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ABSTRACT
Motivation: Effective computational methods for peptide-protein
binding prediction can greatly help clinical peptide vaccine search
and design. However, previous computational methods fail to capture
key nonlinear high-order dependencies between different amino acid
positions. As a result, they often produce low-quality rankings
of strong binding peptides. To solve this problem, we propose
nonlinear high-order machine learning methods including high-order
neural networks with possible deep extensions and high-order Kernel
Support Vector Machines to predict major histocompatibility complex
(MHC)-peptide binding.
Results: The proposed high-order methods improve quality of
binding predictions over other prediction methods. With the proposed
methods, a significant gain of up to 25-40% is observed on the
benchmark and reference peptide data sets and tasks. In addition,
for the first time, our experiments show that pre-training with high-
order semi-Restricted Boltzmann Machines significantly improves the
performance of feed-forward high-order neural networks. Moreover,
our experiments show that the proposed shallow high-order neural
network outperform the popular pre-trained deep neural network
on most tasks, which demonstrates the effectiveness of modelling
high-order feature interactions for predicting MHC-peptide binding.
Availability: There is no associated distributable software.
Contact: renqiang@nec-labs.com, mark.gerstein@yale.edu

1 INTRODUCTION
Complex biological functions in living cells are often performed
through different types of protein-protein interactions.An important
class of protein-protein interactions are peptide (i.e. short chains
of amino acids) mediated interactions, and they regulate important
biological processes such as protein localization, endocytosis,
post-translational modifications, signaling pathways, and immune
responses etc. Moreover, peptide-mediated interactions play
important roles in the development of several human diseases
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including cancer and viral infections. Due to the high medical
value of peptide-protein interactions, a lot of research has been
done to identify ideal peptides for therapeutic and cosmetic
purposes, which rendersin silico peptide-protein binding prediction
by computational methods an important problem in immunomics
and bioinformatics (Lundegaardet al., 2011; Brusicet al., 2002;
Hoof et al., 2009; Nielsenet al., 2003).

In this paper, we propose novel machine learning methods
to study a specific type of peptide-protein interaction, that is,
the interaction between peptides and Major Histocompatibility
Complex class I (MHC I) proteins, although our methods can be
readily applicable to other types of peptide-protein interactions.
Peptide-MHC I protein interactions are essential in cell-mediated
immunity, regulation of immune responses, transplant rejection,
and vaccine design. Therefore, effective computational methods for
peptide-MHC I binding prediction will significantly reducecost and
time in clinical peptide vaccine search and design.

Previous computational approaches to predicting peptide-MHC
interactions are mainly based on linear or bi-linear models,
and they fail to capture key non-linear high-order dependencies
between different amino acid positions. Although previousKernel
SVM and Neural Network (NetMHC) (Lundegaardet al., 2011;
Hoof et al., 2009; Giguereet al., 2013) approaches can capture
nonlinear interactions between input features, they fail to model
the direct strong high-order interactions between features. As a
result, the quality of the peptide rankings produced by previous
methods is not good. Producing high-quality rankings of peptide
vaccine candidates is essential to the successful deployment of
computational methods for vaccine design. For this purpose, we
need to effectively model direct non-linear high-order feature
interactions to directly capture interactions between primary
(anchor) and secondary amino acid residues involved in the
formation of peptide-MHC complexes.

Deep learning models such as Deep Neural Networks (DNNs)
pre-trained with Restricted Boltzmann Machine (RBM) have been
successfully applied to handwritten digit classification,embedding,
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image recognition and many other applications (Hinton, 2010;
Min et al., 2010; Ranzatoet al., 2013). But they have never been
successfully applied to peptide-protein interaction problems.

In this paper, we propose using high-order semi-Restricted
Boltzmann Machine (RBMs) to pre-train a feed-forwardhigh-
orderneural network and propose high-order Kernel Support Vector
Machine (SVM) for peptide-MHC binding prediction, including
identification of MHC-binding, naturally processed and presented
(NPP), and immunogenic peptides (T-cell epitopes). Our proposed
models achieved a significant gain of up to 25-40% over the state-of-
the-art approach on benchmark and reference peptide data sets and
tasks. Furthermore, our shallow high-order neural networks even
outperformed popular powerful pre-trained deep neural networks
that was applied to model peptide-MHC binding prediction for the
first time by this work.

