Gaussian classes and LDA

performs better by picking a direction that gives good discrimination [Kumar and Andreou, 1996].

Fisher’s Linear Discriminant Analysis (LDA) [Kumar and Andreou, 1996] is another
classic dimensionality reduction technique. It differs from PCA and ICA because it is not
trying to model the density of the data. Instead, it istrying to find alow dimensional
space in which classes are well separated. For ak-class N > k dimensional dataset, LDA

gives k-1 orthogonal features that are chosen from al linear transformations of the



original N features. The k-l features span ak-1 dimensional subspace. In the subspace,
LDA makes the between-class distance in the data as large as possible and makes the
within-class scatter in the data as small as possible. Generadly, the quotient of the two
terms is optimized to achieve the two goals. Figure 1.1 gives an example that reducing
dimensionsin adiscriminative model (LDA) perspective is much better thanin a
data-representation based model (PCA) perspective. However, LDA only depends on the
means and the variances of the data for each class. If the data has a distribution far from
Gaussian, LDA may not generate a good subspace in which the data can be easily
separated. In addition, LDA can only give alinear mapping, and the dimensionality of the

subspace is limited by the number of classes of the data.

1.2.5 Multidimensional Scaling

Multidimensional Scaling (MDS) [Borg and Groenen, 1997] isalinear Model for
dimensionality reduction. Given the matrix A that stores the square pairwise distances
(here | only discuss the Euclidian distance) between every two data points, MDS
generates the low dimensional codes that best preserve these distances.

Suppose that D = (X1, X2, ..., Xy) isan n by N data matrix with each column
denoting one n-dimensional data vector, A isan N by N matrix of squared distances, and

B isamatrix that storesinner products of every two data vectors, then we have

B=D'D (1.8)
Bj = Xi' X; (1.9)
Aij = (X—X) T (Xi—X;)

=X X — 2X" X + X" X; (1.10)

After centering the matrix A, we will get
B= —ZA (1.11)

Thus, we can get the matrix B from the square pairwise distance matrix A. Calculate the

eigenvalues and the eigenvectors of B, and we can get



B=VUV' (1.12)

D = VU2 (1.13)
where U isadiagonal matrix that contains the eigenvalues, and V is amatrix which
contains eigenvectors as its columns. Choosing the eigenvectors corresponding to the first
m (m < n) largest eigenvalues to constitute alow dimensional subspace V', the low
dimensional codes of the data matrix D that best preserve the square pairwise distances
will be

Y=V U2 (1.14)
where U’ isthe diagonal matrix that contains the first m largest eigenvalues.

From the above descriptions, we can find that MDS generates low dimensional codes
placing emphasis on preserving the pairwise distances between the data points. If the
rows and the columns of the data matrix D both have mean zero, the projection produced
by MDS will be the same as that produced by PCA. Thus, MDSisalinear Model for

dimensionality reduction having the same limitations as PCA.

1.3 Thesis Organization

Thisthesisis organized as follows:

- Chapter 2 describes Regularized Autoencoder Network (RAN) in detail. The
Stochastic Neighbour Embedding (SNE) algorithm that is a part of RAN will be
described in section 2.1.4.

- In chapter 3, some optimization methods that can be used to train RAN will be
described.

- Chapter 4 presents some experimental results on digit data using low dimensional
codes generated by RAN and related methods. The performance of some selected
optimization methods used for the training will be compared.

- Chapter 5first gives areview of previous techniques used for face recognition, and
then shows the performance of some optimization methods used to train RAN on face

data. After that, the experimental results on face recognition using low dimensional



codes generated by RAN will be given, and the result will be compared to the results
produced by some previous face recognition techniques.

Chapter 6 concludes by summarizing the content of this thesis and proposing future
research directions to extend the current optimization methods and the current RAN
model.



Chapter 2

Regularized Autoencoder Networ k

2.1 Non-linear Dimensionality reduction Techniques

Some models for dimensionality reduction have been introduced in chapter 1. However,
these models can only generate linear mappings from the high dimensional space to the
low dimensional space and cannot find non-linear structure in the data as discussed in
chapter 1. Research on non-linear dimensionality reduction methods has been explored
extensively in the last few years. In the following, a brief introduction to severa

non-linear dimensionality reduction techniques will be given.

2.1.1 Kernel Principle Component Analysis

Kernel PCA [Scholkopf et al., 1998, Mika and Scholkopf et a, 1999], is akernel version
of standard PCA. When used for dimensionality reduction, standard PCA generates low
dimensional codes preserving most of the variance in the origina data. But sometimes the
datais not separable even in the original high dimensional space no matter how we
redefine the axes of the data. We hope that the data can be separable in a higher
dimensional space and then we can perform standard PCA in that space. Kernel PCA can
help usto achieve this purpose while doing the calculations in alower dimensiona space

by means of the kernel trick.



Suppose thereis a centred data set M={ X |i=1, ..., N }, where X is an n-dimensional
column vector and X = (X4, ... , X»)'. We define atransformation ¢ (X): R" — R™ that
maps the data point X to a higher dimensional space in which the data has better

separability. Then the covariance matrix of ¢ (X) in R™ becomes:

C= = Xig(X)egX)' (2.1

1
N
To find the principal components, we need to solve the characteristic equation of C, Cv =
A V. Since the eigenvector v of C must liein the span of ¢ (Xi), i =1, ...N, there must
exist aset of coefficients a suchthatv= 2 ;ai¢(X). Through constructing the
symmetric Gram Matrix K and using the kerndl trick,

P(X) (X)) = K(, J) (2.2)
the eigenvectors of C can be obtained by solving the following equation:

AKa = %Kza (2.3)
And the projection of adata point X; on the k-th principal component v can be cal culated
asfollows:

Yk =V'Xi= XjaiKXi, X)) (2.4
By choosing the first r principal components to form alow dimensional subspace R" and

mapping the datato R" where r < n, we can obtain the low dimensional codes of the data.

2.1.21SOMAP

The idea of ISOMAP [ Tenenbaum et al., 2000] is to map some high dimensiona datato a
non-linear low dimensional subspace in away that preserves a particular kind of structure
in the data. It is assumed that the data lies on, or near, alower dimensional manifold that
is embedded in the high dimensional space. The Geodesic Distance between two data
pointsis defined as the shortest distance along the manifold and theam isto find a
low-dimensional representation that preserves the Geodesic distances as well as possible.

The Geodesic distances can be estimated by finding shortest paths in a neighbourhood



graph derived from the data. The neighbourhood graph can be constructed by connecting
each data point to its k nearest neighbours. Here is a sketch of the ISOMAP agorithm: (1)
Construct the neighbourhood graph; (2) Calculate Geodesic Distances between every two
data points using a shortest path algorithm; (3) Given these pairwise distances, use MDS
(Chapter 1) to find low dimensional codes that preserve the pairwise Geodesic distances
aswell as possible.

ISOMAP generates low dimensional codes that preserve the non-linear geometry of
the data by preserving the Geodesic Distances between every two data points. It does not

try to find codes that are optimal for reconstructing the individual data points.

2.1.3 Locally Linear Embedding

Locally Linear Embedding (LLE) [Roweis and Saul, 2000, Saul and Roweis, 2003], isa
non-linear dimensionality reduction technique. It generates low dimensional codes that
preserve the local structure in the data and ignore the long-range structure. That isto say,
“nearby points in the high dimensional space remain nearby and similarly co-located with
respect to one another in the low dimensional space.” The LLE algorithm [Saul and
Rowel's, 2000] works as follows:

1. Compute the K nearest neighbours of each data point, X; (K is aparameter chosen by
the user).

2. Compute the weights Wi;; that best reconstruct each data point X; from its K
neighbours, minimizing the cost in Equation (2.5) under the constraints = ;W;;=1 and
W;;=0if X; is not a neighbour of X;.

E (W) =% Xi — Zw; Xg|® (2.5)

3. Compute the vectors Y that are best reconstructed by the weights Wi; by minimizing
the quadratic form in Equation (2.6) by its bottom nonzero eigenvectors.

oY) =%illYi — Swy Y2 (2.6)
=yillyai — wy|?
=trace(Y (I — Wi) (Y(li — W)))")



= trace(YMY )
hereM = (I — W;) (i — W,)". The constraint that Y should have the mean 0 and the
variance | ensures: (1) different coordinates in the low dimensional subspace will be
uncorrelated to second order; (2) the reconstruction errors for the coordinates will be
measured on the same scale which is of order unity. Under the constraint, Y can be
obtained by calculating the d+1 bottom eigenvectors of M, which correspond to the d
smallest nonzero eigenvalues of M (d is the dimensionality of Y).

Through this algorithm, every data point is mapped into the low dimensional
subspace, in which the high dimensional dot products between the edges in every data
point’s neighbourhood are preserved as well as possible by the low dimensiona dot
products. By keeping information from overlapping local neighbourhoods, the global
structure of the whole data is maintained, provided that the local neighbourhoods are
sufficiently connected.

As has been mentioned above, LLE focuses on generating low dimensional codes
preserving local linear geometry in the data. Although both the weights W and the codes
Y are obtained by minimizing reconstruction errors, the reconstructions here are different
from the ones in PCA. The algorithm does not try to use the low dimensional codes to
reconstruct the original data. LLE doesn’'t care how well each particular low dimensional

code represents the original data point.

2.1.4 Sochastic Neighbour Embedding

Stochastic Neighbour Embedding (SNE) [Hinton and Roweis, 2003], which is a special
case of Linear Relational Embedding (LRE) [Paccanaro and Hinton, 2000], is a
probabilistic approach that maps high dimensional data points into a low dimensional
subspace in a way that preserves the relative distances to near neighbours. In SNE,
similar objects in the high dimensional space will be put nearby in the low dimensional
space, and dissimilar objects in the high dimensional space will usualy be put far apart in

the low dimensional space.



The main idea behind the model SNE is to use the pairwise distances between points
in the low-dimensional space to approximate a discrete probability distribution over
neighbours of each data point that is generated by using distances in the high dimensional
space. A Gaussian distribution centred on a point in the high dimensional space is used to
define the probability distribution that the data point chooses other data points as its
neighbours. In the low dimensiona space, we generate another discrete distribution in the
same way and the sne cost function measures how well the distribution generated in the
low-dimensional space models the distribution generated in the high-dimensiona space.
The cost function is a sum of Kullback-Leibler divergences, one per data point [Hinton
and Roweis, 2003].

In the following, the SNE agorithm will be given. For each data point, i, and each of its
potential neighbours, j, we calculate the probability that i would choose | asits neighbour:

pij = exp(—di) / ks exp(—di) 2.7)
where d; means the dissimilarity between i and j. It maybe computed by the scaled
squared Euclidean distance between two data vectors, X;, X;

di=[|xi — x[|* / 20 (2.8)
where o; is the variance of the Gaussian centred at i. It can be set by hand to make the
distribution p; have a predefined entropy.
In the low dimensiona subspace, the same operations are performed. We calculate the
probability, ¢, that point i picks point j asits neighbour in asimilar way.

g =exp(— |y — vill?) / ks exp(—|lyi — will?) (2.9
The low dimensional code y here aims at preserving the relative distances of neighbours
in the high dimensional space. We can achieve this by minimizing Equation (2.6) that isa
sum of Kullback-Leiber divergences between the high dimensiona and the low
dimensional distributions over neighbours for each data point. Consequently, the two
distributions are almost the same for each point i.

