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ABSTRACT

Motivation: Effective computational methods for peptide-protein
binding prediction can greatly help clinical peptide vaccine search
and design. However, previous computational methods fail to capture
key nonlinear high-order dependencies between different amino acid
positions. As a result, they often produce low-quality rankings
of strong binding peptides. To solve this problem, we propose
nonlinear high-order machine learning methods including high-order
neural networks with possible deep extensions and high-order Kernel
Support Vector Machines to predict major histocompatibility complex
(MHC)-peptide binding.

Results: The proposed high-order methods improve quality of
binding predictions over other prediction methods. With the proposed
methods, a significant gain of up to 25-40% is observed on the
benchmark and reference peptide data sets and tasks. In addition,
for the first time, our experiments show that pre-training with high-
order semi-Restricted Boltzmann Machines significantly improves the
performance of feed-forward high-order neural networks. Moreover,
our experiments show that the proposed shallow high-order neural
network outperform the popular pre-trained deep neural network
on most tasks, which demonstrates the effectiveness of modelling
high-order feature interactions for predicting MHC-peptide binding.
Availability: There is no associated distributable software.

Contact: rengiang@nec-labs.com| mark.gerstein@yale.edu

1 INTRODUCTION

Complex biological functions in living cells are often pamined
through different types of protein-protein interactioAs.important
class of protein-protein interactions are peptide (i.ertsbhains
of amino acids) mediated interactions, and they regulapoitant
biological processes such as protein localization, endsty
post-translational modifications, signaling pathways] anmune
responses etc. Moreover,

*To whom correspondence should be addressed

peptide-mediated interactiday p
important roles in the development of several human disease

including cancer and viral infections. Due to the high madic
value of peptide-protein interactions, a lot of research haen
done to identify ideal peptides for therapeutic and cosmeti
purposes, which rendeirs silico peptide-protein binding prediction
by computational methods an important problem in immunsmic
and_bioinformatics [ (Lundegaagd all, [2011;[Brusicet all, [2002;
Hoof et all, 2009{ Nielseret all, 2003).

In this paper, we propose novel machine learning methods
to study a specific type of peptide-protein interaction,t tisa
the interaction between peptides and Major Histocompyibi
Complex class | (MHC 1) proteins, although our methods can be
readily applicable to other types of peptide-protein iattions.
Peptide-MHC | protein interactions are essential in cedidmted
immunity, regulation of immune responses, transplantctis,
and vaccine design. Therefore, effective computationahous for
peptide-MHC | binding prediction will significantly reducest and
time in clinical peptide vaccine search and design.

Previous computational approaches to predicting pepitie
interactions are mainly based on linear or bi-linear madels
and they fail to capture key non-linear high-order depenidsn
between different amino acid positions. Although previgsnel
SVM and Neural Network (NetMHC) (Lundegaaetiall, [2011;
Hoof et all, [2009; | Gigueret all, [2013) approaches can capture
nonlinear interactions between input features, they faimodel
the direct strong high-order interactions between featuks a
result, the quality of the peptide rankings produced by iprey
methods is not good. Producing high-quality rankings oftigep
vaccine candidates is essential to the successful deptayfe
computational methods for vaccine design. For this purpese
need to effectively model direct non-linear high-order tfiea
interactions to directly capture interactions betweenmpry
(anchor) and secondary amino acid residues involved in the
formation of peptide-MHC complexes.

Deep learning models such as Deep Neural Networks (DNNs)
pre-trained with Restricted Boltzmann Machine (RBM) haeeit
successfully applied to handwritten digit classificatiembedding,
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image recognition and many other applicatiohs (Hinton, (201 peptide-MHC interaction features, etc), while the coluncosrespond to

Min et all, IM; Ranzatet all, 2!113)_ But they have never been their spatial positions (coordinates). Figlie 1 illusgatiescriptor sequence
successfully applied to peptide-protein interaction fents. representation of a nonamer.