2 RELATED WORK
Position-specific scoring matrix (PSSM) and matrix based methods:
In (Reche and Reinherz, 2007; Recheet al., 2002; Nielsenet al.,
2004), PSSMs were derived from a set of known binding peptides
and PSSM matching score was used as an indicator of the binding
potential of a query peptide. In (Peters and Sette, 2005), the
peptide binding task was solved as a matrix-vector regression
problem. Neural network based methods: In (Zhanget al., 2005;
Brusicet al., 2002), neural networks were built to predict peptide
binding potentials by encoding peptides and contact residues on
the MHC molecules as a fixed-dimensional vector of amino-
acid and contact residues. Similarly, in (Nielsenet al., 2003;
Buuset al., 2003; Lundegaardet al., 2011), neural networks and
committees of networks with peptide representations combining
sparse, BLOSUM, and profile HMM encodings of the peptides
were used. In (Hoofet al., 2009), both the peptide sequence
and MHC protein sequence were used as input to neural
networks in order to enhance predictive ability for MHC alleles
with limited peptide binding data.Kernel-based methods: The
work in (Salomon and Flower, 2006) used the local alignment
(LA) kernel method for predicting MHC-II-peptide binding.In
(Tunget al., 2011), weighted-degree kernels was adopted to identify
immunogenic peptides. The work in (Liuet al., 2007) employed
support vector regression (with RBF, polynomial, etc kernels) using
sparse encoding of a peptide sequence and 11-dim physicochemical
amino-acid descriptors. Recent work (Giguereet al., 2013) used
kernel logistic regression for MHC-II-peptide binding prediction
using both peptide and MHC sequences. In (Gigureet al., 2013), an
SVM with kernel from (Giguereet al., 2013) was used for naturally
processed and presented (“eluted”) peptide prediction.

3 METHODS
In order for the peptides to bind to a particular MHC allele (i.e., its
peptide-binding groove), the sequences of the binding peptides should be
approximately superimposable: contain amino-acids or strings of amino
acids (k-mers) with similar physicochemical properties at approximately the
same positions along the peptide chain.

It is then natural to model peptide sequencesX = x1, x2, . . . , xn,
xi ∈ Σ (i.e., sequences of amino acid residues) as a sequences ofdescriptor
vectorsd1, . . . ,dn, encoding relevant properties of amino acids observed
along the peptide chain and/or MHC-peptide interaction terms.

3.1 Descriptor Sequence peptide representations
While the descriptor vectorsdi in general may be of unequal length, in the
matrix form (equal-sized vectorsdi ∈ RR ) of this representation (“feature-
spatial-position matrix”), the rows are indexed by features (e.g., individual
amino acids, strings of amino acids,k-mers, physicochemical properties,

peptide-MHC interaction features, etc), while the columnscorrespond to
their spatial positions (coordinates). Figure 1 illustrates descriptor sequence
representation of a nonamer.

In this descriptor sequence representation, each positionin the peptide
is described by a feature vector, with features derived fromthe amino acid
occupying this position or from a set of amino acids (e.g., ak-mer starting
at this position or a window of amino acids centered at this position) and/or
amino acids present in the MHC protein molecule and interacting with the
amino acids in the peptide.
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Fig. 1: Peptide descriptor sequence representation of a nonamer
‘MVLSAFDER’ using 5-dim amino acid descriptors

The purpose of a descriptor is to capture relevant information (e.g.,
physicochemical properties) that can be used by our high-order neural
networks and kernel functions to differentiate peptides into binding, non-
binding, immunogenic, etc.

A real-valueddescriptor of an amino acid is a quantitative descriptor
encoding (1) relevant properties of amino acids such as their physicochemical
properties and substitution probabilities by other amino acids, and/or (2)
interaction features (such as binding energy) between the amino acids in
the peptide and those in the MHC molecule. An example of the real-valued
descriptor sequence representation of a peptide using 5-dim physicochemical
amino acid descriptors is given in Figure 1.

