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ABSTRACT

Previous models for video captioning often use the output from a specific layer of
a Convolutional Neural Network (CNN) as video representations, preventing them
from modeling rich, varying context-dependent semantics in video descriptions.
In this paper, we propose a new approach to generating adaptive spatiotemporal
representations of videos for a captioning task. For this purpose, novel attention
mechanisms with spatiotemporal alignment is employed to adaptively and sequen-
tially focus on different layers of CNN features (levels of feature “abstraction”),
as well as local spatiotemporal regions of the feature maps at each layer. Our
approach is evaluated on three benchmark datasets: YouTube2Text, M-VAD and
MSR-VTT. Along with visualizing the results and how the model works, these
experiments quantitatively demonstrate the effectiveness of the proposed adaptive
spatiotemporal feature abstraction for translating videos to sentences with rich se-
mantics.

1 INTRODUCTION

Videos represent among the most widely used forms of data, and their accurate characterization
poses an important challenge for computer vision and machine learning. Generating a natural-
language description of a video, termed video captioning, is an important component of video anal-
ysis. Inspired by the successful encoder-decoder framework used in machine translation (Cho et al.,
2014; Bahdanau et al., 2015; Sutskever et al., 2014) and image caption generation (Kiros et al.,
2014; Vinyals et al., 2015; Karpathy & Li, 2015; Mao et al., 2015; Pu et al., 2016; Gan et al., 2016),
most recent work on video captioning (Donahue et al., 2015; Venugopalan et al., 2015a;b; Yao et al.,
2015; Pan et al., 2016b; Yu et al., 2016) employs a two-dimensional (2D) or three-dimensional (3D)
Convolutional Neural Network (CNN) as an encoder, mapping an input video to a compact feature-
vector representation. A Recurrent Neural Network (RNN) is typically employed as a decoder,
unrolling the feature vector to generate a sequence of words of arbitrary length.

Despite achieving encouraging success in video captioning, previous models suffer important lim-
itations. Often the rich video content is mapped to a single feature vector for caption generation;
this approach is prone to miss detailed and localized spatiotemporal information. To mitigate this,
one may employ methods to focus attention on local regions of the feature map, but typically this
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is done with features from a selected (usually top) CNN layer. By employing features from a fixed
CNN layer, the algorithm is limited in its ability to model rich, context-aware semantics that re-
quires focusing on different feature abstraction levels. As investigated in Mahendran & Vedaldi
(2015); Zeiler & Fergus (2014), the feature characteristics/abstraction is correlated with the CNN
layer: features from layers at or near the top of a CNN tend to focus on global (extended) visual
percepts, while features from lower CNN layers provide more local, fine-grained information. It is
desirable to select/weight features from different CNN layers adaptively when decoding a caption,
selecting different levels of feature abstraction by sequentially emphasizing features from different
CNN layers. In addition to focusing on features from different CNN layers, it is also desirable to
emphasize local spatiotemporal regions in feature maps at particular layers.

To realize these desiderata, our proposed decoding process for generating a sequence of words dy-
namically emphasizes different levels (CNN layers) of 3D convolutional features, to model impor-
tant coarse or fine-grained spatiotemporal structure. Additionally, the model adaptively attends to
different locations within the feature maps at particular layers. While some previous models use 2D
CNN features to generate video representations, our model adopts features from a deep 3D convo-
lutional neural network (C3D). Such features have been shown to be effective for video representa-
tions, action recognition and scene understanding (Tran et al., 2015), by learning the spatiotemporal
features that can provide better appearance and motion information. In addition, the proposed model
is inspired by the recent success of attention-based models that mimic human perception (Mnih et al.,
2014; Xu et al., 2015).

Our proposed model, adaptive spatiotemporal feature representation with dynamic feature abstrac-
tion, involves comparing and evaluating different levels of 3D convolutional feature maps. However,
this has three challenges to overcome to directly compare features between layers: (i) the features
from different C3D levels have distinct dimensions, undermining the use of a multi-layer perceptron
(MLP) (Xu et al., 2015; Bahdanau et al., 2015) based attention model; (ii) the features represented in
each layer are not spatiotemporally aligned, undermining our ability to quantify the value of features
at a specific spatiotemporal location, based on information from all CNN layers; and (iii) the seman-
tic meaning of feature vectors from the convolutional filters of C3D varies across layers, implying
that the layer-dependent features are in different semantic spaces and making it difficult to feed the
features into the same RNN decoder.