In this paper, we propose using high-order semi-Restricted In this descriptor sequence representation, each posititine peptide

Boltzmann Machine (RBMs) to pre-train a feed-forwanigh- is described by a feature vector, with features derived filoenamino acid
order neural network and propose high-order Kernel Support Yecto oceupying this position or from a set of amino acids (e.ge;mer starting
Machi SUM) f tide-MHC bindi dicti includi at this position or a window of amino acids centered at thistjmm) and/or
.dac .;.ne ( f) or pgp :j.e- Irlll Ing pre |cd|0n,d|nc m@d amino acids present in the MHC protein molecule and intergawith the
identification o MHC- inding, naturally processed andsenete amino acids in the peptide.
(NPP), and immunogenic peptides (T-cell epitopes). Oup@sed
models achieved a significant gain of up to 25-40% over the-sifi
the-art approach on benchmark and reference peptide datarsk
tasks. Furthermore, our shallow high-order neural neta/@ken
outperformed popular powerful pre-trained deep neuralvoeds
that was applied to model peptide-MHC binding predictiontfae
first time by this work.

positions
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2 RELATED WORK
Position-specific scoring matrix (PSSM) and matrix _basemcrds

In %ﬁﬁhﬁ_aﬂ.dﬂﬂﬂh.é r , 2002; , . . . .
), PSSMs were derived from a set of known binding pegtide Fig- 1: Peptide descriptor sequence representation of amen
and PSSM matching score was used as an indicator of the bindin MVLSAFDER’ using 5-dim amino acid descriptors
potential of a query peptide. In_(Peters and $ette, |2005¢, th ) ] )
peptide binding task was solved as a matrix-vector regmessi The purpose of a descriptor is to capture relevant infoimnate.qg.,

roblem. Neural network based methodi ’ . physicochemical properties) that can be used by our higeroneural
|E.Lu5.i—_c_et_al| [2002), neural networks were built to predict peptide Networks and kernel functions to differentiate peptides iinding, non-

descriptor values
(features)

0.206 | 0.297 [-0.107-0.196 | 0.181 |-0.374|-0.055 | 0.156 | 0.384

binding potentials by encoding peptides and contact resichn  Pinding, immunogenic, etc.

the MHC molecules as a fixed-dimensional vector of amino- A real-valueddescriptor of an amino acid is a quantitative descriptor
acid and contact residues. Similarly, in_(Nielsgrl, [2003;  encoding (1) relevant properties of amino acids such asfthgsicochemical

), neural networks and properties and substitution probabilities by other aminms and/or (2)
committees of networks with peptide representations combi interaction features (such as binding energy) between thiacaacids in
sparse, BLOSUM, and profile HMM encodings of the peptidesthe peptide and those in the MHC molecule. An example of thevalued
were used. In i )’ both the peptide sequence descriptor sequence representation of a peptide using piolysicochemical
and MHC protein sequence were used as input to neurafMino acid descriptors is given in Figide 1.

networks in order to enhance predictive ability for MHC ke o
with limited peptide binding dataKernel-based methodsThe 3.2 Deep Neural Network and High-Order Neural

work in (Salomon and Flowel, 2006) used the local alignment Network

: A% kernel method for predicting MHC-II-peptide bindingn Given the matrix-form descriptor representation of eachtige based on
2011), weighted-degree kernels was adopted to identifyBLOSUM substitution matrix as illustrated above, we coenate all the

immunogenic peptides. The work ih_(Let all, [2007) employed columns of the matrix into a long vector as input feature medb our

support vector regression (with RBF, polynomial, etc kesnasing neural networks. In this representation, a 9-mer peptidepsesented by

sparse encoding of a peptide sequence and 11-dim physioadie  a 180-dimensional continuous vector, with each amino aefitesented

amino-acid descriptors. Recent woik (Giguetal, [2013) used by its corresponding 20-dimensional substitution prolitis. Instead of
kernel logistic regression for MHC-Il-peptide binding gdietion  using an ensemble of traditional neural networks to preliEtC class-
using both peptide and MHC sequences, ), an  peptide bindings as in the state-of-the-art approach Ne&@NiKielsenet all,
SVM with kernel from (Gigueret all,[2013) was used for naturally [2003: [Buuset al, [2003; [Lundegaardtal, [2011), we propose to use
processed and presented (“eluted”) peptide prediction. High-Order Neural Networks (HONN) pre-trained with a spédype of
3 METHODS high-order Semi-Restricted Boltzmann Machines (RBMs)edalmean-