3.2 Deep Neural Network and High-Order Neural
Network

Given the matrix-form descriptor representation of each peptide based on
BLOSUM substitution matrix as illustrated above, we concatenate all the
columns of the matrix into a long vector as input feature vector to our
neural networks. In this representation, a 9-mer peptide isrepresented by
a 180-dimensional continuous vector, with each amino acid represented
by its corresponding 20-dimensional substitution probabilities. Instead of
using an ensemble of traditional neural networks to predictMHC class-
peptide bindings as in the state-of-the-art approach NetMHC (Nielsenet al.,
2003; Buuset al., 2003; Lundegaardet al., 2011), we propose to use
High-Order Neural Networks (HONN) pre-trained with a special type of
high-order Semi-Restricted Boltzmann Machines (RBMs) called mean-
covariance RBMs (mcRBMs) (Ranzatoet al., 2013), capable of capturing
strong high-order interactions of feature descriptors of input peptides, to
produce high-quality rankings of binding peptides (T-cellepitopes). The pre-
training strategy has been widely adopted for training a popular powerful
model called Deep Neural Networks (DNN) (Hinton, 2006; Bengio, 2009).

DNN has attracted world-wide attention in the machine learning
community recently. In Hinton (2006), it has been shown thatDNN is
more powerful than shallow neural networks and performs much better than
shallow ones on a benchmark dataset widely used in machine learning. In
this paper, for the first time, we apply DNN to predict peptide-MHC binding,
and we compare its performance to our proposed HONN. DNN is shown on
the left panel of Fig. 2. We use Gaussian RBM to pre-train the network
weights of its first layer, and we use binary RBM to pre-train the connection
weights of upper layers in a greedy layer-wise fashion (see Hinton, 2006 for
detailed descriptions about pre-training). Our proposed High-Order Neural
Network (HONN) is shown on the right panel of Fig. 2. We use mcRBM
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to pre-train the network weights of it first layer, and we optionally add
upper layers, and we use binary RBM to pre-train the connection weights in
possibly available upper layers. In both DNN and HONN, we usea logistic
unit as our final output layer, and then we use back-propagation to fine-tune
the final network weights by minimizing the cross entropy between predicted
binding probabilitiespn and target binding probabilitiestn as follows,

−
N∑

n=1

[tnlogpn + (1− tn)log(1 − pn)], (1)

whereN is the total number of training peptides.
The pre-training module mcRBM of HONN extends traditional Gaussian

RBM to model both mean and explicit pairwise interactions ofinput feature
values, and it has two sets of hidden units, mean hidden unitshm modeling
the mean of input features and covariance hidden unitshg gating pairwise
interactions between input features. If the gating hidden units are binary,
they act as binary switches controlling the pairwise interactions between
input features. The energy function of mcRBM with factorized weights for
reducing computational complexity is defined as follows,

E(v,hg ,hm) =
1
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wherei indexes visible units such as peptide sequence features,j indexes
hidden units, andf indexes the factors. Using this energy function, we
can derive the conditional probabilities of hidden units given visible units,
as well the respective gradients for training the network. The structure of
this factorized mcRBM is shown on the bottom of the right panel of Fig.
2, the hidden units on the left model the mean of input features and those
on the right model the input covariance. During pre-training, we used
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Fig. 2: The structure of DNN (left) and HONN (right).

Contrastive Divergence (CD)(Hinton, 2002) to learn the factorized weights
in mcRBM as in Gaussian RBM, and we used Hybrid Monte Carlo sampling
to generate the negative samples as in (Ranzatoet al., 2013) with 20 leap-
frog steps. The structures and parameters of both DNN and HONN are
decided based on performance on validation sets. In fact, for our HONN,
only the learning rates, batch size, and the number of hiddenunits need to
be carefully tuned, and the final performance is not sensitive to other hyper-
parameters. During the training phase, our algorithm randomly selects 10%
of the original training data as validation set for early stopping. When the
algorithm monitors that the validation error increases up to 10 times even
if the training error is still decreasing, we end the training process for early
stopping. Although HONN can be easily extended to have many upper layers
to form a deep architecture, HONN without deep extensions works best in
all our experiments, which is probably due to the limited training data we
have.

