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ABSTRACT
Recent developments in discovering dynamic treatment regimes

(DTRs) have heightened the importance of deep reinforcement

learning (DRL) which are used to recover the doctor’s treatment

policies. However, existing DRL-based methods expose the follow-

ing limitations: 1) supervised methods based on behavior cloning

suffer from compounding errors; 2) the self-defined reward signals

in reinforcement learning models are either too sparse or need

clinical guidance; 3) only positive trajectories (e.g. survived patients)
are considered in current imitation learning models, with negative
trajectories (e.g. deceased patients) been largely ignored, which are

examples of what not to do and could help the learned policy avoid

repeating mistakes. To address these limitations, in this paper, we

propose the adversarial cooperative imitation learning model, ACIL,

to deduce the optimal dynamic treatment regimes that mimics the

positive trajectories while differs from the negative trajectories.

Specifically, two discriminators are used to help achieve this goal:

an adversarial discriminator is designed to minimize the discrep-

ancies between the trajectories generated from the policy and the

positive trajectories, and a cooperative discriminator is used to dis-

tinguish the negative trajectories from the positive and generated

trajectories. The reward signals from the discriminators are utilized

to refine the policy for dynamic treatment regimes. Experiments

on the publicly real-world medical data demonstrate that ACIL

improves the likelihood of patient survival and provides better dy-

namic treatment regimes with the exploitation of information from

both positive and negative trajectories.

KEYWORDS
imitation learning, dynamic treatment regimes, generative adver-

sarial networks, reinforcement learning

∗
Corresponding authors

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380248

ACM Reference Format:
Lu Wang, Wenchao Yu*, Wei Cheng, Martin Renqiang Min, Bo Zong, Xi-

aofeng He*, Hongyuan Zha, WeiWang, and Haifeng Chen. 2020. Adversarial

Cooperative Imitation Learning for Dynamic Treatment Regimes. In Proceed-
ings of TheWeb Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380248

1 INTRODUCTION
A dynamic treatment regime (DTR) is a sequence of tailored treat-

ment decision rules that specify how the treatments should be ad-

justed through time according to the dynamic states of patients [5,

24]. Each rule takes input information, e.g. medical history, lab-

oratory measurements, demographics, etc., of the patients, and

recommends treatment options which aim to optimize the effec-

tiveness of the treatment program.

Motivated by the remarkable success of deep reinforcement learn-

ing (DRL) in finding effective dynamic policies that can be applied

on areas like economics [18, 38], transportation [34] and robot-

ics [14], a set of studies have focused on using DRL to learn the

optimal dynamic treatment regimes from electronic health records

(EHRs) [3, 21, 28, 31, 35, 37]. Given these observational medical data,

the optimal DTR estimation is to learn a policy guided by rewards,

e.g., a negative reward is given to a patient who died in-hospital and

a positive reward to someone who is discharged. Existing methods

can be generally divided into two categories: behavior cloning (BC)

and reinforcement learning with self-defined reward functions. Su-

pervised learning methods based on BC can effectively recover the

doctor’s treatment policies with abundant health data [2, 7, 17, 37].

However, BC suffers from compounding errors [30], because the

agent greedily mimics the demonstrated actions, and error accu-

mulates as the policy unrolled [9, 29]. In the EHRs, some patients

are cured but there are still a certain amount of unhealed patients.

Several studies consider these EHRs as sub-optimal trajectories

and use reinforcement learning to infer optimal decisions from

sub-optimal training examples with the manually designed reward

functions [3, 21, 28, 35]. However, the reward signals are extremely

sparse under this setting, which introduces credit assignment prob-

lem, where immediate rewards are almost zero, and it’s hard to

identify which actions are useful in obtaining the final feedback.

Though the clinically guided reward functions can help provide
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Figure 1: Two Sepsis patients extracted fromMIMIC-III with
similar initial lab test results (i.e., DiaBP, temperature, respi-
ratory rate) and demographics but different treatments. The
patient with blue curve was survived while the patient with
red curve deceased.

dense reward signals [27], it requires expert knowledge and cannot

be easily transferred to different domains.

Recent developments in imitation learning, such as inverse rein-

forcement learning (IRL) [1, 40] and adversarial imitation learning

(AIL) [9, 15, 22] avoid the compounding errors by training an agent

to match the demonstrations over a long horizon with an explicit

or implicit defined reward function. Meanwhile, the learned reward

function also alleviates the sparse reward problem. Thus IRL and

AIL are potentially suitable for discovering the optimal dynamic

treatment regimes. We define positive trajectories as therapeutic
process of patients with positive outcomes (i.e., cured or survived

patients) and negative trajectories as patients with negative out-

comes (i.e., deceased patients). It can be seen that these imitation

learning methods only consider the positive trajectories are optimal

and learn a policy to recover these trajectories. The information

in the negative trajectories has been largely ignored, which could

potentially help the learned policy to avoid repeating mistakes. As

illustrated in Fig. 1, two Sepsis patients with similar initial states

result in different outcomes when taking different treatment plans.

Thus it’s essential to learn the optimal dynamic treatment regime

that matches the positive demonstrations while differs from the neg-

ative trajectories. In other words, the negative trajectories which

results in death can also guide the policy learn what not to do.