covariance RBMs (mcRBMs, ), capable of capturing
In order for the peptides to bind to a particular MHC allelee(i its  strong high-order interactions of feature descriptorsnpiut peptides, to
peptide-binding groove), the sequences of the bindingigeptshould be  produce high-quality rankings of binding peptides (T-egiitopes). The pre-
approximately superimposable: contain amino-acids anggrof amino  training strategy has been widely adopted for training aufssppowerful
acids -mers) with similar physicochemical properties at apprately the model called Deep Neural Networks (DNI) (Hintbn, 2006; Ben@009).
same positions along the peptide chain. DNN has attracted world-wide attention in the machine leayn

It is then natural to model peptide sequenc€s = x1,z2,...,2n,  community recently. In_Hintdn (2006), it has been shown AN is

z; € ¥ (i.e., sequences of amino acid residues) as a sequendes@iptor  more powerful than shallow neural networks and performshnigtter than
vectorsdy, ..., dn, encoding relevant properties of amino acids observedshallow ones on a benchmark dataset widely used in machémeing. In
along the peptide chain and/or MHC-peptide interactiomger this paper, for the first time, we apply DNN to predict peptidelC binding,
. . . and we compare its performance to our proposed HONN. DNNd&/slon
3.1 Descriptor Sequence peptlde representations the left panel of Fig. 2. We use Gaussian RBM to pre-train tevark
While the descriptor vectord; in general may be of unequal length, in the weights of its first layer, and we use binary RBM to pre-tr&ie tonnection
matrix form (equal-sized vectotd; € R ) of this representation (“feature-  weights of upper layers in a greedy layer-wise fashionm,m for
spatial-position matrix”), the rows are indexed by feasufe.g., individual detailed descriptions about pre-training). Our proposegh¥Drder Neural
amino acids, strings of amino acids;mers, physicochemical properties, Network (HONN) is shown on the right panel of Fig. 2. We use BbR
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to pre-train the network weights of it first layer, and we optlly add
upper layers, and we use binary RBM to pre-train the conoeatieights in
possibly available upper layers. In both DNN and HONN, we aiayistic
unit as our final output layer, and then we use back-propawgat fine-tune
the final network weights by minimizing the cross entropynesn predicted
binding probabilitiesy,, and target binding probabilities, as follows,

N
= “[talogpn + (1 — tn)log(1 — pn)], @
n=1

whereN is the total number of training peptides.

The pre-training module mcRBM of HONN extends traditiona@uSsian
RBM to model both mean and explicit pairwise interactioninpfit feature
values, and it has two sets of hidden units, mean hidden hfiitsnodeling
the mean of input features and covariance hidden uifitgjating pairwise
interactions between input features. If the gating hiddeitsuare binary,
they act as binary switches controlling the pairwise intéoas between
input features. The energy function of mcRBM with factodaeeights for
reducing computational complexity is defined as follows,

% Z (Z ”iCz’f)Q(Z hiPry) — Zaivi
f i k i

=S b = 3 wihy M wi = > exhi™(2)
k ij &

wherei indexes visible units such as peptide sequence featgresiexes

E(v,h?,h™) =

hidden units, andf indexes the factors. Using this energy function, we

can derive the conditional probabilities of hidden unitgegi visible units,
as well the respective gradients for training the networke Btructure of
this factorized mcRBM is shown on the bottom of the right pasfeFig.

2, the hidden units on the left model the mean of input featamed those
on the right model the input covariance. During pre-traininve used

output unit

ovariance
hidden
units

factors

visible units visible units

DNN HONN

Fig. 2: The structure of DNN (left) and HONN (right).

Contrastive Divergence (cmoz) to learn theddzed weights
in mcRBM as in Gaussian RBM, and we used Hybrid Monte Carlopdiaug

to generate the negative samples a ,m) with 20 leap-
frog steps. The structures and parameters of both DNN and NH@h¢

decided based on performance on validation sets. In factodo HONN,

only the learning rates, batch size, and the number of hidaés need to
be carefully tuned, and the final performance is not seesitwother hyper-
parameters. During the training phase, our algorithm ramnigeelects 10%
of the original training data as validation set for earlypgtiog. When the
algorithm monitors that the validation error increases aip(t times even
if the training error is still decreasing, we end the trainprocess for early
stopping. Although HONN can be easily extended to have mppegiayers
to form a deep architecture, HONN without deep extensionksvbest in

all our experiments, which is probably due to the limitednireg data we
have.