C=Yiyiploa(p; / i)=Y KL(Pi | Qi) (2.10)

Due to that each point i in the low dimensional space keeps its neighbour identitiesin the
high dimensional space, the global structure of the original dataset is preserved through
integrating the information from overlapping neighbourhoods like LLE. In the paper



[Hinton and Rowels, 2003], it is claimed that SNE is superior to LLE in that SNE has a
tight restriction on preserving distances between every two data points. Analyzing the
term p; / ¢ in Equation (2.10), we will notice that “ making g; large when pj; is small
wastes some of the probability mass in the q distribution so there is a cost for modeling a
relatively big distance in the high dimensional space with a relatively small distance in
the low dimensional space, though it is much less than the cost of modeling a relatively
small distance with arelatively big one”.

To caculate the low dimensional codes, we need to derive the derivative of the cost

C with respect to the codeYy.
oCloyi=o(%i ¥ pilog(pi  / i) / oV (211)
=03 pilog(pi / a) + 2 pilog(pi / i) / oy (212)
Let
Ci=Yipilog(pi / ai), C2= 2 pilog(pii / Gji) (2.13)
SO
oCIdy; = 0C.dy; + 6C,Idy; (2.14)

0Cy/oy; = 0% (pilog pij — pijlog q;)) / Oy
= —0dy; (pjlog gj) / oy
= —¥; (py oy (@a/oy) (2.15)
From Equation (2.9), we obtain that
aiXka exp(— lyi — w[?) =exp(—|lyi — vi[|?)
Calculate the derivatives with respect to y; on both sides of the equal sign:
(00i/0y) Tka exp(— |lyi — wil|?) + (-2aiZks 0 — i) exp(— lyi — w|? =
vi — yexp(— |y — wll*) -2
Divided by Yy exp(— ||yi — y«||?) on both sides, we can get
oqiloyi + (-2)aiXka (i — Yi) ik )= (-2)ailyi — Yj)
Therefore,
oqiloyi = (-2)ai(yi — ¥i) — (-2) G2k (Gik(Yi — Y)) (2.16)
Substitute the term oq;;/dy; in Equation (2.15) using Equation (2.16), we get
oCoyi = — ¥ (i A (o (i — ¥i) — (-2) tiXka @i — YW))))
= 25 — V) T 2k (ki — YW)



= 235 (i — ypj — ) (210
In the same way, we can obtain that
0CAoyi =23 (yi — V(P — G (218)
By combining Equation (2.14), (2.17) and (2.18), we get
oCloyi =23 (yi — Y (P — Gi+ Pi — ) (2.19)

From Equation (2.19), the derivative 0C/dy; can be viewed as “a sum of forces pulling y;
toward y; or pushing it away depending on whether | is observed to be a neighbour more
or less often than desired”. Figure 2.1 shows how the gradient information influences the

updating of the low dimensiona codes.

Figure 2.1: An interpretation for the gradient of the cost function C with respect to the low dimensional
code vector. The left subfigure shows that in the high dimensional space, x; chooses x; as one of its
neighbours, but in the low dimensional code space (hereis a 2-d space), y; isfar fromy; and y; <y;. Here, y;

—y< 0, pj — g;> 0, pi — Q> 0. Thus, —oCloy;> 0, and Yi will be pull toward y;.

There are many optimization methods that can be used to minimize the cost C using
the gradient 0C/0y. Steepest Gradient Descent is not efficient and can easily get stuck in
bad local minima. There is a method suggested by [Hinton and Roweis, 2003] that adds
random noise that decreases with time when updating the low dimensiona codes of the
data. The low dimensional codes are initialized by random values very close to O, and
SNE updates the codes making use of the gradient information. Thus, SNE can be viewed

as anon-linear model.



Summarizing the descriptions above, we find that SNE generates low dimensional
codes that preserve the global structure in the data in a probabilistic way, and it is

superior to LLE in keeping the relative distances between every two data points.

2.1.4.1 SNE-encoder

If we implement athree-layer neural network with the cost function of SNE, we will get a
new model called SNE-encoder. In SNE-encoder, the first layer represents input data, the
second layer contains non-linear Sigmoid activation functions, and the third layer
represents low dimensiona codes. The structure of SNE-encoder is the same as that of
the recognition part of Regularized Autoencoder Network that will be discussed in the

next section.

2.2 A New Approach to Generating Low Dimensional
Codes

2.2.1 Motivation

So far, severa kinds of models for dimensionality reduction have been discussed: Linear
and Non-linear. Table 2.1 shows the main characteristics of the different models we have
described in the previous sections. To sum up, when used for dimensionality reduction:
PCA, ICA, Fisher's LDA, and MDS are al linear models, Kernel PCA, ISOMAP and
LLE are non-linear Models. Here, ICA means undercomplete ICA. Most non-linear
models can capture both non-linear and linear structures in the data while linear models
can only capture linear structuresin the data. Thus, generally speaking, non-linear models

are more powerful than linear models.



Non-linear or Main Advantages or Limitations
Linear
PCA Linear Preserves most variance of the data; Can only capture
second-order correlations between components of the data
vectors
ICA Linear Captures higher-order statistics in the data; Works well only
when the data sources are independent
LDA Linear Cannot handle data in which the individual classes are far
from Gaussian or in which the classes have different
covariances
MDS Linear Best preserves the pairwise distances between every two
data points
Kernel Non-linear | The Gram Matrix grows with the number of data points
PCA
ISOMAP Non-linear | Preserves the global manifold structure of the data by
preserving the Geodesic distances between every two data
points
LLE Non-linear | Preservesthelocally linear structure in the data
SNE Non-linear | Preserves the relative distances to near neighbours

Table 2.1: The main characteristics of different dimensionality reduction techniques and the comparisons.

But we want to have a non-linear model that has the advantages of both SNE and

PCA and will improve nearest neighbour classification.

2.2.2 Regularized Autoencoder Network




Before describing Regularized Autoencoder Network (RAN), we will first introduce the
autoencoder.

The autoencoder discussed here is a five layer neural network. It consists of a
recognition network and a generative network. The recognition network implemented by
the first three layers will generate low dimensional codes for the input images and the
generative network implemented by the last three layers will produce reconstructions of
the input images. The recognition network can be viewed as an encoder converting the
input into alow dimensional code and the generative network can be viewed as a decoder
converting the code back into a reconstruction of the input. The units in the second layer
and in the fourth layer have Sigmoid activation functions. Figure 2.2 illustrates the

structure of the autoecoder.

Reconstructed
Image

Input
Image

Figure 2.2: The structure of the autoencoder.



In the thesis, the objective function of the autoencoder is the sum of sguare
reconstruction errors for face data and the cross entropy function for digit data. The
autoencoder can be viewed as a non-linear generalization of PCA if the objective function
isthe sum of square reconstruction errors over al the training cases.

The autoencoder captures variance in the data as PCA does. Both the autoencoder
and PCA focus on generating faithful reconstructions for input data except that the
autoencoder gives a non-linear mapping while PCA gives alinear mapping. However, we
want to have a model that can not only capture the variance in the data but can aso
preserve local structure within the data that isimportant for clustering. A natural way isto
combine the autoencoder and SNE together, and we call this model the Regularized
Autoencoder Network (RAN).

RAN has the same structure as the autoencoder. It consists of a recognition network
and a generative network as shown in Figure 2.2. We combine the objective function of
the autoencoder and the objective function of SNE in (2.10) with amultiplier 7 before
it to get the objective function of RAN as shown in (2.20):

C=Cato+ T s:xCqe (2.20)
In (2.20), Cauo Can either be the cross entropy over the training data or be sum of square
reconstruction errors over the training data. In the objective function of RAN, the second
part 7 s, «CqeCan be viewed as a penalty term on the activities of units in the third layer
of RAN. By varying the value of T &, We can make the model suitable for learning data
with different properties. If 7 4 IS set to be very small, the behaviour of RAN will be
similar to that of the autoencoder; if 7 e iS Set to be very large, the behaviour of RAN
will be similar to that of SNE. Therefore, if we hope that RAN will have both the
advantages of the autoencoder and the advantages of SNE, 7 s, must be carefully

chosen.

2.3 Comparisons of the Autoencoder and SNE-encoder



In this section, we will describe a unifying implementation view of the autoencoder and
SNE-encoder, that is, as neural networks. From the point of the view of the
implementation, we will give comparisons of the autoencoder and SNE-encoder. Besides
that, we will aso discuss how and why the autoencoder and SNE can give guidance to
each other during the training, which will give some explanations for why Regularized

Autoencoder Network works well.

2.3.1 The Autoencoder Imposes Loose Constraints on the
Codes

In the previous sections, we have described the fundamentals of SNE, SNE-encoder
and the autoencoder. To facilitate subsequent discussions, we will describe the
implementation of SNE-encoder and the autoencoder in a formal way first; And al the
input data in this thesis refers to digit images or face images, so we call the high
dimensional space as pixel space and the low dimensional code space as code space. As
discussed earlier, the autoencoder is a five-layer neural network that implements
non-linear Principal Component Analysis (PCA). As described earlier, SNE-encoder can
be implemented by a three-layer neural network. The second layer contains non-linear
Sigmoid activation functions as in the autoencoder. The implementation framework of
SNE-encoder is the same as the recognition part of the autoencoder, except that
SNE-encoder has a cost function to constrain the low dimensional codes while the
autoencoder utilizes the gradient information backpropagated from the generative part to
update the low dimensional codes. Now consider the five-layer autoencoder, the first
three layers can be viewed as a non-linear continuous function r, which maps some input
image x from a pixel space to a code space to produce a vector y.

y=r(x) rrR"” - R" (2.21)
Here n is the dimensionality of the pixel space and m is the dimensionality of the code
gpace. The last three layer of the autoencoder can be viewed as a non-linear continuous

function g, which maps some code y to the pixel space to generate the reconstruction



image X for someinput image x.

X =g(y) gR" - R (2.22)
Combining (2.21) and (2.22), we will have
X =g(r(x)) (2.23)

For the autoencoder, we shall assume that the cost is the sum of the square reconstruction
errors over al theinput data, that is,
C= Zi(xi- %) (2.24)

We are seeking low dimensiona codes y that account for the variance of the input images
in the pixel space. Since X isan approximation of X, the function g can be viewed as an
approximation of the inverse of the function r from (2.23). Because the second layer and
the fourth layer are non-linear hidden units, the cost function (2.24) is not strictly concave
with respect to the weights w in the autoencoder, and there may be many local minima
That is to say, there may be many continuous mapping functions g and r that can give
locally optimal reconstructions of input images.

Under the cost (2.24), we just penalize the large reconstruction errors regardless of
what the distance between every two input images might be. As aresult, there exist some
risks that the low-dimensional codes distort the geometric structure within some input
data points. This will happen especially when we have not enough images for each class
and the autoencoder cannot capture enough information about the mean of the images for
each class or when the dimensionality of the code space is too small and the code cannot

capture enough variance of the input image data.