To address the aforementioned limitations, in this paper, we pro-

pose the adversarial cooperative imitation learning model (short for

ACIL) to learn the optimal dynamic treatment regimes. As shown

in Fig. 2, ACIL learns the optimal DTR policy by taking positive

trajectories and negative trajectories as inputs. The input trajec-

tories pass through two discriminators to help the policy mimics

the positive trajectories while stays far away from the negative

trajectories. To achieve this goal, ACIL consists of an adversarial

discriminator and a cooperative discriminator to learn the policy.

The adversarial discriminator is trained to minimize the divergence

between the learned policy and the positive trajectories, while the

cooperative discriminator is trained to distinguish the positive tra-

jectories (including trajectories generated from the learned policy)

and negative trajectories. ACIL utilizes the reward signals from

the discriminators to help refine the policy for dynamic treatment

regimes and the patient model (act as environment) built with varia-

tional autoencoders. We quantitatively validate the effectiveness of

ACIL on real-world medical data, which demonstrates the effective-

ness of the proposed model. To summarize, the main contributions

are as follows:

• We propose a novel adversarial cooperative imitation learn-

ing model, ACIL, to learn optimal dynamic treatment regime

policies, which includes an adversarial discriminator and a

cooperative discriminator to better exploit the information

from the positive and negative trajectories.

• The environment is simulated with the patient model, which

leverages the variational autoencoder architecture to take

the current state and action values as inputs and output the

successor state.
• Quantitative experiments and qualitative case studies on

MIMIC-III demonstrate that ACIL reduces the estimated mor-

tality and provides better dynamic treatment regimes with

the usage of all treatment demonstrations.

The rest of this paper is organized as follows. Section 2 introduces

the preliminaries of IRL and AIL. Section 3 describes the ACILmodel

and provides theoretical analysis of the proposed model. Section 4

empirically evaluates ACIL onMIMIC-III dataset.We summarize the

related work in Section 5, followed by the conclusions in Section 6.

2 PRELIMINARIES
Generally, given a set of experts’ demonstration trajectories τ ,
which consists of sequences of states and actions (s0,a0, s1,a1, ...)

drawn from the expert policy π , the goal of imitation learning is to

learn a policy πθ (a |s) which can replicate experts’ behaviors. The

imitation learning methods can be generally grouped into three

categories: behavior cloning (BC), inverse reinforcement learning

(IRL) and adversarial imitation learning (AIL).

2.1 Behavior Cloning
BC aims to learn the policy πθ (a |s) via supervised learning. Given

the fixed action space or classes, BC learns a policy mapping from

states to experts’ actionswith the tuple datasets {(s0,a0), (s1,a1), ...},

arg min

θ
E(s,a)∼P ∗L(a,πθ (s)), (1)

where P∗ = P(s |π∗) is the distribution of states visited by expert.

Due to the standard i.i.d. assumption in the supervised learning,

the errors induced by BC are compounding over the length of the

trajectories.

2.2 Inverse Reinforcement Learning
In inverse reinforcement learning, we aim to learn the reward

function based on the expert demonstrations. The reward function

can be considered as a linear combination of features,

R(s) = ω⊺ f (s), (2)
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Figure 2: Illustration of the ACIL model for learning optimal dynamic treatment regimes

Table 1: Notation descriptions

Notation Description

st ∈ S
The state which consists of the patients’

demographics and clinical variables.

at ∈ A

The action, A ∈ {0, 1}K , the kth dimension

of at in {0, 1} indicates whether the kth

medication or medication dosage is chosen

for a patient.

πE = {π+,π−}
The behavior policy which consists of a

positive policy π+ and a negative policy π−.

ρπ : S × A → R

The distribution of state-action pairs that

the policy π interacts with the environment,

ρπ (s,a) = π (a |s)
∑T
t=0

γP(st = s |π ), where
γ is the discounting factor, and the successor

states are drawn from P(s |π ).

τ+ = (s+
1
,a+

1
, ...)

Positive trajectories generated by π+ which
consists of sequences of states and actions.

τ− = (s−
1
,a−

1
, ...) Negative trajectories generated by π−.

πθ (a |s) The learned policy with parameter vector θ .

τ θ = (s1,a1, ...) The trajectories generated by πθ .
Da The adversarial discriminator.

Dc The cooperative discriminator.

Ew1
Encoder with parameterw1 in patient model.

Dw2
Decoder with parameterw2 in patient model.

Gw
Gw = {Ew1

,Dw2
}. Patient model with an

encoder and a decoder.

where ω ∈ Rn is the weight vector required to be learned, f : S →

Rn . The value function of policy πθ can be expressed as,

Vπθ (s) = Eπθ

[
∞∑
t=0

γ tR(st )|s0 = s

]
= ω⊺Eπθ

[
∞∑
t=0

γ t f (st )|s0 = s

]
= ω⊺µ(πθ ), (3)

where µ(πθ ) ∈ R
n
is the discounted weighted frequency of state

features f (s) under policy πθ . With the assumptions on the opti-

mality of the demonstrations, IRL learns ω under the constrains

that:

Eπ ∗

[
∞∑
t=0

γ tR∗(st )|s0 = s

]
≥ Eπθ

[
∞∑
t=0

γ tR∗(st )|s0 = s

]
, ∀πθ , (4)

whereR∗ indicates the optimal reward function, and π∗
is the expert

policy. With Eq. (4), the value of a policy expressed as,

ω⊺µ(π∗ |s0 = s) ≥ ω⊺µ(πθ |s0 = s), (5)

which indicates IRL tries to find the reward function such that the

expert policy outperforms other policies. Thus we need to find the

πθ , such that |µ(πθ |s0 = s) − µ(π∗ |s0 = s)| ≤ ϵ . This is equivalent
to match the discounted state visitation features to the expert [1],

|ωTµ(πθ |s0 = s) − ωTµ(π∗ |s0 = s)| ≤ ϵ, ∀∥ω∥∞ ≤ 1. (6)

This observation leads to learn a policy πθ that is as good as the

expert policy while γ ≤ ϵ/2.