3.3 High-order Kernel Models

The sequence of the descriptors corresponding to the peptid =
x1,m2,...,7)x|, ©; € X (asin, e.g., Figll) can be modeled as an
attributed setof descriptors corresponding to different positions (augps

of positions) in the peptide and amino acids or strings ofr@macids
occupying these positions:

Xa ={(pi,di)}iq

wherep; is the coordinate (position) or a set (vector) of coordisaded

d; is the descriptor vector associated with thg with n indicating the
cardinality of the attributed set descriptidh, of peptideX . The cardinality

of the descriptionX 4 corresponds to the length of the peptide (i.e., the
number of positions) or to in general to the number of unigascdptors

in the descriptor sequence representation. A unified geecrsequence
representation of the peptides as a sequence of descrigttors is used
to derive attributed set descriptioS, .

3.4 High-order kernel functions on peptide descriptor
sequence representations

In the following we define kernel functions for peptides lthea peptide
descriptor sequence representations (such as ilFig. é)piposed kernel
functions for peptide sequencésandY have the following general form:

K(X,Y) = K(M(X), M(Y)) = K(Xa,Ya)

=3 S ke Pl k(@ ) @
X Jy

where M(-) is a descriptor sequence (e.g., spatial feature matrix)
representation of a peptideX 4(Y4) is an attributed set corresponding
to M(X) (M(Y)), ka(-,-), kp(-,-), are kernel functions on descriptors
and context/positions, respectively, ang, ¢y index elements of the
attributed setsX 4, Y4. While kq measures similarity between descriptors,
the context/position kerndd, measures similarity of the of the descriptor
context (e.g., position, spatial distribution of aminodsgietc). A number
of kernel functions for descriptor sequence (e.g., matfaxjns M (-) is
described below.

Using real-valued descriptors (e.g., vectors of physieadhbal
attributes), with RBF or polynomial kernel function on degtors, the
kq(da,dg) is defined as

exp(—7allda — dgll)

where~q4 is an appropriately chosen weight parameter, or
((da,dg) +¢)?

wherep is the degree (interaction order) parameter arid a parameter
controlling contribution of lower order terms.
Kernel functionsky (-, -) on position setp; andp; are defined as a set

kernel kp(Pipj) = Y Y ki, jla, B)
i€EP; JEP,

1 +6:e;}3p(70{10g(|l’*j‘))+6

i — gl
is a kernel function on pairs of position coordinafesy).

The position set kernel function above assigns weights teraations
between position§:, j) according tak (i, 7|, B).

The descriptor kernel function (e.g., RBF or polynomial)tween
two descriptorsd; = (di,db,...,d%) andd; = (d,d3,...,d%)
induces high-order (i.e. products-of-features) intéoacfeatures (such as
d;, di, ... d;, for polynomial of degreg) between positions / attributes.

The proposed kernel function (Eigl 3) captures high-ordesractions
between amino acids / positions by considering essentalllypossible
products of features encoded in descriptdrof two or more positions.
The feature map corresponding to this kernel is composeddvidual
feature maps capturing interactions between particularbéeations of the

where k(4, jla, B) =
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positions. The interaction maps between different passtio, andp,, are
weighted by the position/context kernel functibp(pa, ps)-

4 DATA

In order to assess the performance of our high-order metheels
tested our methods on three prediction tasks:

1. MHC-I binding prediction The datasets used for MHC-I
binding prediction task are listed in Talple 1.

2. Naturally processed (“eluted”) peptide predictiorWe use

recently compiled benchmark data from the 2nd Machineof the predictorf

Learning in Immunology competition (MLI-II). Tabld]?2
provides details of this dataset.

. T-cell epitope predictionWe use data of known T-cell epitopes
to test ability of the methods in predicting promising catades
for clinical development.