3.3 High-order Kernel Models
The sequence of the descriptors corresponding to the peptide X =
x1, x2, . . . , x|X|, xi ∈ Σ (as in, e.g., Fig 1) can be modeled as an
attributed setof descriptors corresponding to different positions (or groups
of positions) in the peptide and amino acids or strings of amino acids
occupying these positions:

XA = {(pi,di)}
n
i=1

wherepi is the coordinate (position) or a set (vector) of coordinates and
di is the descriptor vector associated with thepi, with n indicating the
cardinality of the attributed set descriptionXA of peptideX. The cardinality
of the descriptionXA corresponds to the length of the peptide (i.e., the
number of positions) or to in general to the number of unique descriptors
in the descriptor sequence representation. A unified descriptor sequence
representation of the peptides as a sequence of descriptor vectors is used
to derive attributed set descriptionsXA.

3.4 High-order kernel functions on peptide descriptor
sequence representations

In the following we define kernel functions for peptides based on peptide
descriptor sequence representations (such as in Fig. 1). The proposed kernel
functions for peptide sequencesX andY have the following general form:

K(X,Y ) = K(M(X),M(Y )) = K(XA, YA)

=
∑

iX

∑

jY

kp(p
X
iY

,pY
jY

)kd(d
X
iX

,dY
jY

)
(3)

where M(·) is a descriptor sequence (e.g., spatial feature matrix)
representation of a peptide,XA(YA) is an attributed set corresponding
to M(X) (M(Y )), kd(·, ·), kp(·, ·), are kernel functions on descriptors
and context/positions, respectively, andiX , iY index elements of the
attributed setsXA, YA. While kd measures similarity between descriptors,
the context/position kernelkp measures similarity of the of the descriptor
context (e.g., position, spatial distribution of amino acids, etc). A number
of kernel functions for descriptor sequence (e.g., matrix)forms M(·) is
described below.

Using real-valued descriptors (e.g., vectors of physicochemical
attributes), with RBF or polynomial kernel function on descriptors, the
kd(dα,dβ) is defined as

exp(−γd||dα − dβ ||)

whereγd is an appropriately chosen weight parameter, or

(〈dα,dβ〉 + c)p

wherep is the degree (interaction order) parameter andc is a parameter
controlling contribution of lower order terms.

Kernel functionskp(·, ·) on position setspi andpj are defined as a set
kernel kp(pi,pj) =

∑

i∈pi

∑

j∈pj

k(i, j|α, β)

where k(i, j|α,β) =
1

|i− j|α
+ β = exp(−α log(|i− j|)) + β

is a kernel function on pairs of position coordinates(i, j).
The position set kernel function above assigns weights to interactions

between positions(i, j) according tok(i, j|α, β).
The descriptor kernel function (e.g., RBF or polynomial) between

two descriptorsdi = (di
1
, di

2
, . . . , di

R
) and dj = (dj

1
, d

j
2
, . . . , d

j
R
)

induces high-order (i.e. products-of-features) interaction features (such as
di1di2 . . . dip for polynomial of degreep) between positions / attributes.

The proposed kernel function (Eq. 3) captures high-order interactions
between amino acids / positions by considering essentiallyall possible
products of features encoded in descriptorsd of two or more positions.
The feature map corresponding to this kernel is composed of individual
feature maps capturing interactions between particular combinations of the

3



Kuksa et al.

positions. The interaction maps between different positionspa andpb are
weighted by the position/context kernel functionkp(pa,pb).

4 DATA
In order to assess the performance of our high-order methods, we
tested our methods on three prediction tasks:

1. MHC-I binding prediction. The datasets used for MHC-I
binding prediction task are listed in Table 1.

2. Naturally processed (“eluted”) peptide prediction. We use
recently compiled benchmark data from the 2nd Machine
Learning in Immunology competition (MLI-II). Table 2
provides details of this dataset.

3. T-cell epitope prediction. We use data of known T-cell epitopes
to test ability of the methods in predicting promising candidates
for clinical development.