2.3 Adversarial Imitation Learning
Instead of indirectly learning the policy πθ as IRL, adversarial imita-

tion learning directly learns πθ by minimizing the Jensen-Shannon

divergence between expert’ policy πE and the learned policy πθ

D JS (ρπθ , ρπE ) = DKL(ρπθ |
ρπθ + ρπE

2

) + DKL(ρπE ∥
ρπθ + ρπE

2

),

where the occupancy measure ρπ is the distribution of state-action

pairs that the policy π interacts with the environment (see Table 1

for details). AIL utilizes a generative adversarial network to min-

imize the Jensen-Shannon divergence via a generator πθ and a

discriminator D(·) with the following objective function:

max

D∈(0,1)S×A
Eρπθ [log(D(s,a))] + EρπE [log(1 − D(s,a))], (7)

where S is the state set, and A is the action set, as defined in

Table 1.
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3 METHOD
Problem Definition: Given two set of demonstration trajecto-

ries, namely, the positive trajectories τ+ = {τ+
1
,τ+

2
, ...,τ+m } and the

negative trajectories τ− = {τ−
1
,τ−

2
, ...,τ−n }, which are generated

from behavior policies πE = {π+,π−}. Positive trajectories are the
demonstrations that can achieve the goal of the task (e.g. doctors’

treatment policies for cured patients, experts’ driving trajectories,

etc.), while negative trajectories result in a failure outcome. Each

trajectory τ consists of a sequence of state-action pairs (st ,at ), i.e.,
τ+ = (s+

0
,a+

0
, s+

1
,a+

1
, ...). Our goal is to learn a policy πθ which

can recover positive trajectories while differs from the negative

trajectories.

3.1 The ACIL Model
The goal of ACIL is to learn a policy πθ from doctors’ prescriptions,

including positive trajectories as therapeutic process of patients

with positive outcomes, and negative trajectories with bad out-

comes (e.g. deceased patients), without interacting with the experts

and reward signals. The learned policy are enforced to mimic the

positive trajectories while staying far away from the negative tra-

jectories. To achieve this objective, ACIL consists of an adversarial

discriminator Da , a cooperative discriminator Dc and a patient

model Gw to learn the policy πθ , as illustrated in Fig. 2. The adver-

sarial discriminator Da is trained to minimize the Jensen–Shannon

(JS) divergence between the distributions of state-action pairs ρπθ
and ρπ+ , which are generated by interacting with the environment

using policy πθ and the expert policy π+, respectively. Meanwhile,

the cooperative discriminator Dc is trained to distinguish the posi-

tive trajectories (τ θ ,τ+) from the negative trajectories τ−, which is

equivalent to maximize the JS divergence between (ρπθ , ρπ+ ) and
ρπ− (as shown in Proposition 3.2). ACIL utilizes the feedback signals

from the discriminators to help refine the policy πθ for dynamic

treatment regimes. The patient modelGw , acts as an environment

simulator, provides the model dynamics P(s |π )where the successor
states are drawn from.

3.1.1 Patient Model as An Environment Simulator. The environ-

ment can be simulated with generative models such as variational

auto-encoder (VAE) [20] and GAN [12] for model-based reinforce-

ment learning [4, 6] and trajectory embedding [8]. Here we leverage

the state-action conditioned VAE architecture to build the patient

model Gw which transforms the state distribution into an underly-

ing latent space. In detail, the patient model consists of an encoder

Ew1
, which maps the current states st , action at to the latent distri-

bution z ∼ N(µ,σ ), and a decoder Dw2
, which maps latent z and

current state st and action at into the successor state ŝt+1. The goal

to train the patient model is to minimize the error between st+1

and ŝt+1 under the latent distribution z. The objective function can

be expressed as,

min

w

∑
(st ,at ,st+1)

∥st+1 − ŝt+1∥2 + αDKL(N(µ,σ )∥N(0, 1)), (8)

where µ,σ = Ew1
(st ,at ), and ŝt+1 = Dw2

(st ,at , z). After we obtain
the well-trained patient model, the state transitions can be predicted

using Dw2
(st ,at , z), with current state st , action at and z as inputs.

3.1.2 Adversarial Cooperative Imitation Learning. In practice, we

compare the difference between the πθ and π+ via their gener-

ated trajectories. For a policy π ∈ Π, its occupancy measure ρπ :

S × A → R is defined as ρπ (s,a) = π (a |s)
∑T
t=0

γP(st = s |π ),
which can be interpreted as the distribution of state-action pairs

that the policy interacts with the environment. Multiple-layer per-

ceptrons (MLPs) are used for πθ , Da and Dc . πθ takes the state of

the patients as inputs, and returns the recommended medications.