2.3.2 SNE-encoder Imposes Rigid Constraints on the Codes

Now we turn to discussions of the implementation of SNE-encoder. Let’s cal the

mapping function of SNE-encoder from the pixel space to the code space as r , that is,

! Inthethesis, for face data, the cost is the sum of reconstruction errors; for digit data, the cost is cross entropy.



y=r1(X) r:R" - R" (2.25)
Function r* for SNE-encoder is similar to function r for the autoencoder except that r-
has extra constraints on the low dimensional codes while function r has some loose
constraints on the codes imposed by the information from function g.
Noticing the cost function of SNE (also the cost function of SNE-encoder) in (2.10) that

constrains low dimensional codes, we write it here again:

C=Yiyipjlog(p; / o)=Y KL(Pi | Qi) (2.10)
At the same time, the following constraints hold:
2ip; =1, 2;0; =1 (2.26)

, where p;j = p; and g;; = ¢;.Using Lagrangian multiplier, we can easily obtain that the cost
C in (2.10) will be minimized when p; = ¢; That is to say, we must find good
distributions for every Q; in the code space to approximate the corresponding P;in the
pixel space to minimize the cost of SNE-encoder. From the view of equations and
referring to (2.7) and (2.9), to make p;; = g} is to solve the following problem:
pi=exp(—[lyi = will®) / Zkaexp(—[lyi — w[*) (2.27)

Recalling that p; = p;i, we will have an equation group composed of N(N-1)
equations that have the same form as (2.27). Suppose that the dimensionality of the pixel
space is m, the dimensionality of the code spaceis n, and the number of input imagesisN

(we will follow this assumption al the time in this thesis), there will be n>X N unknown

variables for the equation group. Generally, n is much smaller than NTl We may think

that there must exist many redundant or conflicting equations in the equation group.
Therefore, we can’t find an exactly accurate solution in most situations, and we must
compromise to get an approximated solution.

For the autoencoder, we know that the cost in (2.24) will be minimized when we

have N good reconstructions of the input images. There are nX N unknown variables and

mXN equations. If m << NTl we draw a conclusion that SNE has far more constraints

on the low dimensional codes than the autoencoder.



The above argument may seem to be correct. However, let’s consider the MDS
model in which distances between every two input data points are Euclidean distances
and the PCA model. We use these two models to generate the mapping from the pixel

space to the code space as discussed above. Using the above argument, MDS imposes
N(N-1) constraints on the low dimensiona codes while PCA imposes m X N
constraints on the codes. By the argument, they will generate different low dimensional
codes. However, these two models are equivaent and they will generate the same low
dimensional codes. Therefore, the argument is definitely not correct. Actually, the number
of equations cannot be indicative of degree of constraint because there are some
redundant or conflicting equations in the equation group, which has been mentioned in
previous discussions. The number of effective equations can be indicative of degree of
constraint but not just simply the number of equations.

As a matter of fact, the autoencoder imposes loose constraints on the codes because
function g must be learned and we have many choices for g. We cannot define a concrete
equation group from the view of equations. It is not like PCA or MDS in which the codes
can be calculated directly when minimizing some cost function. But for SNE-encoder, it
is not the case. The low dimensional codes are directly influenced by the distributions Q
in the code space. Constrained by (2.26), the probabilities must be divided appropriately
among every code’s neighbours. In another word, the poor low dimensional codes will
waste probability mass and then influence the generation of some other low dimensional
codes. That is to say, the codes produced by SNE are results of compromise among the

codes of some neighbouring input images.

2.3.3 Geometric I ntuitions of SNE and SNE-encoder

Minimizing the cost of SNE and SNE-encoder in (2.10) can produce codes that will
almost preserve the distances between input images pairwise in the pixel space. When the

dimensionality of the pixel space and the dimensionality of the code space are the same,



SNE and SNE-encoder can produce codes that will perfectly preserve the distances. Of

course, the dimensionality of the code space is often far smaller than that of the pixel

N(

space. We can only expect to have some approximations to the %1) distances.

Whether we can have very good approximations or not depends on the internal geometric
structure of the input image data set and the dimensionality of the code space.

Let's consider the eight vertices on a cube that lies in a three-dimensional space
shown in Figure 2.3, can we use SNE and SNE-encoder to map the coordinates of al the
vertices to a two-dimensional space at the same time the distances between pairs of

vertexes are preserved?

Figure 2.3: Map the three-dimensional coordinates of eight vertices of a cube to atwo dimensional space.

The answer is no. Here is a ssimple and intuitive explanation: looking at Vertex A, B,
C and D, we can find that the length of Segment AC, CD and DA are equa. In a
two-dimensional space, Vertex A, C and D must form an equilateral triangle. Vertex B has
the same distance to Vertex A, C and D, so B must lie at the centroid of the triangle, but

we cannot make the ratio of the distance CD over the distance BC be 1.



For some points in a three-dimensional space, if they can be mapped to a
two-dimensiona space and the corresponding distances can be preserved, these points
must lie on a plane. By analogy, if some pointsin an m dimensional space can be mapped
to an n dimensional space (n<m) preserving the corresponding distances, there must exist
a specia transformation to the m dimensiona coordinate system. By the transformation,
we can find m new base vectors to form a new coordinate system, in which the last (m-n)
components of the new coordinates of all the points are all zero or very tiny. Such kind of
transformation doesn’'t always exist. For example, we cannot find a good transformation
that succeeds in mapping coordinates of the vertexes of the cube above. The larger the
dimensionality of the code space is, the more flexibility the codes will have. When the
dimensionality of the code space is too small (n equals 1 or 2 for face images), many

geometric structures within local neighbourhoods of input images cannot be preserved.

2.34 Reéationship among the Autoencoder, SNE and
SNE-encoder

Function r in SNE-encoder has almost the same framework as that of function r in the
autoencoder. If we put another two-layer units above the SNE-encoder framework
referring to the autoencoder, we will get a new five-layer neural network. If we make the
last three layers have a very good approximation to the inverse function of r under the
cost of the autoencoder in (2.24), the new five-layer neural network can be viewed as an
autoencoder with some constraints on the low dimensional codes. According to Fourier
Theorem that any continuous function can be approximated arbitrarily well by a set of
harmonic functions, theoretically speaking, the last three-layer units can surely have a
good approximation to the inverse function of function r’ if there are enough hidden
unitsin the fourth layer.

Enlightened by the above argument, we train the first three layers of units using the
cost of SNE, and stop the training when the first three layers of parameters are not very

far from a good local minimum, and then we train the last two layers of parameters with



the low dimensional codes and the first three layers of parameters fixed, and then we stop
the training before the convergence of the last two layers of parameters, and now we
throw the SNE penalty on the low dimensional codes and train the five-layer neural
network as an autoencoder. What will happen? Mostly, the low dimensiona codes
produced by the special training process will converge to the codes produced by
SNE-encoder alone, provided that the number of hidden units in the second layer and in
the fourth layer is enough for the autoencoder alone and SNE-encoder alone to work well.
That is to say, the last three-layer neura network gives a very good approximation to the
inverse function of function r' in SNE-encoder. It also suggests that the autoencoder
will behave amost the same way as SNE-encoder if we put some constraints in the code
gpace and give the autoencoder enough guidance. And, it reflects that a five-layer

autoencoder is very flexible in generating low dimensional codes.

Figure 2.4: Images near the border of classes in which the images have similar shapes. Both the
autoencoder and SNE have difficulty in producing good codes for the images in the rectangle so that they

can be easily separated in the code space.

Figure 2.5: Theillustration of two images near the border of classes for which SNE can often generate good



codesfor KNN clustering.

We have discussed that the plasticity that the autoencoder gives to the low
dimensional codes can lead to good things and can also lead to bad things. Thus, if we set
the degree of constraint on the codes appropriately and combine the advantages of the
autoencoder and SNE on recognizing images, we will have the model Regularized
Autoencoder Network (RAN). If the input images for each class are enough for the
autoencoder to capture the image information for each class, we set a small degree of
constraint in the code space so that the constraint will not ruin the good things produced
by the flexibility of the autoencoder; otherwise, we set a big degree of constraint in the
code space. In this way, minimizing the cost of SNE will dominate the training of RAN,
and the reconstruction term will function as aweak constraint on the codes. Noticing that
the low dimensiona codes produced by SNE are often results of compromise when m < n,
we expect that, in general, the compromise that gives good reconstructions of input
images will produce better codes than that that gives bad reconstructions.

The autoencoder focuses on giving faithful representations of input images while
SNE and SNE-encoder focuses on preserving local relationships between images.
Although both of them have their own characteristics on recognizing images near borders
of classes using low dimensiona codes, they both behave randomly when performing
these tasks. Under the cost functionsin (2.10) and (2.24), both models produce codes that
are closely related to Euclidean distances between pairs of input images. In another words,
both models cannot easily differentiate the images near the border of classes in which
images have similar shapes. Asis shown in Figure 2.4, imagesin class 1 and class 2 have
similar shapes (it means that the input image vectors for the two classes have similar
distribution in the pixel space), and the Euclidean distances between pairs of images in
the rectangle (near the border) are not very different compared to the inter-class
differences. For such cases, both the autoencoder and SNE have difficulty in producing
good low dimensional codes by which images belonging to different classes can be easily
separated. Figure 2.5 illustrates two images A and B near the border of classesin the pixel

gpace for which SNE and SNE-encoder can generate good codes for KNN clustering



while the autoencoder often fails to this. During the training of SNE and SNE-encoder,
the forces pulling the data point A toward class 1 are much bigger than those toward class
2, and the forces pulling the data point B toward class 2 are much bigger than those
toward class 1. Therefore, it ismore likely that A and B will be respectively clustered into
the right classes by SNE and SNE-encoder although A and B choose each other as their

nearest neighbours.



Chapter 3

Optimization Methods

We have discussed the RAN model in previous sections, and we now describe how the
model can be trained. In the following sections, we describe the optimization methods
that we tried: Steepest Gradient Descent (SGD), Scaled Steegpest Gradient Descent
method (SSGD), Conjugate Gradient Descent (CGD) and Scaled Conjugate Gradient
Descent (SCGD). These methods will be compared on particular datasets in chapter 4 and
5.

3.1 Seepest Gradient Descent

Steepest Gradient Descent (SGD) is widely used for training neural networks. The
algorithm works like this: the initial value of the weight vector wg for a neural network is
set to be some value, which is often chosen randomly. Typically, small initial weights are
used to avoid strongly biasing the learning. At iteration k, we compute the search
direction px, which is the negative gradient of the objective function calculated at wy, and
then we update the weight vector along the search direction py as follows:

Wi+ = Wi + Awy (3.1

Awg = — 1ok (3.2)
We keep updating the weight vector according to the rule in (3.1) and (3.2) until we are

close to a minimum and the objective function of the neura network is approximately



locally optimized so that the gradient g is near 0. The parameter 17 here is caled the
learning rate, and in practice, its value is often set by hand.

If n is set to be too large, the update Awy for the weight vector w will be large
each iteration, and the error may increase; if 77 is set to be too small, the update for the
weight vector will be small each iteration, and the training will take a long time.
Therefore, the value for the learning rate must be carefully chosen.

In practice, the standard SGD method is usually very inefficient. When the condition
number of the Hessian matrix of an objective function is large, the curvature of the
objective function will vary significantly with direction. Under such a situation, the
search direction along the gradient will not point to the minimum at most points on the
error surface. Therefore, it will take many updates for SGD to achieve the minimum.
Figure 3.1 illustrates the behaviour of SGD method when the curvature of the objective
function varies alot with direction. Adding a momentum term to the update of the weight
vector at each iteration asin (3.3) will partly solve this problem [Bishop, 1995].

Awg= —nog+ AWk (33)
In the long valley of the error surface where the curvature in one direction differs a lot
from that in another direction, adding the momentum term to the update along the
steepest descent direction makes the algorithm achieve the minimum faster because
successive updates along the direction given by the momentum tends to cancel and they

actually result in bigger step size toward the minimum each iteration.

W —"—=>

Figure 3.1: The behaviour of SGD method when the curvature of the objective function varies a lot with

direction.

Although adding a momentum term improves the performance of SGD when the
Hessian has large condition number, the speed of convergence is still slow and the

algorithm remains inefficient.