For all of the tasks, we focused on the 9-mer peptides. For MHC-
I binding prediction, we threshold at a standard valueIC50 =
500 to separate binding peptides (IC50 < 500) and non-binding
(IC50 > 500) peptides and focus on three alleles, HLA-A*0201,
HLA-A*0206, and HLA-A*2402. The choice of these alleles is
motivated by the target population group (Japanese) in our research
lab. The application of our method to other alleles or peptide lengths
would be straightforward.

Table 1. Peptide-MHC binary datasets (binding/non-binding)

Dataset #peptides #binders #non-binders

A0201-IEDB 8471 3939 4532
A0201-Japanese 281 106 175
A0206-IEDB 1820 951 869
A0206-Japanese 278 97 181
A2402-IEDB 2011 890 1121
A2402-Japanese 405 176 229

Table 2. Naturally-processed (NP) peptide datasets

Dataset #peptides #eluted #non-eluted

A0201-MLI-II 8225 971 7254
A0201-MLI-II-EvalSet 492 63 429

4.1 Training and testing protocol
For MHC-I binding prediction, we train our models for each
allele on the publicly available data from the Immune Epitope
Database and Analysis Resource (IEDB) (Vitaet al., 2010). The
datasets (http://www.iedb.org) are labeled withIEDB suffix
in Table 1.

For testing, we use the experimental data from our lab for each
allele. These datasets are denoted with’Japanese’ suffix in
Table 1. For’Japanese’ data the experimentally determined
binding strength is measured aslog(Kd), whereKd is a dissociation
coefficient, i.e. higher negative values oflog(Kd) suggest stronger
binders.

The training ’IEDB’ datasets and the test’Japanese’
datasets are completely disjoint. The average sequence identity
between any peptide in the’Japanese’ datasets and the most
similar peptide from IEDB data is about 46%-55% (Table S10).

4.2 Evaluation metrics
To assess performance, we use two sets of metrics, classicalbinary
metrics and non-binary relevance metrics.

Binary performance metrics. We used (1) Area under ROC curve
(AUC); (2) area under ROC curve up to firstn false positives (ROC-
n).

Non-binary relevance/quality metrics. While classical binary
performance metrics use binary relevance (i.e. “1”=relevant,
“0”=non-relevant), to take into account more “precise” relevance
measure, i.e. the binding strength of the peptides, we use
normalized discounted cumulative gain(nDCG), a classicalnon-
binary (graded) relevance metric.

Given a list of peptidesP1, . . . , PN ordered by the output scores
of the predictorf(P1), . . . , f(PN ), the discounted cumulative gain
(DCGN ) is defined as a sum of individual peptide relevance
scores (experimentally determined binding strength)q1, q2, . . . , qn
discounted by thelog of their positioni in the list:

DCGN =
N∑

i=1

2qi − 1

log(i+ 1)

The normalizedDCGN is defined as a ratio between DCG of the
method and an ideal DCGiDCGN (i.e., DCG of an ideal ordering
of peptides from the highest degree of binding affinity to thelowest
binding affinity):

nDCGN =
DCGN

iDCGN

The normalizedDCGN value is then ranges between 0 and 1, with
nDCGN = 1 corresponding to the ideal value (i.e., normalized
DCG=1 when the predictor orders peptides according to their
actual binding strength).

We find this measure (nDCG) to be more indicative of the
prediction performance of the MHC-I binding prediction method
as it directly assesses whether the predictor ranks stronger binders
higher than weaker binders (as opposed to binary measures
(e.g., area under ROC curve) that measure whether “binders”
are ranked higher than “non-binders”irrespectivelyof the actual
peptide binding strength). This measure is popular for assessing
performance of the document retrieval systems (e.g., Web search
engines) as it is maximized if the most relevant documents appear at
the top of search results, but it has not been used to differentiate
performance of the MHC binding predictors. In the case of the
peptide-MHC prediction, the nDCG is maximized if peptides are
placed (according to the predictor output) in the ideal order: from
the strongest binders to the weakest/non-binders. We emphasize
that the two methods with the same AUC scores, may differ
significantly with respect to their nDCG scores: even with the
equally good separation between “binders” and “non-binders” for
the two methods, the method that correctly ranks stronger binders
higher than weaker binder will have a higher nDCG score.