Da (s,a) presents the probability that state-action pair (s,a) comes

from π+. Dc (s,a) indicates the probability that (s,a) is belong to

the positive demonstration (π+ and πθ ). We train Da and πθ ad-

versarially. Simultaneously, we train Dc and πθ in a cooperative

fashion. In summary, πθ , Da and Dc play the three-player min-max

game which can be defined as follows,

min

πθ ,Dc
max

Da
ωα (Eρπθ [log(1 − Da (s,a))] + Eρπ+ [log(Da (s,a))])

−ωβ (Eρπθ ,ρπ+ [log(Dc (s,a))] + Eρπ− [log(1 − Dc (s,a))])

−λH (πθ ), (9)

where ωα ∈ [0, 1] and ωβ ∈ [0, 1] balance the importance be-

tween the adversarial discriminator and the cooperative discrimi-

nator. H (πθ ) ≜ Eπθ [− logπθ (a |s)] is the causal entropy of policy

πθ which encourages the policy diversity.

Updating the Adversarial Discriminator. The adversarial dis-
criminator Da : S × A → (0, 1) estimates the probability that a

state-action pair (s,a) comes from π+ rather than πθ . The objective
function can be described as follows,

max

Da
Eρπθ [log(1 − Da (s,a))] + Eρπ+ [log(Da (s,a))]). (10)

Da is called adversarial discriminator because the goals to optimiz-

ing Da and πθ are opposite. Da is to minimize the probability of

the state-action pair generated by πθ , while πθ is to maximize the

probability of Da making a mistake. This objective is equivalent to

minimize the JS divergence, D JS (ρπθ ∥ρπ+ ), between ρπθ and ρπ+ .

Updating the Cooperative Discriminator. The goal of the co-
operative discriminator Dc : S × A → (0, 1) is to differentiate

the generated samples and the positive samples from the negative

samples. The objective can be expressed as,

max

Dc
Eρπθ ,ρπ+ [log(Dc (s,a))] + Eρπ− [log(1 − Dc (s,a))]. (11)

This objective function characterizes the optimal negative log

loss of classifying the positive trajectories generated from πθ and

π+, and the negative trajectories generated from π−. We name

it cooperative discriminator because both the goal of Dc and πθ
are to maximize the probability of the data generated by πθ to be

positive. Da , Dc can be considered as reward functions to help

refine πθ . When the distribution ρπθ is different from ρπ− , it will
receive a large reward formDc . We also show that, with the optimal

Dc , the loss of πθ is D JS (ρπ+ + ρπθ ∥ρπ− ) (details can be found in

Section 3.2).

Updating the Policy. The objective of updating πθ is to mimic

the positive trajectories, while staying “far” away from the negative

samples. Under this setting, πθ incorporates the reward signals

from both Da and Dc . The signal from Da is used to push πθ close

to π+, while the signal from Dc separates πθ and π−. The loss
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function is defined as,

min

πθ
ωα (Eρπθ [log(1−Da (s,a))])−ωβ (Eρπθ [log(Dc (s,a))]−λH (πθ ),

(12)

where H (π ) is the causal entropy of the policy to encourage the

diversity of the learned policy and λ ≥ 0 is used to control H (πθ ).
ωα ,ωβ ∈ [0, 1] balance these two reward signals.

When both Da andDc become optimal, we can show that the ob-

jective, defined in Eq. (9), is equivalent to the following optimization

problem.

min

πθ
D JS (ρπ+ ∥ρπθ ) − D JS ((ρπ+ + ρπθ )∥ρπ− ) − λH (πθ ), (13)

which finds a policy whose occupancy measure minimizes the JS

divergence to π+, and maximize the JS divergence to π−. Section 3.2

provides the detailed proof.

The ACIL model learning is summarized in Algorithm 1. We

first train patient model Gw , followed by training Da , Ds , and πθ
iteratively.

Algorithm 1 ACIL for DTR Learning

Require: Positive and negative trajectories τ+ and τ− generated

by behavior policies π+ and π−, batch B, horizonT , mini-batch

size N , episode sizeM . Initial the parameters of πθ , Da , Dc and

Gw = {Ew1
,Dw2

}.

1: for t = 1 to T do
2: Sample mini-batch of N transitions from both τ+ and τ−

(st ,at , st+1) from B

3: µ,σ = Ew1
(st ,at ), s̄t+1 = Dw2

(st ,at , z),z ∼ N(µ,σ )
4: Updatew with Eq. (8).

5: end for
6: for episode = 0 toM do
7: Sample trajectories τi ∼ πθ , τ

+
i ∼ π+, τ

−
i ∼ π− ;

8: Update the parameters of Da with τ+, τ θ and the gradient

ˆEτ θi
[∇ log(1 − Da (s,a))] + ˆEτ +i

[∇ log(Da (s,a))], where ˆEτ

presents the estimated expectation with τ .

9: Update the parameters ofDs with τ
+
, τ−, τ θ and the gradient

ˆEτ θi ,τ
+
i
[∇ log(Dc (s,a))] + ˆEτ −

i
[∇ log(1 − Dc (s,a))].

10: Update the parameters of πθ using TRPO with the cost func-

tion ωα log(Da (s,a)) +ωβ log(Ds (s,a)). Specifically, θ is up-

dated by the gradient,

ˆEτ θi
[∇θ logπθ (a |s)Q(s,a)] − λ∇θH (πθ ),

where Q(s,a) = ˆEτ θi
[ωα log(Da (s,a) + ωβ log(Ds (s,a)].