3.2 Scaled Steegpest Gradient Descent

Scaled Steepest Gradient Descent (SSGD) method is an enhanced version of SGD. It was
designed for optimizing an objective function of which the Hessian has a large condition
number.

When we optimize the objective function of a neura network, at each update of the
weight vector, instead of simply moving a fixed step size aong the steepest descent
direction asin (3.2), we have an extralearning rate for each weight in the network, which
can be adapted automatically. Then the update rule becomes:

Awik= —n &ik Gik (3.4)

Here Awj. denotes the update of the i component of the weight vector that is a weight
in the neural network in iteration k, &ix denotes the gain on the learning rate for the
weight in iteration k, and gj denotes the i™ component of the gradient vector that is the
gradient of the objective function with respect to the weight in iteration k. When the
derivative of the objective function with respect to a weight has the same sign in
consecutive iterations, it means that the update still has a component in the old direction
and it is likely to be a steady downhill direction, so we should increase gain ¢ for the
weight; otherwise, it means oscillation has occurred, so we should decrease the gain for
the weight. Noticing that the sign of A wii isthe converse of the sign of gix, therefore, we
can adapt the gains for different weights in the neural network according to the rule in
(3.5).

ik = (3.5)

{ ikit @1 if Awik1 ik <0
(1-a2) &k if Awik10k>0
Here a1, a,are smal positive numbers set by hand. To avoid the gains becoming
extremely small, we also have the rule in (3.6) to update them after they are adapted by
therulein (3.5).

Sik=maX (s, ik) (3.6)



Here «3is asmall positive number. An upper bound can also be imposed on the gains
¢ ik to avoid the gains becoming extremely large, but it is not used in the thesis.

During the training of RAN, ajissettobe0.01, «rissettobe0.02and «3is set
to be 0.05. And momentum term is also used. In fact, the update for each weight in RAN
isasin (3.7).

Awik= —n ik Gk+ M AWik1 (3.7)

In the long valley of the weight space where the curvature of the objective function
changes significantly with direction, different learning rates in different directions
adapted by SSGD method help to find the minimum in afast and stable way.

3.3 Conjugate Gradient Descent

The linear Conjugate Gradient Descent (CGD) method [Nocedal and Wright, 1999] was
first proposed for optimizing quadratic functions. A set of vectorsp,, p,,..., p, are said to
constitute a conjugate set with respect to a non-singular symmetric matrix A if they
satisfy (3.8).

p’ Ap, =0 Oij:i#j,i=1,...,n (3.8)
Suppose that we have a quadratic objective function of asimple linear neural network,
E(w): R" -~ R, CGD can generate n exact search directions composed of a conjugate set

with respect to the Hessian of E, which can be calculated recursively asin (3.9).

Prrr = it B rasPy (3.9
where

Me=9, (3.10)

B =Teal! Pety (3.12)

N1 =Nt a E"(Wp, (3.12)

a,= Pcr/ P E" (WP, (3.13)

Here gk is the gradient of E caculated a wy and E”(wyx) means the Hessian of the
guadratic function EWhen k = 0, rq is the gradient of the objective function E at the

starting point wo, and the value of wy is chosen at random. Along these search directions,



if we update the vector w as in (3.14), the quadratic function E can be optimized within n
steps [Noceda and Wright, 1999].

Wi+1 = Wi =@ k Pk (3.14)
From the above descriptions, we can find that we only need the information obtained in
the previous iteration to calculate the weight vector wy.; at iteration.

However, the above algorithm only works well for minimizing convex quadratic
objective functions. For a genera non-quadratic objective function of a general neural
network, E(w): R" -~ R, Fletcher and Reeves showed that, by approximating the
conjugate search directions described above and by using line search to calculate the step
size that satisfies the Wolf Conditions, we can obtain a good non-linear version of CGD
[Noceda and Wright, 1999]. Here the Wolf conditions can ensure that sufficient decrease
in each step will be made and the updated vector g« +1 will not be too far away from
stationary points of the objective function E. There are many variants of the non-linear
CGD method, and most of them only differ in the choice of the parameter B y+1 in (3.11),
which will result in different approximations to the conjugate search directions. One of
the most important invariants was proposed by Fletcher and Reeves, the B+ is defined
asin (3.15).

Brr= Yea(Gur — 9) /9 G (3.15)
Here gk+1 isthe gradient of the non-linear objective function E calculated at Wy+1.

To make line search fast, we often utilize the information about the function values
and the gradients at the previous tried points to fit a quadratic or cubic function, then we
find the minimum of the interpolation function and use it as anew trial point. During the
evaluation of each trial point, we must calcul ate the function value and the gradient of the
objective function at the point, which is expensive. Therefore, we often set alimit to the
number of function evaluations allowed in each line search.

Despite that, using CGD with step sizes calculated by line searches to train neura
networks that have a huge number of weights or objective functions that are
computationally expensive to evaluate is still slow and often takes along time. And the
performance of the method is sensitive to the parameters used in the line search

procedure.



3.4 Scaled Conjugate Gradient Descent

Scaled Conjugate Gradient Descent (SCGD) was introduced to avoid line searches along
the conventional conjugate search directions [Moller, 1993].

SCGD works in a similar way to the linear verson of CGD except that it
approximates the step size term containing the Hessian in (3.13) and it introduces a
strategy to make the Hessian of the non-linear objective function always positive definite
during each update of the weight vector.

Within the neighbourhood of each updated weight vector, SCGD generates quadratic

approximations to the objective function asin (3.16).
) 1 1
Eqw (y) = E(w+y) =E(w) + E'(W)Ty + > yTE" (W)y (3.16)

And SCGD gives step size like linear CGD based on the quadratic approximations by
approximating the term that is the product of the Hessian E”(w,) and the search direction
vector p, asin (3.17).

S =E'W)p=[E W, +0,p)—E W)/ o, (3.17)
Here E'(w,) is the gradient of the objective function E and 0 <o, << 1. By adding some

multiple of the unit matrix to the Hessian E” (w, ), we can ensure that the Hessian will be

positive definite. Then we will have

s.=[EWw,+0,p)—EMW)l/o, + A p, (3.18)
We denote the denominator in (3.13) by J,, and we will have
3,= P E"(W)p, (3.19)

If the Hessian is not positive definite, we will have J, <0, thenweraise A to makethe
Hessian positive definite, then the updated J, will become

O, = Okt (A2 — Ak )Pk >0 (3.20)
From (3.20), we can easily get

Ap> A =0,/ pep, (3.21)
It is not known that how to set A, to get an optimal step size. In [Moller, 1993], A, is
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settobe2(A, -0,/ Py p,)- SCGD also measures how good the quadratic approximation
at each update is using the formulain (3.22) to increase or reduce the parameter A .
A, =[Ew) - E(w, +a, p) 1/ EW)-E,(a R (3.22)

Where Eqw( a . p,) isthe quadratic approximation to the objective function at w, +a ,p, If
A, <025 A =44, A, >0.75 A,=054, The smaler the 4, the bigger the step
Size.

SCGD can minimize non-linear objective functions of neura networks along some
approximated conjugate search directions, but the mechanism used to increase and reduce
the parameter A is not accurate, and it doesn’t guarantee that the update of the weight

vector always stays in the trust region.



Chapter 4

Experiments on Digit Recognition

4.1 Digit Data and the Configurations of M odels

The digit data used here contains 9000 hand-written digit images with the greyscale from
0to 1. There are 900 images for each of the 10 digits. In the experiments, we divided the
digit datainto three digjoint datasets with each containing 3000 digit images and 300
images for each digit. We label the three digit datasets as: set 1, set 2 and set 3. The size
of each imageis 16 by 16. Figure 4.1 shows 100 images for 10 digits.
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Figure4.1: Someimages of hand-written digitsin the digit dataset.

In the pixel space, the hold-one-out clustering error by 4NN is 180 out of 3000 on set
1, 200 out of 3000 on set 2, and 196 out of 3000 on set 3.
Since most of the pixel values of adigit image are either near O or near 1, we used

logistic outputs for the unitsin the fifth layer of an autoencoder and we used



cross-entropy instead of the sum of square reconstruction errors as the objective function
of the autoencoder because it makes the calculations of derivatives easier. Figure 4.2

shows the histogram of the pixel values of a handwritten digit image. Figure 4.3
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Figure 4.2: The histogram of the pixel values of a hand-written digit image.
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Figure4.3: The configuration of the autoencoder and RAN for digit data.
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illustrates the configuration of an autoencoder. Through alot of experiments, we find that

the following configuration of the autoencoder works very well on digit recognition: the



number of hidden units in the second layer is 200, the number of hidden units in the third
layer (i.e., the dimensionality of the code space) is 20, and the number of hidden unitsin
the fourth layer is 100. The structure of RAN is the same as that of the autoencoder

except that we use the SNE cost to regularize the activities of the unitsin the third layer.

4.2 TheTraining of RAN by Different Optimization
methods on Digit Data

4.2.1 Singlebatch Training

When 3000 training cases are used as one batch to train RAN: even if the learning rates
are carefully chosen, the training by SSGD is slow, and the training by CGD and SCGD
isintolerably slow because choosing step sizes to optimize the objective function of RAN
on the 3000 training casesis very difficult. SSGD works better than the other two
methods do under this situation.

However, the objective function of a SNE-encoder is easy to minimize using the

3000 training cases as one batch and the training is fast.

4.2.2 Mini-batch Training

We used mini-batch datato train RAN and we found that the training was much faster
than that using all the data as one batch.

4221 Mini-batch Data

Many experiments on training RAN have been done on different data sets with
mini-batch data in which one of the training casesis assigned to only one mini-batch. The

results show that: (1) SSGD has the best performance. (2) CGD doesn't work on



mini-batch data with big mini-batch size (the number of cases in one mini-batch),
because it is very expensive to get an allowable step length along the search direction to
satisfy the Strong Wolf Conditions or because the training oscillates on different
mini-batches and no progress can be made. When CGD is applied on the whole data set
with 3000 cases as mentioned in section 4.1 (the extreme situation), it takes amost one
minute to evaluate the objective function value of RAN on our machine, and the method
is often trapped into a bad region and the value of the objective function cannot be
reduced. (3) With the right mini-batch size, the performance of SCGD is comparable to
that of SSGD. Training by SCGD is faster than that by SSGD.

4.2.2.2 Redundant Mini-batch Data

In those experiments on mini-batches described in section 4.2.2.1, one training caseis
only assigned to one mini-batch, and we will lose some similarity information between
some pairs of training cases and only a small amount of the pairwise similarity
information is used during the training. Thus, we did the following to get a new kind of
mini-batch data called redundant mini-batch data: permute the 3000 training cases
randomly, divide the 3000 cases into several mini-batches with the same size, and repeat
doing the above process until we get the desired number of mini-batches. When
redundant mini-batch datais used during the training of RAN, much more pairwise
similarity information will be utilized when minimizing the KL divergence part over the
mini-batches.

In the following, we will show the experimental results on set 1 using 15 times
redundant mini-batch data in which the mini-batch sizeis 200 and there are 225
mini-batches altogether. Table 3.1 gives the summary of the experimental results.

Table 4.1 shows that SSGD finds the best parameters for RAN by which we can
generate the best low dimensional codes for KNN clustering. We set 7 ¢ (the coefficient
in front of the cost of SNE) to be 150. Here, in SSGD, we set the learning rates to be
5.0e-5; in SCG, we used the following strategy to control the line searches on each

mini-batch: set the maximum number called L of line searches allowed on every



mini-batch each time to be not very small (we set it to be 10 here). At the same time,
make sure that not much time is wasted on some batches without finding a successful line
search. That isto say, L cannot be set to be alarge number; in SCGD, we set the
parameter A, used for adjusting the Hessian of the objective function and the step size
along the P-R Conjugate Gradient search direction, to be 5.0e-3. We alowed a big step
size at first and let the method automatically reduce A by itself when necessary. And the

maximum number of successful searches on each mini-batch each timeis 10.