5 RESULTS
We first present results for MHC-I binding prediction on benchmark
datasets and experimental data from our lab (Sec. 5.1). We show
next results on predicting peptides naturally processed bythe
MHC pathway (Sec. 5.2). Finally, we show results for predicting
promising T-cell epitopes for clinical development (Sec. 5.3). The
following AUC and nDCG scores are shown in %.

5.1 MHC-I binding prediction
We train a deep neural network (DNN), a high-order semi-RBM
(HONN), and a high-order kernel SVM (hkSVM) onIEDB data.
In our experiments, we use BLOSUM substitution matrix as
continuous descriptors of input peptide sequences.
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We compare with the popular NetMHC method that has
been shown to yield state-of-the-art accuracy for MHC-I binding
prediction with respect to other best published methods (see,
e.g., (Lundegaardet al., 2011; Zhanget al., 2009; Gigureet al.,
2013)).

We first use’Japanese’ data sets to test our methods. Results
are shown in Tables 3, 5, 7 for target alleles onJapanese test
datasets. Corresponding ROC curves are shown in Figure 3f (top
row). We also plotnDCG@n curves in Fig. 3f (bottom row), where
nDCG@n is nDCG up tonth peptide in the sorted output (i.e.,
nDCG of the top-n predicted peptides).

As evident from the AUC and ROC-n results in the tables
and ROC plots, our method achieves significant improvementsin
separating “binders” vs “non-binders”. For example, for A2402
allele ROC-n=10 score increases from 66.88 for NetMHC to 77.76
for HONN and hkSVM. Similar improvements are observed on
A0201 allele data where ROC-n=10 score improves from 26.61 for
NetMHC to 35.59 with HONN and hkSVM.

Observed improvements in the AUC and ROC-n scores across all
alleles are significant (paired signed rank test, P-value 1.22e-4).

To further validate our methods, we used recent benchmark
MHC-I binding data proposed in (Kimet al., 2014) consisting
of the training data (BD2009) and independent (BLIND) test
data (Supplementary Table S8). We report performance on the
independent test data (BLIND) in Supplementary Table S9. Ascan
be seen from the results in the table, while the area under ROCcurve
(AUC) scores are very similar for both our method and the NetMHC
method, for the very highest ranked peptides (low false positive (FP)
rates), both hkSVM and HONN+hkSVM perform better on average
compared to NetMHC as measured by ROC-n scores (e.g., ROC-
1 scores of hkSVM or HONN are higher in about 67% (31/46) of
the tested alleles). Observed improvements in ROC-n scores(low
FP rates) are significant (paired signed rank test P-values=7e-3 and
1.38e-2 for hkSVM and HONN+hkSVM, respectively).

At the same time, the results in terms of nDCG quality scores
suggest significant increase in ranking quality (Tables 4,6, and 8).
Our method ranks peptides by their actual binding strength
significantly better than other methods. We observe that strong
binders are placed much higher in the classification results
compared to the state-of-the-art NetMHC method. For instance,
for the A0201 allelenDCG@n scores improve from 60.98, 63.50
achieved by NetMHC to 65.94, 70.61 using our HONN method for
n = 20 andn = 30 respectively.

We note that for both HONN and DNN the pre-training is
critical to achieve good performance. The performance comparisons
of DNN and HONN with and without pre-training are in the
supplementary material (Supplementary Tables S2-S7). Allthe
results of DNN and HONN reported in the main paper are based
on pre-training and fine-tuning.

Using a combination of network and kernel models further
improves peptide-MHC recognition as evident by the increase in
both area under ROC curve scores (improved “binder” vs “non-
binder” separation) and nDCG metric quality scores (improved
ranking of peptides by binding strength).