11: end for

3.2 Theoretical Analysis
We now provide formal theoretical analysis of ACIL. The policy

πθ implicitly defines a probability distribution ρπθ of state-action

pairs. We would like ACIL to coverage to the distribution of the

positive trajectories ρπ+ , if given enough capacity and training time.

For simplicity of analysis, we set the balancing factors ωα ,ωβ to 1,

and neglect the regularizer H (·). The objective function of ACIL in

Eq. (9) can be rewritten as follows,

Jπθ ,Da,Dc =Eρπθ [log(1 − Da (s,a))] + Eρπ+ [log(Da (s,a))]

− Eρπθ ,ρπ+ [log(Dc (s,a))] − Eρπ− [log(1 − Dc (s,a))].

(14)

We first consider the optimization problem with respect to dis-

criminators given a fixed policy πθ .

Proposition 3.1. Given a fixed πθ , maximizing the J (πθ ,Da ,Dc )

yields to the following optimal discriminators D∗
a and D∗

c :

D∗
a (s,a) =

ρπ+(s,a)

ρπ+(s,a) + ρπθ (s,a)
,

D∗
c (s,a) =

ρπ+(s,a) + ρπθ (s,a)

ρπ+(s,a) + ρπθ (s,a) + ρπ−(s,a)
. (15)

Proof. The objective function in Eq. (14) can be rewritten as

follows:

Jπθ ,Da,Dc =

∫
s,a

[ρπ+ log(Da (s,a)) + ρπθ log(1 − Da (s,a))

− (ρπ+ + ρπθ ) log(Dc (s,a))

− ρπ− log(1 − Dc (s,a))]dsda (16)

Considering the function inside the integral, given s,a, wemaximize

this function w.r.t Da ,Dc to find D∗
a and D∗

c . We can obtain the

following results by setting the derivatives w.r.t Da and Dc to 0,

ρπ+(s,a)

Da
−

(
ρπ+(s,a) + ρπθ (s,a)

)
= 0,

ρπ+(s,a) + ρπθ (s,a)

Dc
−

(
ρπ+(s,a) + ρπθ (s,a) + ρπ−(s,a)

)
= 0. (17)

Thus it’s easy to verify that, D∗
a (s,a) =

ρπ+(s,a)
ρπ+(s,a)+ρπθ (s,a)

and

D∗
c (s,a) =

ρπ+(s,a)+ρπθ (s,a)
ρπ+(s,a)+ρπθ (s,a)+ρπ−(s,a)

. Additionally, The second deriva-

tions: −
ρπ+(s,a)
D2

a
and −

ρπ+(s,a)+ρπθ (s,a)

D2

c
are non-positive, thus veri-

fying that we have obtained the maximum solution, concluding the

proof. □

With the definition of occupancy measure ρπ (s,a), which indi-

cates distribution of state-action pairs π interacts with the envi-

ronment, we will show that ACIL finds a policy whose occupancy

measure minimizes the JS divergence to the occupancy measure of

positive trajectories ρπ+ , which maximize the JS divergence to the

occupancy measure of negative trajectories ρπ− .

Proposition 3.2. GivenD∗
a andD

∗
C , the objective of ACIL is equiv-

alent to minimize the following new imitation learning algorithm,

min

πθ
D JS (ρπ+ ∥ρπθ ) − D JS (ρπ+ + ρπθ ∥ρπ− ) − λH (πθ ) (18)
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Figure 3: Comorbidity medication co-occurrence distribu-
tion of survived patients (blue) and deceased patients (red)

Proof. Substituting D∗
a and D∗

c into the objective function de-

fined in Eq. (14), we have,

Jπθ ,D∗
a,D∗

c
= Eρπ+

[
log

ρπ+ (s,a)

ρπ+(s,a) + ρπθ (s,a)

]
+ Eρπθ

[
log(

ρπθ (s,a)

ρπ+(s,a) + ρπθ (s,a)
)

]
− Eρπ+,ρπθ

[
log(

ρπ+ (s,a) + ρπθ (s,a)

ρπ+(s,a) + ρπθ (s,a) + ρπ− (s,a)
)

]
− Eρπ−

[
log(

ρπ− (s,a)

ρπ+(s,a) + ρπθ (s,a) + ρπ− (s,a)
)

]
∝ D JS (ρπ+ ∥ρπθ ) − D JS (ρπ+ + ρπθ ∥ρπ− ), (19)

which minimizes the JS divergence between occupancy measures

that encourages the trajectories generated from πθ recover the posi-

tive trajectories while differ from the negative ones. This concludes

the proof. □

4 EXPERIMENTS
In this section, we conduct experiments to evaluate the proposed

ACIL model. We first describe the dataset and comparison methods,

followed by quantitative and qualitative studies.