ANN Errs Time Cost (hour)
SSGD 90 2.2
CGD 120 11.3 (Training oscillates on

different mini-batches)

SCGD 98 12

Table 4.1: The performance of different optimization methods on optimizing RAN using redundant

mini-batch digit data with the mini-batch size 200.

We also used the three digit datasets mentioned in section 4.1 to give more detailed
comparisons of the three optimization methods. We use one of the three setsas a
validation set to determine when to stop training and use the other two corresponding sets
astest setsto test different methods. Each dataset is used to generate 225 mini-batches of
data with the mini-batch size 200. On the validation set, we stop the training when the
best KNN error is found?, and we use the sum of the reconstruction errors of the 3000
training cases in the validation set at that point as criteria to stop the training on the other
two test sets. We set 7 4 to be 150. Table 4.2, table 4.3 and table 4.4 give the detailed
clustering results of RAN corresponding to SSGD, CGD and SCGD. The rows of these
tables represent the clustering errors out of 3000 corresponding to different validation

sets indicated respectively by the first entries of the rows. The columns of these tables

2We found in preliminary experiments that 4NN nearly always give the lowest clustering errors on the digit data.




represent the clustering errors out of 3000 corresponding to different test sets indicated

respectively by the top entries of the columns. The entriesin the diagonal of these tables

represent the clustering errors out of 3000 on the validation sets. From these tables, we

find that SSGD has the best performance on training RAN among the three methods.

In the experiments as shown in table 4.1 and table 4.3, we cannot make CGD work

well on redundant mini-batch data with the mini-batch size 200, so we try to use

redundant mini-batch data with smaller mini-batch size. We do the permutation of the

3000 training cases first, and then we divide them into 30 mini-batches with the

mini-batch size 100. Repeat the above process 20 times, and we will get 600 mini-batches

with each batch containing 100 training cases.

SSGD Setl Set 2 Set 3
Set1 90 114 129
Set 2 96 11 131
Set 3 96 114 122

Table 4.2: The clustering results of RAN trained by SSGD using redundant mini-batch digit data.

CGD Setl Set 2 Set 3
Setl 120 175 180
Set 2 130 171 175
Set 3 125 180 165

Table 4.3: The clustering results of RAN trained by CGD using redundant mini-batch digit data.

SCGD Setl Set 2 Set 3
Setl 98 132 155
Set 2 113 114 143
Set 3 123 136 133

Table 4.4: The clustering results of RAN trained by SCGD using redundant mini-batch digit data.




In the experiments on the redundant mini-batch data with the mini-batch size 100,

the settings for SSGD, CGD and SCGD are the same as those described above. We set

T e t0 be 150. Table 4.5 shows the results produced by the three methods when training

RAN on the redundant mini-batch data with mini-batch size 100.

Table 4.5 again shows that RAN trained by SSGD generates better low dimensional
codes for KNN clustering than RAN trained by the other two methods (in the table, K
equalsto 4). We also find that SCGD is the fastest one among the three and CGD isthe

slowest one among the three.

ANN Errs Computational Cost (hour)
SSGD 102 0.7
CGD 104 14
SCGD 104 0.3

Table 4.5: The performance of different optimization methods on optimizing RAN using 600 mini-batches

of digit data with the mini-batch size 100.

4.2.3 Combining Different Optimization Methods

One kind of combination of optimization methodsis: during the training of RAN on one
of the three datasets, run CGD first until it'simpossible for it to make any progress, and
then run SSGD. We used 600 redundant mini-batches with mini-batch size 100 so each
case occurs in two mini-batches, and run CGD for 25 epochs. In the last 5 epochs, CGD
does not make any progress. Then, we continue to run SSGD on the same redundant
mini-batch data set for 10 epochs. The best KNN clustering error is not as good as that
produced by SSGD alone. The combination of first running SSGD and then running CGD
isnot good either.

We aso tried the combination of SSGD and SCGD to train RAN, but the

performance of the combination is not superior to that of SSGD alone.
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4.3 Experimental Results of Different Models on Digit

Data
The autoencoder Setl Set 2 Set 3
(single batch
training)
Set 1 102 117 127
Set 2 116 105 140
Set 3 109 117 124
Table 4.6: The clustering results of the autoencoder using single batch training on digit data.
The autoencoder Setl Set 2 Set 3
(mini-batch training)
Setl 97 125 126
Set 2 107 111 135
Set 3 100 126 123

Table 4.7: The clustering results of the autoencoder using mini-batch training on digit data.

SNE (single batch Set 1 Set 2 Set 3
training)

Set 1 132 148 148

Set 2 140 143 149

Set 3 139 149 144

Table 4.8: The clustering results of SNE on digit data.

In this section, we will compare the performance of the RAN model to the performance
of the autoencoder model, the SNE model, the SNE-encoder model, the PCA model and
the LLE model on the three digit datasets. We'll do the experiments of validation and test




as described in section 4.2.2.2 for each model. Since SSGD is the best method that has
been found, we use SSGD to train the autoencoder, RAN, SNE and SNE-encoder in all

the experiments described in this section.

SNE-encoder (single Set 1 Set 2 Set 3
batch training)

Setl 130 140 135

Set 2 140 136 138

Set 3 133 140 132

Table 4.9: The clustering results of SNE-encoder on digit data.

Table 4.6 shows the clustering results for the autoencoder. During the training on
each dataset, the 3000 training cases are used as one batch. On the validation set, we stop
the training when the best KNN clustering error isfound, and then we use the sum of the
reconstruction errors at that point as criteria to stop the training on the test sets.
Mini-batch training is also tried on the autoencoder. The 225 redundant mini-batches of
data with mini-batch size 200 used to train RAN are used to train the autoencoder. Table
4.7 shows the detailed results.

Table 4.8 and table 4.9 show the clustering results for SNE and SNE-encoder
respectively. The dimensionality of the code space here in the two modelsis the same as
that in RAN. The structure of the SNE-coder model is the same as that of the recognition
part of RAN discussed in section 4.1. We use all the 3000 training cases as one batch in
each dataset to train these two models and we use the sum of the KL-Divergence over the
3000 training cases in the validation set at the point that the best KNN clustering error is
found as criteriato stop the training on the test sets.

Table 4.10 and 4.11 show the KNN clustering results generated by PCA and LLE. On
the validation set, we find the best dimensionality of the code space through which the
best KNN clustering error can be obtained, and we perform PCA or LLE and KNN on the
test sets using the dimensionality of the code space found. We find that the clustering

performance of LLE is better when the number of neighbors K in the LLE model isjust




dlightly larger than the dimensionality of the code space than that when K is much larger

than the dimensionality of the code space. That isto say, only when the local structure

within the neighborhoods in the high-dimensional space is amost perfectly preserved in

the low-dimensional space, KNN works best using the codes generated by LLE. Despite

that, LLE has the worst performance on clustering among the model s discussed.

PCA Set 1l Set 2 Set 3 dimensionality
of code space

Set 1 120 133 145 32

Set 2 148 116 144 27

Set 3 128 139 130 27

Table 4.10: The clustering results of PCA on digjt data.

LLE Setl Set 2 Set 3 dimensionality
of code space

Set1 362 494 388 16

Set 2 399 420 376 15

Set 3 425 448 339 14

Table 4.11: The clustering results of LLE on digit data.

Now we turn to the discussion of the clustering performance of RAN. Table 4.2

shows the clustering results of RAN using mini-batch training by SSGD. In the RAN
model here, the cost of SNE is used as a regularization term. Comparing table 4.2 to the
tables in this section, we find that RAN has the best performance on clustering digit data.
It slightly improves the clustering performance of the autoencoder.

We also tried to train the RAN model as described above using single batch training
on one dataset, that is, we use 3000 training cases as one batch to train RAN. The training
is very slow because the calculation of the probability distributions in the code space is

very expensive. We tried different coefficients in front of the cost of SNE, but the



clustering performance is not so good as that of the autoencoder trained using single

batch training.

RAN (single batch Set 1l Set 2 Set 3
training)

Setl 98 104 116

Set 2 105 93 115

Set 3 104 104 107

Table 4.12: The clustering results of RAN using single batch training on digit data.

However, we can train RAN using alarge single batch of digit data in another way:
set the coefficient 7 s in front of the SNE cost to be an appropriate value, train RAN as
usual for some epochs, and then reduce the coefficient 7 e Slowly to 0, and then train
the whole network as an autoencoder. Here, SNE is used to help initialize the autoencoder.
Table 4.12 gives the clustering results of RAN trained this way. In the experiment, 7 ge
isinitially set to be 3000. When the number of epoch is greater than 50, we set 7 ge =
T se X 0.99 on each epoch. We find that RAN trained this way often produces better
clustering performance than that of the autoencoder using single batch training.

There is another method to train RAN using alarge single batch of digit data: run the
autoencoder to completion first and then add the SNE regularization term with slowly
increasing 7 ge. We find that RAN trained by this method works amost as well as RAN
trained by the above method. When set 3 is used as the validation set, the best clustering
error produced by RAN trained by this method is 107 out of 3000. But this method is
more difficult to control than the above method because we must decide when to stop the
training of the autoencoder.

Comparing the results in table 4.12 and table 4.2 to the clustering results generated
by some other models, we find that RAN has the best clustering performance on digit
data. From these tables, we aso find that PCA has the second best clustering performance,
SNE-encoder produces better codes for KNN clustering than SNE alone, and the codes
produced by LLE are not suitable for KNN clustering.




Chapter 5

Experiments on Face Recognition

5.1 Some Previous Face Recognition methods

Face recognition has been explored by a lot of researchers and many face recognition
methods have been presented. The Correlation method [Brunelli and Poggio, 1993] gives
the similarity score as the angle between two images represented as vectors of pixel
intensities. The Eigenface method [Turk and Pentland, 1991] projects face images onto a
subspace spanned by principal components capturing most of the variance in the face
data, and then computes similarity scores of projected images. The Fisherface method
[Belmumeur et al., 1996] projects face images to a subspace which maximizes the
inter-class variances and at the same time minimizes the intra-class variances. Each
individual can be viewed as one class. Then it returns the similarity score of projected
images. The O ppca [Moghaddam et a., 1998] method models image differences
including intra-individual differences and extra-individual differences using an eigenface
density estimation technique. It gives similarity score of two images based on the a
posteriori probability of membership in the intra-individual class. The RBM [Teh and
Hinton, 2001] method returns similarity score of two images based on the negative free
energy when the RBM is fed with the two images.

And there are many other types of methods such as template-based methods,
deformable models, feature-based methods etc [Yuille, 1991, Pentland et al., 1994,
Samaria, 1994, Wiskott et a., 1997, Lawrence et a., 1997]. There are lots of methods



proposed for finding features of complicated images, and one of them that we should
mention is the method introduced by Lowe that uses the SIFT keys to find local scale
invariant features [Lowe, 1999]. In section 5.7.2, we will compare the performance of

RAN on face recognition to those of some methods mentioned here.