To address these issues, one may use either pooling or MLPs to map different levels of features
to the same semantic-space dimension. However, these approaches either lose a lot of feature ab-
straction information or have too many parameters to generalize well. In our approach, we employ
convolution operations to elegantly achieve spatiotemporal alignment among C3D features from dif-
ferent levels and attention mechanisms to dynamically select context-dependent feature abstraction
information.

The principal contributions of this paper are as follows: (i) A new video-caption-generation model
is developed by dynamically modeling context-dependent feature abstractions;(ii) New attention
mechanisms to adaptively and sequentially emphasize different levels of feature abstraction (CNN
layers), while also imposing attention within local spatiotemporal regions of the feature maps at each
layer are employed; (iii) 3D convolutional transformations are introduced to achieve spatiotempo-
ral and semantic feature consistency across different layers; (iv) We demonstrate that the proposed
model outperforms other multi-level feature based methods such as hypercolumns (Hariharan et al.,
2015) and achieves state-of-the-art performance on several benchmark datasets. We call the pro-
posed algorithm Adaptive SpatioTemporal representation with dynAmic abstRaction (ASTAR).

2 RELATED WORK

Early work on video captioning used a two-step approach, employing role-word detection (e.g.,
subject, verb and object) and rules for language grammar. In such work, the sentence for video
description is first split into several parts, each of which is aligned with visual content. For example,
Rohrbach et al. (2013; 2014) learn a Conditional Random Field (CRF) to infer high-level concepts
such as object and action; in Guadarrama et al. (2013) semantic hierarchies are used to choose an
appropriate level of sentence fragments. Statistical language models, learned from large text corpora,
are used to translate the semantic representation to a grammatically correct sentence.
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Recent work often develops a probabilistic model of the caption, conditioned on a video. Donahue
et al. (2015); Venugopalan et al. (2015a;b); Yu et al. (2016); Pan et al. (2016a) applied a 2D CNN
pretrained on ImageNet to video frames, with the top-layer output of the CNN used as features.
Given the sequence of features extracted from video frames, the video representation is then obtained
by a CRF (Donahue et al., 2015), mean pooling (Venugopalan et al., 2015b), weighted mean pooling
with attention (Yu et al., 2016), or via the last hidden state of an RNN encoder (Venugopalan et al.,
2015a). Yao et al. (2015) replace the 2D CNN features with a 3D CNN to model the short temporal
dynamics. These works were followed by Pan et al. (2016b), which jointly embedded the 2D CNN
features and spatiotemporal features extracted from a 3D CNN (Tran et al., 2015). However, all of
these previous models utilize features extracted from the top layer of the CNN.

There are also some work that combines mult-level features of CNN. Sermanet et al. (2013) em-
ployed a combination of intermediate layers with the top layer for pedestrian detection while Har-
iharan et al. (2015) utilized hypercolumn representation for object segmentation and localization.
Our proposed model is mostly related to Ballas et al. (2016), but distinct in important ways. The in-
termediate convolutional feature maps are leveraged, like Ballas et al. (2016), but an attention model
is developed instead of the “stack” RNN in Ballas et al. (2016). In addition, a powerful decoder en-
hanced with two attention mechanisms is constructed for generating captions, while a simple RNN
decoder is employed in Ballas et al. (2016). Finally, we use features extracted from C3D instead of
a 2D CNN.

3 METHOD

Consider N training videos, the nth of which is denoted X(n), with associated caption Y(n). The
length-Tn caption is represented Y(n) = (y

(n)
1 , . . . ,y

(n)
Tn

), with y
(n)
t a 1-of-V (“one hot”) encoding

vector, with V the size of the vocabulary.

For each video, the C3D feature extractor (Tran et al., 2015) produces a set of features A(n) =

{a(n)
1 , . . . ,a

(n)
L ,a

(n)
L+1}, where {a(n)

1 , . . . ,a
(n)
L } are feature maps extracted from L convolutional

layers, and a
(n)
L+1 is a vector obtained from the top fully-connected layer.

The convolutional-layer features, {a(n)
1 , . . . ,a

(n)
L }, are extracted by feeding the entire video into

C3D, and hence the dimensions of {a(n)
1 , . . . ,a

(n)
L } are dependent on the video length (number

of frames). As discussed below, we employ spatiotemporal attention at each layer (and between
layers), and therefore it is not required that the sizes of {a(n)

1 , . . . ,a
(n)
L } be the same for all videos.