4.1 Dataset Description
The experiments are conducted on a public EHRs dataset MIMIC-III

[19], which contains 43K patients in critical care units during 2001

and 2012. There are 6,695 distinct diseases and 4,127 drugs inMIMIC-

III. The median number of diseases of each record is 9 (Q1-Q3: 6-15).

We extracted the Comorbidity patients following the procedure in

[2], we extract the top 35 most medications and top 2,000 most

diseases (ICD-9 codes) which cover 85.4% of all medication records

and 95.3% of all diagnosis records, respectively. The co-occurrence

distribution of the top 35 medication is shown in Fig. 3. We extract

Sepsis patients conforming to the Sepsis-3 criteria [32]. We defined

a 5×5 action space for the medical interventions covering the space

of intravenous (IV) fluid and maximum vasopressor (dosage in a

given 4 hour window). The action space was restricted to these

two interventions as both drugs are extremely important in the

management of septic patients. Sepsis medication co-occurrence

distribution is depicted in Fig. 4. Additionally, the statistics of the

extracted datasets used in this paper are summarized in Table 2.

For each patient, we extract relevant physiological parameters

with the suggestion of clinicians, which include static variables
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Figure 4: Sepsis medication co-occurrence distribution of
survived patients (blue) and deceased patients (red)

Table 2: Dataset statistics

Dataset #Survived #Deceased #Medication #Disease

Comorbidity 16,508 3,685 35 2,000

Sepsis 6,620 3,569 25 1

and time-series variables. Finally, we select 8 demographic features

which are static and 12 clinical variables shown in Table 3. These

variables are first rescaled to z-scores, then rescaled to [0, 1]. We

impute the missing variable with k-nearest neighbors and remove

admissions with more than 10 missing variables. Each hospital ad-

mission of a patient is regarded as a treatment plan. Time-series

data in each treatment plan is divided into different units, each of

which is set to 24 hours since it is the median of the prescription

frequency in MIMIC-III. If several data points are in one unit, we

use their average values instead. We remove patients less than 18

years old because of the special conditions of minors. Finally, we

obtain 20,193 hospital admissions of comorbidity patients (16,508

survived patients and 3,685 deceased patients) and 10,189 hospital

admissions of Sepsis patients (6,620 survived patients and 3,569 de-

ceased patients). We randomly divide the two datasets for training,

validation, and testing sets by the proportion of 80%/10%/10%.

4.2 Metrics and Baselines
Canonical metrics for multi-label learning task are adopted to mea-

sure the degree of consistency between recommended prescriptions

and those from doctors’ prescriptions, including macro and micro

average of the AUC scores (denoted as MA-AUC and MI-AUC), and

Jaccard coefficient. For a patient an , let U
∗
n be the medication set

given by doctors andU n
be the medication set recommended from

learned policies. The mean Jaccard is defined as

1

N

N∑
n=1

| Un ∩U ∗
n |

| Un ∪U ∗
n |
, (20)

whereN is the number of patients. Note that the above threemetrics

are calculated on the positive trajectories because our goal is to

recover the positive behavior.

Additionally, mortality rate is also been estimated with off-policy

policy evaluation, which utilizes a set of previously-collected tra-

jectories to estimate the value of the learned policy (πθ ) without
interacting with the environment [10, 26]. In this paper we use
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Table 3: Description of demographics, clinical variables and
medications

Demographics

gender, age, weight, height, religion,

language, marital status, and ethnicity

Lab Tests &

Vital Signs

diastolic blood pressure, Glasgow coma scale,

systolic blood pressure, fraction of inspired O2,

heart rate, pH, respiratory rate, blood glucose,

body temperature, blood oxygen saturation,

blood glucose, and urine output

Medications

Comorbidity: Ondansetron, Quinapril,
Paroxetine, Azithromycin, Guaiacolsulfonate

Bisacodyl, Ondansetron, Dextromethorphan-K,

Lorazepam, Acetaminophen, Metoprolol,

Oxazepam, Tizanidine, Etomidate, Sirolimus,

Duloxetine, Clonazepam, Fluoxetine, Alteplase,

Bumetanide, Dobutamine, Simethicone,

DopAmine, Carvedilol, Linezolid, Vasopressin,

Azithromycin, Nephrocaps, Spironolactone,

Guaifenesin, Allopurinol, Erythromycin,

Dexmedetomidine, Metformin, Pravastatin

Sepsis: five dosages of IV fluid,

five dosages of Vasopressor.

the Doubly Robust Off-policy Value Evaluation [16] to obtain an

unbiased estimation of the value of the learned policies.

The baselines compared in this paper are described as follows:

• Behavior Cloning (BC): It cuts the trajectories into state-

action tuples and learns a policy from the demonstrations

via supervised learning.

• SRL-RNN [35]: It manually designs a sparse reward func-

tion that assigns rT = 15 if a patient discharges in the

end, and rT = −15 if the patient dies; rt = 0 when t =
0, 1, ...,T − 1.

• D3Q [28]: This method designed a reward function as SRL-

RNN and trains the policy via deep Q-learning.

• GAIL+ and GAIL+,− [15]: GAIL utilizes GAN to solve the

imitation learning problems which learns a policy directly

by approaching the expert trajectories via the reward signals

provided by the discriminator. GAIL
+
only takes the positive

trajectories while GAIL
+,−

uses both positive and negative

trajectories.

To ensure fair comparisons, we use the same neural network

architecture for all baselines. The discriminator networks of GAIL

and ACIL used the same 4-layer MLPs as the policy network with

an embedding size of 64. The weights of the two discriminators

in ACIL are both set as 0.5. We utilize Adam to optimize all the

models.