5.2 TheOlivetti Faces

The Olivetti face dataset was constructed by AT& T Laboratory Cambridge. The Matlab
filefor the face dataset used in this thesis can be found in [Roweis webpage]. In the
image set, there are 10 face images for each of 40 individuals. All the images were taken
against a dark homogeneous background with the individuals in upright frontal positions.
For each individual, the images in the face set are different from each other in lighting
conditions, orientation (a.small degree of rotations or different poses), expression (with
eyes or mouth open/closed), with glasses/without glasses, or a combination of these
variations. Figure 5.1 shows some face images in the face image set. By using the Olivetti
faces in addition to the FERET faces, we can have some confidence that our results are
not due to the peculiarities of one dataset.

For the face images contained in the Matlab file, the hairstyle and part of the contour
for each face is cut off. The size of the processed face imagesis 64 by 64 pixels. Besides,
we used Nearest Neighbour Interpolation, which is a sampling method that determines
the pixel value of a point in the sampled image from the closest pixel to the centroid of a
block in the original image, to sample the processed images. The size of the sampled
images is 41 by 41 pixels, and all the consequent experiments are based on the sampled
faces. That isto say, the dimensionality of the pixel space for the experiments conducted
on the Olivetti facesin the thesisis 1681. The best hold-one-out clustering error by 1NN
in the pixel spaceis 22 out of 400.



Figure 5.1: 100 face images for 10 individuals in the Olivetti face dataset.

5.3 Performance of Different Optimization M ethods on
the Olivetti Faces
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Figure 5.2: The structure of the autoencoder for clustering the Olivetti faces.

We have compared the performance of Scaled Steepest Gradient Descent (SSGD),
Conjugate Gradient Descent (CGD) and Scaled Conjugate Gradient Descent (SCGD) for
clustering digits in chapter 4. In this section, we will use the above methods to optimize
an autoencoder on the Olivetti face datato check which optimization method is the most

robust one in face recognition. We compare different methods by comparing the



hold-one-out clustering errors using the codes calculated at different local minima that
are found by different optimization methods, and we aso compare the computational cost
of the different methods. Through lots of experiments, we found that the best
configuration on the autoencoder for clustering the Olivetti facesis as follows numrhid =
300, numghid = 100, and numydims = 20. Here numrhid refers to the number of hidden
unitsin the second layer, numghid refers to the number of hidden unitsin the fourth layer,
and numydims refers to the dimensionality of the code space (i.e. the number of hidden
unitsin the third layer). Figure 5.2 shows the structure of the autoencoder mentioned
above. In all the consequent experiments on face data, the cost of the autoencoder is the
sum of reconstruction errors. And here, the 400 face images are used as one batch to train

the autoencoder.

5.3.1 SSGD on the Olivetti Faces

When Scaled Steepest Gradient Descent (SSGD) is used to train the autoencoder, the
training is very sensitive to the learning rates. When the learning rates are too large, the
update steps obtained from the partial second-order information of the derivatives will
not help alot and the update will oscillate in some regions of the weight space; we will
have many cost spikes during the training; it is very easy to get stuck at some poor local
minima. Under the above situation, Figure 5.3 (&) shows how the cost of the autoencoder
changes with the epoch number and Figure 5.3 (b) shows what the KNNerr (the
hold-one-out clustering error in the code space) will ook like. From the two figures, we
can find that the cost fluctuates many times during the training and the clustering error
remains very large. The cost is 1.19e+41 at epoch 4700 whileit is 1.17e+04 at epoch
3000. Between epoch 3000 and epoch 4700, there is a huge cost spike. In al, large
learning rates make it very hard for the autoencoder to achieve good local minimaonce

the training is trapped into some region.
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1NN with epoch number.



x 10*
3 T T

—— learning rates=5.0e-5
— — learning rates=5.0e-6

25F

Cost of Autoencoder
=
(53]
T

l -
0.5

0 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500
epoch number
(@
the change of KNNerrs during the training

120 T T T

T T
— learning rates=5.0e-5
— - learning rates=5.0e-6

KNNerrs

1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
epoch number

(b)
Figure 5.4: The performance of SSGD with two different learning rates when optimizing Autoencoder on

Olivetti faces: (a) the change of the cost of Autoencoder during the training; (b) the change of KNNerrs

(INN clustering errorsin the code space) during the training.



But when the learning rates are too tiny, the training will be unbearably slow. Only if
the learning rates are appropriately set, the update steps cal cul ated based on the partial
second-order information of the derivatives will lead the weights to achieve good local
minima and the cost of the autoencoder will decrease smoothly.

In Figure 5.4, the comparison of the training with two different learning ratesis
shown. Figure 5.4 (a) shows how the cost of the autoencoder changes with the epoch
number when SSGD with two different learning rates is used. Figure 5.4 (b) presents the
change of KNNerrs with epoch number under SSGD with different learning rates.

In these experiments, momentum is also used to make the updates of the weights
more stable. We used small momentum (0.5) in the early phase of the training and big
momentum (0.95) in the fina phase of the training, which is the same as what we did in
the experiments on digit data.

When the learning rates for both the recognition part and the generative part of the
autoencoder are set to be 5.0e-6 as shown in Figure 5.4 by dashed lines, the best INN
clustering error is 12 out of 400 at epoch 3500. That isto say, the error rate is 3.0%. At
this point, the cost of the autoencoder is 2.27e+03. If the learning rates are set to be
bigger as shown in Figure 5.4 by solid lines, the cost of the autoencoder will fluctuate and
will not change smoothly although the cost will mainly decrease. Under SSGD, it takes
the autoencoder about 1.6 hours to achieve the best clustering result on our machine. In a
word, when the learning rates and the momentum are set appropriately, the cost of the
autoencoder will change very smoothly as the training proceeds, and we will get good

clustering results on the face data.

5.3.2 CGD on the Olivetti Faces

In the experiments testing the performance of CGD on the Olivetti face data, we used the
code developed by C.E. Rasmussen. The code implements the CGD with cubic and
quadratic interpolation presented in chapter 2. We modified some constants for line

searches in the code to make it suitable to minimize the specific objective function under



discussion. Because the dimensionality of the weight vector in the autoencoder is huge,
the total time cost for CGD’s minimizing the objective function on each dimension once
will be unbearably long. Thus, We just run CGD on the whole training face data, and if
the total number of successful line searchesis achieved or the value of the objective
function is below some threshold, we will stop the training. The best result is presented
by dashed line in Figure 5.3 by which we will compare the performance of SSGD, CGD
and SCGD later. Under CGD, the best clustering error is 17 out of 400, and it takes about
2.9 hours to achieve the best clustering result on our cluster machine.

We also tried mini-batch training using CGD on the Olivetti faces, but the result is
not good. Since the size of the training datais not large and the objective function on the
wholetraining set is not very hard to minimize, it is easy to understand why the
stochastic update given by mini-batches will not be very helpful in searching for better

local minima.

5.3.3 SCGD on the Olivetti Faces

During the training of the autoencoder by SCGD, we restart the method at the updated
weight vector several times. We restart the method at iteration 200, iteration 400, iteration
800 and iteration 1600. During the first 200 iterations, we set the parameter A to be
5.0e+4, and we set it to be 5.0e+5 in the consequent iterations. Here, A isused for
adjusting the Hessian of the objective function and the step size along the P-R Conjugate
Gradient search direction, which we have discussed in chapter 2. Weraiseor lower A at
every updated point in the weight space by seeing if we have a good quadratic
approximation to the objective function at that point, but the objective function of the
autoencoder is far from quadratic in many regions of the weight spaceand A isreduced
very fast. Avoiding that A isset to be too small, we restart the method severa times.
Because SCGD aways reduces the objective function as the training proceeds, we set
bigger A to have bigger step size in order to accelerate the training.

Under the setting above, SCGD decreases the cost of the autoencoder very fast. After



2100 iterations, we will get the best clustering result as shown by dotted line in Figure 5.3.
The best KNNerrsis 14 out of 400, and it takes about 1.0 hour to achieve this result on

our machine. When using SCGD to train the autoencoder, we needn’t do line searches,

which iswhy it is much faster than CGD.

5.3.4 Comparisons of the optimization methods

We give a short summary of the hold-one-out clustering results produced by SSGD, CGD
and SCGD on the Olivetti facesin Table 5.1. From the table, we can find that SSGD
produces the best clustering result while SCGD is the fastest optimization method. CGD

is the slowest optimization method and it has the worst performance among the three.

We also give the change of the cost of the autoencoder and the change of the

KNNerrs during the training by the three methods in Figure 5.5.

Optimization method KNNerrs (out of 400) Computational Cost (hour)
SSGD 12 16
CGD 17 2.9
SCGD 14 1.0

Table 5.1: The summary of the final results produced by three optimization methods on the Olivetti faces

It's“cheating” to stop at the best KNNerr by looking at the answer, but it's the same “cheat” for al the

methods here.

In Figure 5.5 (8)°, it clearly shows again that SCGD is the fastest method. We can

find that CGD decreases the cost of the autoencoder faster than SSGD in the early phase

3 Infigure 5.5 (@), the costs of Autoencoder in the first 20 epochs (iterations) are not shown because they are much
larger than those in later epochs (iterations) and showing them at the same time makes it difficult to show the costsin
later epochs (iterations) in an appropriate scale.
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cost of the autoencoder versus epoch number; (b) the KNNerrs versus epoch number (or iteration number



for CGD and SCGD).
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equivaent to several epochsin SSGD. However, SSGD becomes faster than CGD in the
late phase of the training although CGD has line searches. SSGD becomes faster and
faster because the learning rates are adapted to have different updating amount on
different components of the weight vector. Figure 5.6 shows the adapted learning rates for
the weights from the input image to the hidden layer in the recognition part of the
autoencoder.

Again from Figure 5.5, we can find that there are no large cost spikes during the
training and all the three methods decrease the cost of the autoencoder very smoothly to
achieve the best clustering results.

Although SCGD is the fastest method among the three, it doesn’t give the best
clustering result. Besides that, we simply use the quadratic approximation to measure
how and when to raise or lower the parameter A in method. There is no mechanism to
make the step size dways in the trust region at each update of the weight vector. It will
make the performance of the method very unstable. The local minima of the objective
function of the autoencoder must lie in aregion in which the curvature of the objective
function in one direction varies alot as we move in another direction as shown in Figure
5.7.

Table 5.2 shows the cost of the autoencoder, the maximum curvature, the minimum
curvature and the ratio of the two curvatures at the points found by SSGD, CGD and
SCGD.

Figure 5.7 shows the contour of the objective function of the autoencoder trained on
the Olivetti faces in the region where the optimal point found by SSGD lies. Here, we just
chose two representative directions, of which w1 isthe direction along which the
objective function of the autoencoder has the smallest gradient and w2 is the direction
along which the objective function of the autoencoder has the largest gradient at the
optimal point found by SSGD. In Figure 5.7, the curvature of the objective function along
the direction w2 changes significantly as we move along the direction wl. It isvery
difficult for SCGD to find the local minimain such regions because we will obviously

have poor quadratic approximations to the objective function in these regionsand it is



very likely that A islowered alot and the method will jump off the local minima

because it does not do aline search.

Height Max Curvature | Min Curvature | MaxCur/MinCur
SSGD 2.27e+03 2.88e+03 1.32e-01 2.17e+04
CGD 2.13e+03 1.22e+03 1.78e-01 6.86e+03
SCGD 2.41e+03 1.02e+04 9.51e-06 1.07e+09

Table 5.2; The information of the objective function of the autoencoder at the optimal points found by

SSGD, CGD and SCGD.
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Figure 5.8: Histograms of the components of the gradients at the points where the best clustering results




found by: (a) SSGD, (b) CGD and (c) SCGD are achieved (To facilitate plotting: in (a), the bins between
—0.2 and 0.2 are removed; in (b), the bins between —0.2 and 0.2 are removed; in (c), the bins between —2

and 2 are removed).