For all of the tasks, we focused on the 9-mer peptides. For MHC
| binding prediction, we threshold at a standard valdes0 =
500 to separate binding peptides({50 < 500) and non-binding
(IC50 > 500) peptides and focus on three alleles, HLA-A*0201,
HLA-A*0206, and HLA-A*2402. The choice of these alleles is
motivated by the target population group (Japanese) inem@arch
lab. The application of our method to other alleles or peplihgths
would be straightforward.

Table 1. Peptide-MHC binary datasets (binding/non-binding)

Dataset #peptides #binders #non-binders
A0201-IEDB 8471 3939 4532
A0201-Japanese 281 106 175
A0206-IEDB 1820 951 869
A0206-Japanese 278 97 181
A2402-1IEDB 2011 890 1121
A2402-Japanese 405 176 229

Table 2. Naturally-processed (NP) peptide datasets

Dataset #peptides #eluted #non-eluted
A0201-MLI-II 8225 971 7254
A0201-MLI-ll-EvalSet 492 63 429

4.1 Training and testing protocol

For MHC-I binding prediction, we train our models for each
allele on the publicly available data from the Immune Epitop
Database and Analysis Resource (IEDm, M). The
datasetsHt t p: // ww. i edb. or g) are labeled witth EDB suffix

in Tabled.

For testing, we use the experimental data from our lab foh eac
allele. These datasets are denoted withapanese’ suffix in
Table[1. For' Japanese’ data the experimentally determined
binding strength is measuredlag (K ;), whereK , is a dissociation
coefficient, i.e. higher negative valueslog(K4) suggest stronger
binders.

The training ' | EDB’ datasets and the testJapanese’
datasets are completely disjoint. The average sequencgityde
between any peptide in tHeJapanese’ datasets and the most
similar peptide from IEDB data is about 46%-55% (Table S10).

4.2 Evaluation metrics

To assess performance, we use two sets of metrics, clabsieay
metrics and non-binary relevance metrics.

Binary performance metricsVe used (1) Area under ROC curve
(AUC); (2) area under ROC curve up to firstalse positives (ROC-

Non-binary relevance/quality metricsWhile classical binary
performance metrics use binary relevance (i.e. “1"=relgva
“0"=non-relevant), to take into account more “precise’exgnce
measure, i.e. the binding strength of the peptides, we use
normalized discounted cumulative gainDCG), a classicahon-
binary (graded) relevance metric.

Given a list of peptides™, . . ., Px ordered by the output scores
(P1),..., f(Pn), the discounted cumulative gain
(DCGy) is defined as a sum of individual peptide relevance
scores (experimentally determined binding strength), . . ., gn
discounted by théog of their positioni in the list:

N 2‘11‘ — 1
bCtn = ; log(i + 1)

The normalizedDCG y is defined as a ratio between DCG of the
method and an ideal DC@CG (i.e., DCG of an ideal ordering
of peptides from the highest degree of binding affinity toltveest
binding affinity): DCGN
nDCGNn = iDCOn

The normalized>C'G n value is then ranges between 0 and 1, with
nDCGN 1 corresponding to the ideal value (i.e., normalized
DCG=1 when the predictor orders peptides according to their
actual binding strength).

We find this measure (nDCG) to be more indicative of the
prediction performance of the MHC-I binding prediction imed
as it directly assesses whether the predictor ranks strdmigéers
higher than weaker binders (as opposed to binary measures
(e.g., area under ROC curve) that measure whether “binders”
are ranked higher than “non-binderstespectivelyof the actual
peptide binding strength). This measure is popular for sisg
performance of the document retrieval systems (e.g., Walcke
engines) as it is maximized if the most relevant documerpgsapat
the top of search results, but it has not been used to diffaten
performance of the MHC binding predictors. In the case of the
peptide-MHC prediction, the nDCG is maximized if peptides a
placed (according to the predictor output) in the ideal orflem
the strongest binders to the weakest/non-binders. We esizgha
that the two methods with the same AUC scores, may differ
significantly with respect to their nDCG scores: even witle th
equally good separation between “binders” and “non-bisitésr
the two methods, the method that correctly ranks strongetens
higher than weaker binder will have a higher nDCG score.