4.3 Results
4.3.1 Model Comparisons. Table 4 summarizes the performance

of the baselines evaluated by the four metrics. We observe that: 1)

Behavior cloning has higher mortality rate over the other baselines.

The reason is that, with the i.i.d assumption on states, behavior

Table 4: Model comparisons on Comorbidity and Sepsis

Methods

Comorbidity

Mortality Rate MA-AUC MI-AUC Jaccard

BC 0.265 0.614 0.688 0.375

SRL-RNN 0.234 0.625 0.699 0.387

D3Q 0.238 0.531 0.609 0.219

GAIL
+,−

0.252 0.601 0.679 0.366

GAIL
+

0.240 0.623 0.692 0.382

ACIL 0.214 0.646 0.715 0.418

Sepsis

BC 0.401 0.541 0.646 0.327

SRL-RNN 0.379 0.539 0.640 0.339

D3Q 0.394 0.532 0.641 0.326

GAIL
+,−

0.393 0.537 0.639 0.334

GAIL
+

0.381 0.545 0.653 0.349

ACIL 0.369 0.578 0.671 0.372
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(f) Comorbidity-ACIL

Figure 5: Mortality vs. expected return curve computed by
the learned policies of differentmodels with 2,000 Bootstrap
samples. The shaded area represents the standard error of
mean.
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Figure 6: Visualization of the patients embedding. Green nodes indicate the patient embedding generated by different policies.
Red nodes are the deceased patients’ embedding and blue nodes are the survived patients’ embedding.

cloning suffers from compounding errors as policy unrolled. 2)

With the mixture of positive and negative trajectories, adversarial

imitation learning GAIL
+,−

follows the sub-optimal policies and re-

sults in a worse performance compared to GAIL
+
. 3) Reinforcement

learning algorithm (SRL-RNN and D3Q) is not effective with the

sparse reward functions. Imitation learning can alleviate this prob-

lem by obtaining the reward signal from demonstrations. 4) ACIL

consistently outperforms all baselines. It’s because ACIL considers

discovering DTRs as a sequential decision making problem and fo-

cuses on the long-term influence on the current action. Additionally,

with the usage of both positive and negative demonstrations, ACIL

is able to mimic the positive policies while avoiding the mistakes

(negative demonstrations).

4.3.2 Mortality vs. Expected Return. We consider the output of

the discriminators of GAIL
+
, GAIL

+,−
and ACIL as the reward.

The expected returns of each patient in the test datasets can be

calculated with this reward signal. The relation between expected

returns and mortality rates is shown in Figure 5. It can be seen from

the figure that ACIL has a more clear negative correlation between

expected returns and mortality rates, as indicated in Fig 5 (e)-(f),

than the other adversarial methods, which demonstrates that ACIL

can well evaluate the value of the policy.

4.4 Visualization
4.4.1 Trajectories Embedding. We extract the first-layer hidden

variables of the policy network as the embedding of the patients

with the input of the states. The patients’ representations learned by

different methods are visualized with t-SNE [23] as shown in Fig. 6.

Each node indicates the states of a patient: blue nodes present the

survived patients, red nodes indicate the deceased patients, green
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Figure 7: Action frequency comparison on Sepsis dataset
among positive treatments (blue), negative treatments (red)
and ACIL’s policy (green).

nodes are the generated patients with the treatments given by the

different methods. We obtain an embedding of the patients with

the average of the sequence states of the patients at each time step.

We observe that: (1) The original state distribution which is visu-

alized by the original states of the patients shows that the states

of survived patients and deceased patients are hard to distinguish

in Comorbidity dataset, while they are easy to differentiate among

sepsis patients. (2) The embedding learned by ACIL can correctly

distinguish the negative trajectories and positive trajectories, which

provides empirical evidences for the effectiveness of our methods.

It also demonstrates that, leveraging the negative samples can help

learn a policy that mimics the positive demonstrations while dif-

fers from the demonstrations. (3) GAIL
+
and GAIL

+,−
are easy to

generated similar trajectories as the negative policies, which are

not effective.

1792



Adversarial Cooperative Imitation Learning for Dynamic Treatment Regimes WWW ’20, April 20–24, 2020, Taipei, Taiwan

0 3 6 9 1215182124273033
Positive Action

0

5

10

15

20

25

Ti
m

e 
St

ep

0 3 6 9 1215182124273033
ACIL Action

0

5

10

15

20

25

0 3 6 9 1215182124273033
Negative Action

0

5

10

15

20

25

Figure 8: Prescriptions for patients in Comorbidity

0 3 6 9 12 15 18 21 24
Positive Action

0

5

10

15

Ti
m

e 
St

ep

0 3 6 9 12 15 18 21 24
ACIL Action

0

5

10

15

0 3 6 9 12 15 18 21 24
Negative Action

0

5

10

15

Figure 9: Prescriptions for patients in Sepsis

D
ia

B
P

Positive Policy ACIL Policy Negative Policy

Te
m

pe
ra

tu
re

0 3 6 9 12 15 18 21 24 27
ICU Hour

R
es

pi
ra

to
ry

 R
at

e

Figure 10: States of the patients in Comorbidity

4.4.2 Policy Distribution Analysis. In the dataset description Sec-

tion 4.1 we show that there are some differences between the dis-

tributions derived from the positive demonstrations and negative

demonstrations (as shown in Fig. 3-4). In this part, we count the ac-

tion frequency of the positive policy, negative policy and ACIL’s pol-

icy, and plot their distributions in Fig. 7. Notably, the policy learned

by ACIL is close to the positive demonstrations while different from

To
ta

l p
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Figure 11: States of the patients in Sepsis

the negative demonstrations, which verified the effectiveness of

the negative demonstrations for learning a policy.