We can also compare the performance of the three methods by investigating the
gradient of the objective function of the autoencoder with respect to the weight vector at
the points where the best clustering results found by different methods are achieved.
Figure 5.6 shows the gradient information corresponding to the three methods.

Figure 5.8 (a) shows that the components of the gradient at the point found by SSGD
are distributed in asmall neighbourhood centred at 0, and the maximum absol ute value of
the componentsis below 0.2; Figure 5.8 (b) shows that the components of the gradient at
the point found by CGD are distributed in alarger region centred at 0 and the maximum
absolute value of the componentsis near 4; Figure 5.8 (c) shows that lots of components
of the gradient at the point found by SCGD are very far from 0 and the maximum
absolute value of the componentsis near 30. We aso used SCGD to train the autoencoder
until the cost is below 1000 and it cannot be reduced alot, we investigate the gradient
information and find that the components are also distributed in alarge region and the
maximum absol ute value of the componentsis near 8. These results show that it is
difficult for SCGD to reach the small neighbourhood centred at a good local minimum of
the objective function of the autoencoder although it can reduce the objective function
very fast. By contrast, adapted learning rates make it easier for SSGD to reach a good
local minimum.

We also tried the combination of SSGD and CGD, as well as the combination of
SSGD and SCGD, but the results are not good.

From the above discussions, we conclude that SSGD is the most effective method in

minimizing the objective function of the autoencoder among the three methods.

5.4 TheAutoencoder and SNE-encoder on the Olivetti
faces



Through the experiments on optimization, we find that SSGD method is the most robust
method among the three methods mentioned. In the following experiments, SSGD
method is used to optimize Autoencoder, SNE-ENCODER and Regularized Autoencoder
Network (RAN).

5.4.1 TheAutoencoder on the Olivetti faces
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Figure 5.9: Histogram of pixel values of aface image before normalizing.

Asisshown in Figure 5.9, the pixel values of face images are much more Gaussian than
those of the digit images, so we use linear outputs in the last layer of an autoencoder.
Before training the autoencoder, we normalize the images so that the pixel value for each
position on the face image is centred at O over all the training images.

In section 5.3.1, we have mentioned that the best clustering error rate using the codes
generated by the autoencoder can achieve 3.0% for Olivetti faces and it takes about 1.6
hours to reach the best result using SSGD. The configuration of the autoencoder for
achieving the best clustering result is: there are 300 hidden units in the second layer, 20
hidden unitsin the third layer (i.e., the dimensionality of the code space), and 100 hidden
unitsin the fourth layer. We also mentioned that the learning rates must be carefully

chosen to make the cost of the autoencoder mainly decrease very smoothly and then the



good clustering results can be obtained. It suggests that the Hessian of the objective
function of the autoencoder are very badly conditioned. Thus, it makes the training very

difficult and sensitive to the learning rates.

Figure 5.10: The original faces and their respective reconstructions by the autoencoder.

At the best local minimum achieved, the sum of square reconstruction errors over the
400 face imagesis 2.27e+03. Therefore, the average sum of sguare reconstruction errors
for each image is 5.68 and the average squared error for each pixel valueis 0.0034.

Figure 5.10 shows some face images and their corresponding reconstructions by the
autoencoder. Each original image is shown in the top row and its reconstructed imageis
shown at the corresponding location in the bottom row below it. The left four columns
show the images with the smallest sums of square reconstruction errors, and the right four
columns show the images with the largest sums of square reconstruction errors. If we
look at the face images and their respective reconstructed images in the right four
columns by eyes, we can see that the images and their reconstructions are very similar.
An interesting thing hereis that the reconstructed images do not have obvious glasses
even if itsoriginal face image is with glasses. This happens because most of the face
images are not with glasses. The autoencoder captures enough information from the
training data and it will generate the reconstructions as shown in Figure 5.6. When there
are enough face images for each individual, the autoencoder can capture enough
information from each face image. Consequently, the autoencoder can generate very good

low dimensional codes for most of the input images.



5.4.2 SNE-encoder on the Olivetti faces
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Figure 5.11: The training of SNE-encoder on the Olivetti faces: (a) the sum of KL Divergence versus epoch

number; (b) KNNerrs versus epoch number.

We used athree-layer SNE-encoder here as discussed in chapter 2, in which numrhid =
300 (the number of hidden units) and numydims = 20 (the dimensionality of the code
gpace). On the Olivetti face dataset, the training of SNE-encoder is not sensitive to the
learning rates. We set the learning rates to be 1.5 for al the weights, and it takes less than
3 minutes to achieve the best clustering error on our machine on which we have tested the
performance of the autoencoder and of three optimization methods. If we set the learning
rates to be small, we can get the same good results as we get using large learning rates,
but it will take more time.

Figure 5.11 illustrates the training of the SNE-encoder on the Olivetti face dataset. It
shows that the cost of the SNE-encoder reduces very fast with the epoch number and
thereis no cost spike although the learning rates are large. When the sum of KL
Divergenceis below 0.10, we will get the best hold-one-out clustering error (INN), 16
out of 400. That is, the clustering error rate is 4.0%.

5.4.3 Comparisons of the autoencoder and SNE-encoder



Figure 5.12: Some face images in the Olivetti faces on which both the autoencoder and the SNE-encoder
got wrong in the INN clustering. The first row represents the given images, the second row and the third
row respectively represent the nearest neighbours for the given images found by 1NN using the low

dimensional codes generated by the autoencoder and by the SNE-encoder.

Figure 5.13: Some face images in the Olivetti faces on which the autoencoder got right but the
SNE-encoder got wrong in the INN clustering. The first row represents the given images, the second row
and the third row respectively represent the nearest neighbours for the given images found by 1NN using

the low dimensional codes generated by the autoencoder and by the SNE-encoder.

Figure 5.14: One face image in the Olivetti faces on which the SNE-encoder got right but the autoencoder



got wrong in the INN clustering. The first row represents the given images, the second row and the third
row respectively represent the nearest neighbours for the given images found by 1NN using the low

dimensional codes generated by the autoencoder and by the SNE-encoder.

From the discussions in section 5.4.1 and section 5.4.2, we will see that the autoencoder
can generate better low dimensional codes for KNN clustering than SNE-encoder while
the training of SNE-encoder is much faster than that of the autoencoder. We know that the
training of the autoencoder is slow and sensitive to learning rates because the Hessian of
the objective function of the autoencoder isill-conditioned. Besides that, the size of the
Olivetti face set is not large and the cal culations of probability distributions in the code
space is not expensive, so it is understandable that the training of SNE-encoder is very
fast. The results support our argument in chapter 2 that the codes generated by
SNE-encoder are in amore constrained region than the codes generated by the
autoencoder.

When we check the clustering results on the Olivetti faces using the codes generated
by the autoencoder and SNE-encoder further, we find that: there are 11 face images for
which both the autoencoder and SNE-encoder generate bad codes; there are 5 face
images for which the autoencoder generates good codes but SNE-encoder generates bad
codes; and thereis 1 face image for which SNE-encoder generates a good code but the
autoencoder generates a bad code. Here, good codes mean the codes that favour accurate
KNN clustering, and bad codes mean the codes that are not suitable for KNN clustering.
Among the input data set, the subset for which the autoencoder fails to generate good
codes overlaps alot with that for which SNE-encoder fails to generate good codes. We
have tried to give some intuitive explanations to this in chapter 2.

Figure 5.12, figure 5.13 and figure 5.14 illustrate some clustering results generated
by the autoencoder and SNE-encoder. In each of the three figures, the first row represents
the given images, the second row represents the nearest neighbours for the given images
above them found by INN using the low dimensiona codes generated by the autoencoder,
and the third row represents the nearest neighbours for the given imagesin the

corresponding columns found by 1NN using the low dimensional codes generated by the



SNE-encoder. Figure 5.12 shows some face images in the Olivetti faces on which both
the autoencoder and the SNE-encoder got wrong in the clustering. Looking at the images
in the second row and in the third row, we can find that they have very similar
expressions and poses to the corresponding given imagesin the first row. Figure 5.13
shows some face images in the Olivetti faces on which the autoencoder got right but the
SNE-encoder got wrong in the clustering. Figure 5.14 shows one face image in the
Olivetti faces on which the SNE-encoder got right but the autoencoder got wrong in the
clustering.

In the previous experiments, the dimensionality of the code space is big enough for
the autoencoder to capture the main variance of the data and for SNE-encoder to give
very good approximations in the code space to the probability distributions that each face
image chooses other face images as its neighbours in the pixel space. But what if the
dimensionality of the code space doesn’t satisfy the above constraint? Table 5.2 gives
some results produced by the autoencoder, SNE-encoder when the dimensionality of the
code spaceissmall.

When the dimensionality of the code space is small, we also tried to set numrhid (the
number of hidden unitsin the second layer) = 600, numghid (the number of hidden units
in the fourth layer) =100 and numrhid =300, numghid = 100 to train the autoencoder, but
the results we obtained are not as good as those shown in Table 5.2. There are only 400
images in Olivetti faces, thus, if we set the number of hidden units in the second layer of
the autoencoder to be large, it is very easy for the autoencoder to be overfitted. Suppose
that we will map the 400 faces to atwo dimensional space and the number of hidden
units in the second layer and in the fourth layer is large enough for the autoencoder to
give perfect reconstructions, it is very likely that the low dimensional codes are
distributed in asmall densely populated region. Obviously, the performance will be very
bad if we use these codes for KNN clustering.

Table 5.3 clearly shows that SNE-encoder generates much better codes for KNN
clustering than the autoencoder does when the dimensionality of the code space is small.
From the table, we can see that we can get very good low dimensional codes by

SNE-encoder even if we map the images to athree dimensional or five dimensional space



noticing that the clustering error in the pixel spaceis 22 out of 400.Thisis because the
SNE-encoder is optimizing a function which preserves the information used by KNN in

the original space.

Autoencoder | SNE-encode | numydims numrhid Numghid
(KNNerrs) | r (KNNerrs) (only for the
autoencoder)
104 79 2 300 300
75 23 3 300 300
45 18 5 300 300

Table 5.3: The clustering results when the dimensionality of the code spaceis small.

5.5 Regularized Autoencoder Network on the Olivetti
Faces

In section 5.4, we discussed the experimental results generated by the autoencoder and
SNE-encoder. We find that the autoencoder and SNE-encoder have their respective
characteristics and they can be complementary to each other.

Since SNE-encoder guides the low dimensional codes to the desired region faster
than the autoencoder while the autoencoder can generate better codes, we will make
SNE-encoder lead the training of RAN in the early phase and make the autoencoder |ead
the training in the late phase.

There are two methods to realize thisidea. The first method is: Set 7 ¢ in Equation
(2.20) to be big at first and reduce it fast as the training proceeds so that 7 g isnear O
after several hundred epochs’ training; the second method is: train the recognition
network of RAN using the cost of SNE first; fix the weights of the recognition network,
and feed the best low dimensional codes produced by the recognition network so far to

the generative network, and train the generative network; finally, unfreeze the weights of



the recognition network, and train the recognition network and the generative network
together.

In the experiment using the first method, we set 7 4, to be 1.0et+4 at first. After
epoch 300, weset 7T qe= T e X 0.99. After 2000 epochs’ training, we will get the best
clustering result. The best hold-one-out clustering error is 13 out of 400, and it takes
about 1.3 hours on our cluster machine.