We note that unlike the previous approaches that utilized
quantitative binding information during training,no quantitative
information regarding actual binding strength was used to train our
models. However, even with onlybinary training data (i.e., only
with binding (B) vs non-binding (NB) information), our models

Table 3. Comparison of AUC test scores on A0201-Japanese data

method AUC ROC-10 ROC-20 ROC-30 ROC-50

hkSVM 79.60 32.71 50.59 63.67 77.56
DNN 77.23 30.34 47.03 60.11 74.95
HONN 77.26 33.39 48.14 60.11 74.98
hkSVM+HONN79.11 35.59 50.51 62.99 77.02
NetMHC 76.90 26.61 46.02 58.87 74.47

Table 4. A0201-Japanese data. Relevance/ranking quality (nDCG).

method nDCG@10 nDCG@20 nDCG@30 nDCG@50 nDCG

hkSVM 60.69 61.75 66.78 74.11 85.01
DNN 63.89 65.59 70.12 74.57 86.33
HONN 63.93 65.94 70.61 75.55 86.46
hkSVM+HONN 65.69 65.12 71.49 76.46 86.98
NetMHC 59.48 60.98 63.50 72.68 83.94

Table 5. Comparison of AUC test scores on A0206-Japanese data

method AUC ROC-10 ROC-20 ROC-30

hkSVM 86.23 54.84 72.58 78.68
DNN 80.24 52.42 64.02 71.31
HONN 84.41 49.7 69.7 77.78
hkSVM+HONN86.24 54.24 73.33 80.2
NetMHC 83.93 50.91 67.42 76.77

Table 6. A0206-Japanese data. Relevance/ranking assessment (nDCG)

method nDCG@10 nDCG@20 nDCG@30 nDCG

hkSVM 76.52 74.64 82.49 91.43
DNN 77.50 82.21 81.72 91.74
HONN 75.39 78.06 79.92 90.80
hkSVM+HONN 80.2 76.98 83.75 91.75
NetMHC 70.97 73.60 82.57 89.88

Table 7. Comparison of AUC test scores on A2402-Japanese data

method AUC ROC-5 ROC-10 ROC-30

hkSVM 90.59 68.8 75.92 86.93
DNN 89.1 63.52 70.96 84.75
HONN 86.29 54.88 65.04 81.17
hkSVM+HONN 91.07 72.16 77.76 87.55
NetMHC 88.88 53.76 66.88 84.48

Table 8. A2402-Japanese data. Relevance/ranking assessment (nDCG)

method nDCG@10 nDCG@30 nDCG

hKSVM 53.77 64.33 86.68
DNN 51.07 56.88 84.36
HONN 57.36 60.82 85.20
hkSVM+HONN 60.41 69.59 87.35
NetMHC 55.98 68.76 87.57

correctly order peptides according to their binding strength. This
can be attributed to explicit high-order interaction modeling by our
method that allows to capture intrinsic binding strength information.
Nevertheless, our models can easily use quantitative training data
(e.g., IC50) to further improve our results.

To visualize the learned weights of HONN, we used8 mean
hidden units,1 covariance hidden unit, and1 factor unit to train
HONN on the training data of A2402. We obtained AUC score
86.02 and nDCG score85.01 that are slightly worse than the ones
in Table 7 and 8. In Fig. 4, the factorized rank-1 interaction weight
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(a) ROC curves on test A0201 allele.
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(b) ROC curves on test A0206 allele.
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(c) ROC curves on test A2402 allele.
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(d) Normalized DCG curves on test
A0201 allele.
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(e) Normalized DCG curves on test
A0206 allele.
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(f) Normalized DCG curves on test
A2402 allele.

Fig. 3: ROC curves (top row) and normalized discounted cumulative gain (nDCG) curves (bottom row).
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Fig. 4: The learned weights of HONN with largest absolute values.

vector with absolute values greater than0.1 is shown in the top, and
the weight matrix connecting input features and mean hiddenunits
with absolute values greater than0.02 is shown at the bottom. This
figure clearly shows that position2, 8, 9, and the interaction between
middle position and position9 are very important for predicting
9-mer peptide binding, which has experimental support fromthe
crystal structure of the interaction complex (Coleet al., 2006).

5.2 Naturally processed (NP) peptide prediction
We test ability of our methods on a difficult task that aims at
predicting whether a peptide is naturally processed by the MHC
pathway (“eluted”). This is a very important task as only a
fraction of binding peptides (see “MHC-I binding task” in Sec. 5.1)
constitute a set of peptides that are processed to the surface of
a cell and may serve as epitopes. Eluted peptide prediction thus
aims at verifying whether a peptide not only binds to a given MHC

molecule, but that it is also naturally processed by MHC pathway in
vivo.