4.5 Case Study
We select two patients from Comorbidity dataset (with lung cancer)

and two patients from Sepsis dataset with similar initial states (i.e.,

similar ages and lab test results), as shown in Fig. 10 and 11. The

patients with blue prescription (positive actions) were survived and
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the patients with red prescription (negative actions) were deceased.

We sample two initial state that are similar to these four patients,

and apply ACIL with the two initial states to generate the state

trajectories (marked in green) on the patient model, and all the

patients with green trajectories are survived finally. It shows that

ACIL can learn a policy which is close to the positive actions while

stays far away from the negative actions, as shown in Fig. 8 and 9.

The x-axis in the figure indicates the action index and the y-axis is

the ICU hour of the patient. Each element in ith row and jth column

with colors indicates the j-th medication is given for the patient at

time step i . Similarly, the state trajectories generated by ACIL can

also match the trajectories generated by the positive policies. This

result demonstrates that both the positive and negative trajectories

can help ACIL learn a policy. The positive demonstrations teach

ACIL to learn what to do, and the negative demonstrations teach

ACIL to learn what not to do.

4.6 Model Analysis
4.6.1 Convergence Analysis. Figure 12 presents the loss of the two
discriminators and the return of the learned policy obtained in each

learning epoch. Notably, ACIL is able to stably converge which is

coordinated with our analysis.

4.6.2 Parameter Sensitivity. Figure 13 shows the effectiveness of
the weight parameter ωα , which is used to balance adversarial

discriminator and cooperative discriminator. It can be inferred from

the figure that, when taking value ≥ 0.5, the model can achieve

relatively high Jaccard, MI-AUC andMA-AUC and a lower mortality

rate.
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Figure 12: Convergence anal-
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5 RELATEDWORK
5.1 Imitation Learning
Imitation learning, also known as learning from demonstrations,
can be generally grouped into three categories: behavior cloning

(BC), inverse reinforcement learning (IRL) and adversarial imitation

learning (AIL). BC [25] is a form of supervised learning which is to

learn a direct mapping from the states to the actions. BC can avoid

interacting with the environment. However, without substantial

correction during training, BC is known to have compounding

error [30].

Instead of directly utilizing the supervised signal from demon-

strations, inverse reinforcement learning [1, 39] finds a reward

function that models the intention of the demonstrator. The learned

reward function gives feedback to the states that were un-visited.

A policy can be learned by reinforcement learning methods [33]

with this reward function. Maximum entropy IRL [11, 36, 40] seeks

to find a reward function that makes the demonstrations achieve

highest total reward as well as maximize the entropy of the resul-

tant policy. Though these methods can alleviate the compounding

error issue, they learn a policy indirectly with an inner loop of

reinforcement learning, which is costly.

Adversarial imitation learning [15] leverages generative adver-

sarial networks [12] to directly learn the policy and reward function

simultaneously, where the policy corresponds to the generator and

the discriminator plays as the reward function.

Most of the imitation learningmethodsworkwith success demon-

strations. However, the agent can also be trained from the failure

demonstrations to learn what not to do [13]. Here in ACIL, it incor-

porates both success and failure demonstration trajectories.

5.2 Treatment Recommendation
BC [2, 7, 17, 37] and reinforcement learning [3, 21, 28, 31, 35, 37]

are two major methods used to learn DTRs. When the EHRs are

plentiful and optimal, BC can effectively recover the doctor’s poli-

cies. However, due to the dynamics of the treatment process, BC

methods are easy to introduce the compounding error. The ineffi-

ciencies of BC come from the sequential nature of this problem. In

BC, even a slight errors in mimicking the demonstration behavior

can quickly accumulate as the policy unrolled [9, 29]. To correct

the mistakes, the corrective behaviors should appear frequently. In

addition, The failure samples are usually discarded, either explicitly

by researchers, or implicitly in the algorithms themselves in BC,

which reduce the sample efficiency. (The EHR datasets are very

limited, we should make full use of them.)

To make use of both success and failure datasets, RL based meth-

ods can directly learn a policy via the goal of maximizing the long-

term reward of patients [3, 21, 28, 35]. However, they requires

hand-crafted, knowledge of the true signs of the rewards features.

In addition, the learned policy is highly rely on the accuracy of the

pre-defined reward function.

6 CONCLUSIONS
In this paper, we propose ACIL to learn the optimal dynamic treat-

ment regimes with both positive and negative demonstration tra-

jectories as inputs. The learned policy is able to mimics the positive

demonstrations while differs from the negative demonstrations

with two discriminators: an adversarial discriminator is used to

minimize the discrepancies between the demonstrations generated

from the policy and the positive demonstrations, and a cooperative

discriminator is used to distinguish the negative demonstrations

from the positive and generated demonstrations. ACIL utilizes the

reward signals from the discriminators to refine the policy and the

patient model built with variational autoencoders. Empirical results

on MIMIC-III demonstrate that ACIL improves the likelihood of

patient survival and provides better dynamic treatment regimes

with the usage of all treatment demonstrations.
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