5 RESULTS

We first present results for MHC-I binding prediction on bemark
datasets and experimental data from our lab (Be¢. 5.1). \W& sh
next results on predicting peptides naturally processedthay
MHC pathway (Sed._5l2). Finally, we show results for predigt
promising T-cell epitopes for clinical development (Jed)5The
following AUC and nDCG scores are shown in %.

5.1 MHC-I binding prediction

We train a deep neural network (DNN), a high-order semi-RBM
(HONN), and a high-order kernel SVM (hkSVM) drEDB data.

In our experiments, we use BLOSUM substitution matrix as
continuous descriptors of input peptide sequences.
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We compare with the popular NetMHC method that has Table 3. Comparison of AUC test scores on A0201-Japanese data

been shown to yield state-of-the-art accuracy for MHC-Idbig method AUC ROC-10 ROC-20 ROC-30 ROC-50
prediction with respect to other best published methode®, (se AKSVM 7960 3271 5059 6367 7756
I(—Ld-egaaﬂ-au . rdtal, [2011; [Zhanget all 2009; [ Gigureet al, DNN 77.23 30.34 47.03 60.11 74.95
W)z‘: t use J ' dat s to test thods. Result HONN 77.26 33.39 48.14 60.11 74.98
eh'rs us T%ﬁ’%‘eﬁ% 7?5‘?95 ? ‘ﬁslour methods. t e?“ S hkSVM+HONN79.11 3559 5051 62.99 77.02
are shown in 1a or target alleles fmpanese tes NetMHC 76.90 26.61 46.02 5887 74.47

datasets. Corresponding ROC curves are shown in Figlireof (t
row). We also plota DCG@n curves in Figl3f (bottom row), where

Table4. A0201-Japanese data. Relevance/ranking quality (nDCG).

nDCG@n is nDCG up tonth peptide in the sorted output (i.e., Tmethod nDCG@10 nDCG@20 nDCG@30 nDCG@50 nDCG
nDCG of the topr predicted peptides).

As evident from the AUC and ROG- results in the tables E)IT\|S|\\|/M gggg gégg’ ngg ;:’;% ggg?l)
and ROC plots, our method achieves significant improvemients : : : . :

L e " “ : B HONN 63.93 65.94 70.61 7555 86.46

separating “binders” vs “non-binders”. For example, for4@2 hKSVM+HONN  65.69 65.12 71.49 7646 96.98

llele ROCn=1 i f 66.88 for NetMHC to 77.76 : . : : )
allele ROCH=10 score Increases from orive © NetMHC 50.48  60.98 6350  72.68 83.94

for HONN and hkSVM. Similar improvements are observed on

A0201 allele data where RO€=10 score improves from 26.61 for Taple5. Comparison of AUC test scores on A0206-Japanese data
NetMHC to 35.59 with HONN and hkSVM.

Observed improvements in the AUC and R@Geores across all method AUC ROC-10ROC-20 ROC-30
alleles are significant (paired signed rank test, P-valR2et4). hkSVM 86.23 54.84 72.58 78.68

To further validate our methods, we used recent benchmark DNN 80.24 5242 64.02 7131
MHC-I binding data proposed irl_(Kirat all, [2014) consisting HONN 84.41 49.7 69.7 77.78
of the training data (BD2009) and independent (BLIND) test hkSVM+HONNS86.24 5424 7333 802
data (Supplementary Table S8). We report performance on the NetMHC 83.93 50.91 67.42 76.77

independent test data (BLIND) in Supplementary Table S9cas

) : Table 6. A0206-Japanese data. Relevance/ranking assessment jnDCG
be seen from the results in the table, while the area under RDE@

(AUC) scores are very similar for both our method and the N¢@VI method nDCG@10nDCG@20 NDCG@30NnDCG
method, for the very highest ranked peptides (low falsetpesiFP) hkSVM 76.52 74.64 82.49 91.43
rates), both hkSVM and HONN+hkSVM perform better on average DNN 77.50 82.21 81.72 91.74
compared to NetMHC as measured by R@Geores (e.g., ROC- HONN 75.39 78.06 79.92 90.80
1 scores of hkSVM or HONN are higher in about 67% (31/46) of hkSVM+HONN  80.2 76.98 83.75 9175
the tested alleles). Observed improvements in ROC-n s¢tes NetMHC 70.97 73.60 82.57 89.88

FP rates) are significant (paired signed rank test P-valee8=and
1.38e-2 for hkSVM and HONN+hkSVM, respectively).