In the experiment using the second method, we set the learning rates to be 5.0e-7 and
T e t0 be 8.0e+5 (during the training of SNE-encoder, this coefficient can be viewed asa
time to the learning rates). We train the recognition network using the cost of
SNE-encoder 50 epochs and then fix the weights we have obtained so far. Then wetrain
the generative network 1250 epochs. During this phase, we set the learning rates to be
5.0e-6 to accelerate the training. After that, we unfreeze the weights of the recognition
network and train the recognition network and the generative network together as
Autoencoder (7 s = 0 and this training starts from epoch 1300). At epoch 3500, we get
the best clustering result with the error 12 out of 400.

Table 5.4 presents the clustering results using the codes generated by Regularized
Autoencoder It also gives comparisons to the performance of the autoencoder and
SNE-encoder. It shows that the training of Regularized Autoencoder is slightly faster than

that of the autoencoder, and it generates better codes than SNE-encoder.

numydims = 20 KNNerrs (out of 400) Computational Cost (hour)
Autoencoder 12 161
SNE-encoder 16 0.047

RAN (method 1) 13 1.44

RAN (method 2) 12 1.30

Table 5.4: The comparisons of the clustering performance using the codes generated by Autoencoder, SNE
and RAN. We cheat by using the lowest error obtained during training, but it is the same cheat for all

methods.




Method 2 makes the training faster and it seems to be much better than method 1.
However, it is difficult to find the best point at which we should stop training the
recognition network and start training the generative network when we use this method 2.
Besides that, when we should stop training the generative network is also a problem. In
the early phase of thetraining, if we train the recognition network using the cost of SNE
to achieve very good clustering results and then we repeat the remaining steps in method
2, we will get the same clustering results as those produced by SNE-encoder alone. This
happens perhaps because we are trapped into the region in which the minima of the
objective function of SNE lie. Method 1 doesn’t give the results so well as method 2, but
it makes the training much more stable. Using this method, the training of RAN is not as
sensitive to the learning rates as that of the autoencoder.

When the cost of SNE is adjusted by setting 7 s, not very large and high perplexity
is applied when calculating the probabilitiesin the pixel space, the clustering
performance is not good.

Now we turn to the experiments on small dimensionality of the code space. When
numydims = 2, the clustering error using the codes generated by RAN (method 1) is 73
out of 400; when numydims = 5, the clustering error is 17 out of 400. Referring to Table
5.2, we can find that the results are better than those corresponding to the autoencoder
and SNE-encoder aone.

RAN cannot give better low dimensional codes for KNN clustering on Olivetti faces
than the autoencoder when the dimensionality of the code space is 20 because there are
enough images for each individual in the dataset and the autoencoder aone can capture
enough information about the variance of the data and so that the codes generated by the
autoencoder alone are good enough for KNN clustering. But RAN helps to make the

training more stable and make it easier to find the minima.

5.6 The FERET Faces

The FERET database was constructed for defining a standard procedure for measuring
the performance of face recognition algorithms [Phillips et al., 1999]. The FERET face



dataset used in this thesisis the same dataset used for testing the performance of
rate-coded Restricted Boltzmann machines [ Teh and Hinton, 2001]. The FERET face set
contains 1002 frontal face images taken over a period of severa years under different
lighting conditions. 818 of them are used as the training set and the other 184 of them are
divided into four digoint test sets.

The Aexpression test set contains 110 face images of different individuals. They all
have another image in the training set that was taken under the same conditions at the
same time but with a different expression.

The Adaystest set contains 40 images from 20 individuals with each having two
face images. Each individual has two images taken from the same session in the training
set and has two images taken from another session 4 days earlier or later inthe Adays
test set.

The Amonthstest setissimilar to the Adaystest set except that the time between
the sessions was at |east three months and the lighting conditions vary. There are 20
images of 10 individualsin this set.

The Aglassestest set contains 14 images of 7 different individuals. Each individual
has a pair of face image in the training set and another pair of faceimagesin the
A glasses test set. The difference between the two pairs of face images for each individual
isthat one pair has glasses but the other does not.

Since the original face images have irrelevant information such as parts of shoulder
and neck etc, the images were normalized by Y. W. Teh. The detailed normalization
procedures can be found in the paper [ Teh and Hinton, 2001]. Figure 5.15 shows some
processed face images. After normalization, the dimensionality of the pixel spaceis 1768.

Figure 5.15: Some processed FERET face images [ Teh and Hinton, 2001].



5.7 Experimentson the FERET Faces
5.7.1 Unsupervised Clustering on the FERET Faces

We train Autoencoder, SNE and Regularized Autoencoder Network (RAN) on the 1002
face images, and then we use the good low dimensional codes to calculate the
hold-one-out clustering errors on the dataset.

The configuration of the networks achieving the best clustering result is as follows:
numrhid = 600, numydims = 180 and numrhid = 200.

There are not enough images for each class to allow the autoencoder to capture
enough information about the mean of the faces for each individual. The codes produced
by the autoencoder are therefore not good for KNN clustering on this dataset. During the
training of RAN, if we adjust 7 s appropriately, it can produce good results. The
training of RAN isasfollows: in the first 100 epochs, we set 7 4 to be O; after epoch
100, we set T ¢ to be 1500 and make the minimization of the cost of SNE dominate the
training. The best clustering error using the codes generated by RAN is 95 out of 1002.
Table 5.5 shows the clustering results using the codes generated by the autoencoder,
SNE-encoder and RAN on the FERET faces.

In Pixel Space | Autoencoder SNE-encoder RAN
Clustering Err 174 151 110 95
Error Rate (%) 17.37 15.07 10.98 9.48

Table 5.5: Clustering results on FERET faces using: pixel values, the codes generated by Autoencoder, the

codes generated by SNE and the codes generated by RAN.




5.7.2 Face Recognition on FERET faces
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Figure 5.16: Error rates of different models on the four testing sets of the FERET faces.

From section 5.7.1, we find that RAN can generate the best low dimensional codes for
KNN clustering for the FERET faces among the three models. Therefore, we will use
RAN to train the face imagesin the training set described in section 5.6 to find good
parameters of RAN. Then, we use the trained RAN to calculate the low dimensional
codes of the face imagesin the training set and in the test set. For each image in the test
set, after we find its nearest neighbour in the training set using the low dimensional codes

we have obtained, we assign the testing image to the individual that its nearest neighbour
belongs to.



There are 818 face imagesin the training set, and there are 112 individuals that only have
one image each in the training set. In order to make SNE work better, we preprocessed
the training set: we add some Gaussian noise to the 112 images and put the 112 “noisy”
images into the training set. Before the preprocessing, the clustering error on the training
set using the codes generated by SNE is 79 out of 706 (we only take into account the
individuals that have two or more images in the training set). After the preprocessing, the
clustering error is 74 out of 706.

Through many experiments, we find that the best configuration of RAN that
produces the best clustering result on the training set is the same as that described in
section 5.7.1: numrhid = 600, numydims = 180 and numrhid = 200. We set 7 s to be0
in the first 3800 epochs’ training. After epoch 3800, we set T e to be 1500. At epoch
4000, we will get the best clustering error 66 out of 930 (including the 112 “noisy”
images) on the training set. Then we stop the training of RAN and use the parameters of
RAN to do recognition on the test sets. The recognition error rates on the four testing sets
by RAN are shown in Figure 5.16.

By Figure 5.16, we compared the performance of RAN to that of five other face
recognition methods described in the paper [ Teh and Hinton, 2001].

From Figure 5.16, we can find that RAN has comparabl e performance to the other
face recognition methods. Although it gives perfect results on the Aglasses s¢t, it failsto
recogni ze face images with different expressions accurately. Pair training is used in the
training of RBM. It lets the model know which parts of face images are unimportant and
might have variable values. Therefore, RBM does best on the A expression set among all
the methods. RAN does better than most of the other methods on the A days set and on
the Amonths set.



Chapter 6

Conclusions

Analysis of high dimensional datais often encountered in object recognition. But
learning in the original high dimensional space is often very expensive and
computationally intolerable sometimes. So object recognition using low dimensional
codes becomes important.

We proposed a method called Regularized Autoencoder Network that consists of a
recognition network producing low dimensional codes, a generative network giving
reconstructions of the input data from the codes, and aregularizer called SNE that
encourages similar input vectors to have similar codes. It can generate low dimensional
codes that have a better reflection of the pairwise underlying similaritiesin the input data
than the raw data themselves.

We tried learning the parameters of Regularized Autoencoder Network using Scaled
Steepest Gradient Descent, Conjugate Gradient Descent and Scaled Conjugate Gradient
Descent. Among the three methods, Scaled Steepest Gradient Descent has the best

performance on optimizing the network.

6.1 Discussion

SSGD has the best performance on optimizing the objective function of an autoencoder.

The adapted learning rates help to stably find alocal minimum of the objective function.



Although SCGD isfast in optimization, it has no well-defined mechanism to control the
parameter A inthe method, which will influence the step size alot during the training.
In another words, the mechanism that increases and reduces the step size in the method
doesn’t guarantee that the update is always in the trust region during the training.

We used SSGD to optimize the objective function of the autoencoder, SNE and RAN.
RAN has the best performance on generating low dimensional codes of digits and faces
for recognition. When there are enough images for each class, RAN resultsin more stable
training although it generates almost the same good codes as the autoencoder does. When
the size of the training set is large, the objective function of the autoencoder is difficult to
minimize and we often cannot find a good local minimum; but for RAN, we can find a
good local minimum of it very easily under such a situation; when there are not enough
images for each class, generally, RAN generates better codes than the autoencoder does
because the autoencoder cannot capture enough information about the data for each class.

The autoencoder fails to generate good codes for KNN clustering for some images
although the codes produced allow accurate reconstructions. RAN partly solvesthis
problem and improves the clustering performance alittle on these images.

RAN is an unsupervised learning algorithm. During the training, we needn’t know
the label information for each training case. The codes generated are very suitable for
clustering. In addition, the probability matrix, which gives the probabilities that each
image chooses other images as its neighbours, is highly dependent on the training data.
When doing classification, the RAN trained doesn’t have good generalization on the
images that are not very similar to the corresponding training images, for example, on
face images having exaggerated expressions. Since both the autoencoder and SNE fail to
generate good codes for some images such as face images with different expressions and
hand-written digit images with peculiarities, it's understandabl e that the combination of
them, RAN, cannot generate good codes for these images either. Also, the computation of

the probability matrix is expensive when the training set is very large.

6.2 FutureWork



On optimization, one direction of future work is to extend SCGD to make it work as well
as SSGD. Instead of using quadratic approximation to measure when to increase or lower
the parameter A, we could introduce the mechanism of adapted learning rates into
SCGD method when optimizing non-linear objective functions. Another direction of
future work on optimization is to extend the Stochastic Conjugate Gradient Descent
method proposed by [ Schraudol ph and Graepel, 2003]. The drawback of that method is
that we need to construct an m-dimensional (m is smaller than the dimensionality of the
input data space) Krylov subspace at each update of the weight vector, which is
expensive. If we can have some cheap and good approximations to the Krylov subspaces,
the Stochastic Conjugate Gradient Descent method may be very effective in optimizing
the objective function of the autoencoder and RAN.

On Regularized Autoencoder Network, one direction of future research isrelated to
the probability matrix calculated on the training set. The probability matrix mentioned so
far contains the probabilities that each data point chooses all other data points asits
neighbours. We can simplify the matrix to make it contain the probabilities that each data
point chooses its k nearest neighbours as neighbours.

We notice that RBM has very good performance on recognizing face images with
varying expressions because it trains on pairs of images belonging to the same individual .
Therefore, another direction of future work on RAN can extend the current RAN model

to make it suitable for training on pairs of training cases belonging to the same class.
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