To train our models, we used the data provided by
2012 Machine Learning in Immunology competition (MLI-II)
http://bio.dfci.harvard.edu/DFRMLI/HTML/natural.php.

We directly train our models to recognize naturally processed and
presented peptides, using “eluted” peptides as a positive set, and all
other peptides (non-binders + non-eluted binders) as a negative set.
We then test our models on the data composed of non-eluted binding
peptides, non-binding peptides, and naturally processed (“eluted”)
peptides.We used the same training and test split as specified in the
competition. We compare our approach with the popular NetMHC
method, which was used as a benchmark in the competition, as well
as the recently introduced MHC-NP (Gigureet al., 2013) method
that yielded state-of-the-art accuracy for naturally processed (NP)
peptide prediction.

Table 9 shows results of naturally processed peptide prediction
(9-mers) on the test set in terms of AUC, ROC-n, and F1 scores.
Our approach significantly outperforms both NetMHC method and
the MHC-NP (Gigureet al., 2013) method.Table S11 shows the
performance of hkSVM for the other test alleles with similar
improvements on test peptides with all varying lengths (8-mers to
11-mers).

5.3 Epitope prediction
We demonstrate ability of the method to predict promising peptides
for clinical development using as an example WT1-derived strong
binding peptides WT-TEST-PEPTIDE1 and WT-TEST-PEPTIDE2
discovered by NEC-Kochi Univ. We compare the performance of
our method and NetMHC by “predicting” in a retrospective way
these T-cell epitopes from WT1 antigen. Peptides (441 9-mers) that
are part of WT1 antigen are ranked by the output scores of NetMHC
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Table 9. Naturally processed (NP) peptide prediction (MLI-II competition).
Comparison of test AUC scores.

method AUC ROC-10 ROC-20 ROC-30 ROC-50

hkSVM 94.75 53.65 65.71 71.48 77.46
HONN 93.17 49.21 58.20 64.13 72.73
DNN 91.80 30.48 41.11 51.32 62.92
hkSVM + HONN 94.96 53.65 68.25 74.39 79.59
NetMHC 92.26 10.63 28.33 40.21 54.32
MHC-NP† 88.06 - - - -
†quoted from (Gigureet al., 2013)

Table 10. Prediction of WT1-derived epitopes

NetMHC-rank hkSVM+HONN-rank
A0201 allele

WT-TEST-PEPTIDE1 2 1
WT-TEST-PEPTIDE2 20 2

A0206 allele
WT-TEST-PEPTIDE1 2 1
WT-TEST-PEPTIDE2 8 3

A2402 allele
WT-TEST-PEPTIDE1 41 2
WT-TEST-PEPTIDE2 7 4

and our method (HONN and hkSVM). The order of the WT-TEST-
PEPTIDE1 and WT-TEST-PEPTIDE2 peptides in the output (out of
the 441 peptides) of the two prediction methods is given in Table 10.
As evident from the table, our method ranks these peptides higher
than NetMHC method.

6 DISCUSSION AND FUTURE WORK
In this paper, we propose using nonlinear high-order machine
learning methods including HONN and hkSVM for peptide-MHC
I protein binding prediction. Experimental results on bothpublic
and private evaluation datasets according to both binary and non-
binary performance metrics (AUC and nDCG) clearly demonstrate
the advantages of our methods over the state-of-the-art approach
NetMHC, which suggests the importance of directly modeling
nonlinear high-order feature interactions across different amino
acid positions of peptides. Our results are even more encouraging
considering that our models were only trained on a subset of the
binary binding datasets used by NetMHC and NetMHC was also
trained on private quantitative binding datasets.

In the future, we will use available quantitative binding datasets
to refine our HONN model with possible deep extensions, and we
will incorporate the descriptors of structural contactingamino acids
on MHC proteins into current feature descriptors. The addition of
peptide binding strength and structural information will potentially
further improve the performance of our current models.
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