Table 7. Comparison of AUC test scores on A2402-Japanese data

At the same time, the results in terms of nDCG quality scores method AUC ROC-5ROC-10ROC-30
suggest significant increase in ranking quality (Tablg$ @nai[3). hkSVM 9059 688 7592 86.93
Our method ranks peptides by their actual binding strength DNN 89.1 6352 7096 84.75
significantly better than other methods. We observe thaingtr HONN 86.29 54.88 6504 81.17

binders are placed much higher in the classification results
compared to the state-of-the-art NetMHC method. For irtgtan
for the A0201 allelen DCG@n scores improve from 60.98, 63.50
achieved by NetMHC to 65.94, 70.61 using our HONN method for

hkSVM+HONN 91.07 72.16 77.76 87.55
NetMHC 88.88 53.76 66.88 84.48
Table 8. A2402-Japanese data. Relevance/ranking assessment {[nDCG

n = 20 andn = 30 respectively. method nDCG@10 nDCG@30 nDCG
We note that for both HONN and DNN the pre-training is hKSVM 53.77 64.33 86.68
critical to achieve good performance. The performance eoispns DNN 51.07 56.88 84.36
of DNN and HONN with and without pre-training are in the HONN 57.36 60.82 85.20
supplementary material (Supplementary Tables S2-S7). thl hkSVM+HONN  60.41 6059 87.35
results of DNN and HONN reported in the main paper are based NetMHC 55.98 68.76 87.57

on pre-training and fine-tuning.

Using a combination of network and kernel models furthercorrectly order peptides according to their binding sttbnd his
improves peptide-MHC recognition as evident by the inaeeias  can be attributed to explicit high-order interaction maaglby our
both area under ROC curve scores (improved “binder” vs “non-method that allows to capture intrinsic binding strengtbrimation.
binder” separation) and nDCG metric quality scores (imptbv Nevertheless, our models can easily use quantitativeiniitata
ranking of peptides by binding strength). (e.g., IC50) to further improve our results.

We note that unlike the previous approaches that utilized To visualize the learned weights of HONN, we us&dnean
guantitative binding information during trainingyo quantitative  hidden units,1 covariance hidden unit, ant factor unit to train
information regarding actual binding strength was usedsin tour HONN on the training data of A2402. We obtained AUC score
models. However, even with onlginary training data (i.e., only  86.02 and nDCG scor&5.01 that are slightly worse than the ones
with binding (B) vs non-binding (NB) information), our mdde in Table[7 andB. In Fig. 4, the factorized ranlknteraction weight
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Fig. 3: ROC curves (top row) and normalized discounted catiwd gain (nDCG) curves (bottom row).

o vector Gy comnecing fesures and covarince factr molecule, but that it is also naturally processed by MHC wathin

o vivo.

005 To train our models, we used the data provided by
! :»05 2012 Machine Learning in Immunology competition (MLI-II)

01 http://Dbio.dfci.harvard. edu/ DFRVLI / HTM./ nat ur al . php.
rel—e— L L o L L W0t We directly train our models to recognize naturally proeelsand

connection weights bemfl:'nu;:ai{‘:ree); and mean hidden units presented peptldes’ USIng “e|Uted" peptldes asa pOSEN@.Bd a”
e A EaE vos other peptides (non-binders + non-eluted binders) as aivegzt.
1 ' We then test our models on the data composed of non-elutdahgin

r

0.01

§4— N . peptides, non-binding peptides, and naturally processtdt¢d”)

% of oot peptidesWe used the same training and test split as specified in the

g, L ' |‘ e I 002 competition. We compare our approach with the popular NetMHC
20 40 G0 8 00 120 140 160 180 method, which was used as a benchmark in the competitioneths w

as the recently introduced MHC-Nm, m) method
that yielded state-of-the-art accuracy for naturally pssed (NP)
peptide prediction.

vector with absolute values greater thai is shown in the top, and Table[® shows results of naturally processed peptide gredic
the weight matrix connecting input features and mean hidafets (9-mers) on the test set in terms of AUC, R@Cand F1 scores.
with absolute values greater therd2 is shown at the bottom. This  OQur approach significantly outperforms both NetMHC method a
figure clearly shows that positiay 8, 9, and the interaction between the MHC-NP [(Gigureet all, [2018) method.Table S11 shows the
middle position and positio® are very important for predicting performance of hkSVM for the other test alleles with similar
9-mer peptide binding, which has experimental support ftben  improvements on test peptides with all varying lengths s1o

Fig. 4: The learned weights of HONN with largest absoluteieal

crystal structure of the interaction compl,). 11-mers).
5.2 Naturally processed (NP) peptide prediction 5.3 Epitope prediction

We test ability of our methods on a difficult task that aims at We demonstrate ability of the method to predict promisingtickes
predicting whether a peptide is naturally processed by th#CM for clinical development using as an example WT1-derivednst
pathway (“eluted”). This is a very important task as only a binding peptides WT-TEST-PEPTIDE1 and WT-TEST-PEPTIDE2
fraction of binding peptides (see “MHC-I binding task” incS&.1)  discovered by NEC-Kochi Univ. We compare the performance of
constitute a set of peptides that are processed to the sudfac our method and NetMHC by “predicting” in a retrospective way
a cell and may serve as epitopes. Eluted peptide predictios t these T-cell epitopes from WT1 antigen. Peptides (441 S)ibat
aims at verifying whether a peptide not only binds to a givad®1  are part of WT1 antigen are ranked by the output scores of N&M
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High-order peptide-MHC prediction methods

Table 9. Naturally processed (NP) peptide prediction (MLI-II cortifyen).
Comparison of test AUC scores.

method AUC ROC-10 ROC-20 ROC-30 ROC-50
hkSVM 9475 5365 65.71 71.48 77.46
HONN 93.17 49.21 58.20 64.13 72.73
DNN 91.80 30.48 41.11 51.32 62.92
hkSVM + HONN 94.96 53.65 68.25 7439 79.59
NetMHC 92.26 10.63 28.33 40.21 54.32
MHC-NP' 88.06 - - - -
Tquoted from[(Giguret all,[2013)

Table 10. Prediction of WT1-derived epitopes
NetMHC-rank hkSVM+HONN-rank

A0201 allele
WT-TEST-PEPTIDE1 2 1
WT-TEST-PEPTIDE2 20 2

A0206 allele
WT-TEST-PEPTIDE1 2 1
WT-TEST-PEPTIDE2 8 3

A2402 allele
WT-TEST-PEPTIDE1 41 2
WT-TEST-PEPTIDE2 7 4
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the 441 peptides) of the two prediction methods is given id&D.
As evident from the table, our method ranks these peptidgsehi
than NetMHC method.

6 DISCUSSION AND FUTURE WORK

In this paper, we propose using nonlinear high-order machin
learning methods including HONN and hkSVM for peptide-MHC

| protein binding prediction. Experimental results on betlblic
and private evaluation datasets according to both binadyram-
binary performance metrics (AUC and nDCG) clearly demaustr
the advantages of our methods over the state-of-the-arbagip

NetMHC, which suggests the importance of directly modeling

nonlinear high-order feature interactions across differ@mino
acid positions of peptides. Our results are even more eagng
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sequence specificity of biological processes with the kzabli matrix methodBMC
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considering that our models were only trained on a subse®f t Ranzato, M., Mnih, V., Susskind, J. M., and Hinton, G. E. @01Modeling natural
binary binding datasets used by NetMHC and NetMHC was also images using gated MRFSEEE Trans. Pattern Anal. Mach. Intgli35(9), 2206

trained on private quantitative binding datasets.
In the future, we will use available quantitative bindingataets

2222.
Reche, P. A. and Reinherz, E. L. (2007). Prediction of peptitHC binding using
profiles. In D. R. Flower, editodmmunoinformaticsvolume 409 ofMethods in

to refine our HONN model with possible deep extensions, and We olecular Biology pages 185-200. Humana Press.

will incorporate the descriptors of structural contactamgino acids
on MHC proteins into current feature descriptors. The aoldiof

peptide binding strength and structural information watentially

further improve the performance of our current models.
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