However, the fully connected layer at the top, responsible for a(n)
L+1, assumes that a(n)

L is of the same
size for all videos (like the 16-frame-length videos in (Tran et al., 2015)). To account for variable-
length videos, and maintain the same fully-connected layer at the top, we employ mean pooling to
a
(n)
L , based on a window of length 16 (as in (Tran et al., 2015)) with an overlap of 8 frames. The

particular form of pooling used here (one could also use max pooling) is less important than the need
to make the dimension of the top-layer features the same for feeding into the final fully-connected
layer.

3.1 CAPTION MODEL

For notational simplicity, henceforth we omit superscript n. The t-th word in a caption, yt, is
mapped to an M -dimensional vector wt = Weyt, where We ∈ RM×V is a learned word-
embedding matrix, i.e., wt is a column of We chosen by the one-hot yt. The probability of caption
Y = {yt}t=1,T is defined as

p(Y|A) = p(y1|A)
∏T
t=2 p(yt|y<t,A) . (1)

Specifically, the first word y1 is drawn from p(y1|A) = softmax(Vh1), where h1 =
tanh(CaL+1). Bias terms are omitted for simplicity throughout the paper. All the other words
in the caption are then sequentially generated using an RNN, until the end-sentence symbol is gen-
erated. Conditional distribution p(yt|y<t,A) is specified as softmax(Vht), where ht is recursively
updated as ht = H(wt−1,ht−1, zt). V is a matrix connecting the RNN hidden state to a softmax,
for computing a distribution over words. zt = φ(ht−1,a1, . . . ,aL) is the context vector used in
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Figure 1: Illustration of our proposed caption-generation model. The model leverages a fully-connected map
from the top layer as well as convolutional maps from different mid-level layers of a pretrained 3D convolutional
neural network (C3D). The context vector zt is generated from previous hidden unitht−1 and the convolutional
maps {a1, . . . ,aL} (the red frame) which is detailed in Fig.2
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Figure 2: Illustration of our attention mechanism. The video features are extracted by C3D, followed by a 3D
convolutional transformation. At each time step, the spatiotemporal attention takes these features and previous
hidden units to generate L feature vectors which are fed to the abstraction attention, manifesting the context
vector.

the attention mechanism, capturing the relevant visual features associated with the spatiotemporal
attention (also weighting level of feature abstraction), as detailed in Sec. 3.2.

Note that the output of the fully-connected-layer, aL+1, is only used to generate the first word
(encapsulating overall-video features). We found that only using aL+1 there works better in practice
than using it at each time step of the RNN, as also found in Vinyals et al. (2015); Venugopalan et al.
(2015b).

The transition function H(·) is implemented with Long Short-Term Memory (LSTM) (Hochreiter
& Schmidhuber, 1997). At time t, the LSTM unit consists of a memory cell ct and three gates:
the input it, forget f t, and output ot gates. The memory cell transmits the information from the
previous step to the current step, while the gates control reading or writing the memory unit through
sigmoid functions. Specifically, the hidden units ht are updated as follows:

it = σ(Wiwwt−1 +Wihht−1 +Wizzt), f t = σ(Wfwwt−1 +Wfhht−1 +Wfzzt),

ot = σ(Wowwt−1 +Wohht−1 +Wozzt), c̃t = tanh(Wcwwt−1 +Wchht−1 +Wczzt),

ct = f t � ct−1 + it � c̃t, ht = ot � tanh(ct), (2)

where σ(·) and � denote the sigmoid function and the element-wise multiply operator, respectively.
Matrices W{i,f,o,c}, V and C represent the set of LSTM parameters that will be learned (plus
associated biases).

Given the video X (with features A) and associated caption Y, the objective function is the sum of
the log-likelihood of the caption conditioned on the video representation:

log p(Y|A) = log p(y1|A) +
∑T
t=2 log p(yt|y<t,A) , (3)

Equation (3) is a function of all model parameters to be learned; they are not explicitly depicted
in (3) for notational simplicity. Further, (3) corresponds to a single video-caption pair, and when
training we sum over all such training pairs. Our proposed model is illustrated in Figure 1.
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3.2 ATTENTION MECHANISM

We first define notation needed to describe attention mechanism φ(ht−1,a1, . . . ,aL). Each feature
map, al, is a 4D tensor, with elements corresponding to two spatial coordinates (i.e., vertical and
horizontal dimensions in a given frame), third tensor index in the frame-index dimension, and a
fourth dimension associated with the filter index (for the convolutional filters). To be explicit, at
CNN layer l, the number of dimensions of this tensor are denoted nlx×nly×nlz×nlF , with respective
dimensions corresponding to vertical, horizontal, frame, and filter (e.g., nlF convolutional filters at
layer l). Note that dimensions nlx, nly and nlz vary with layer level l (getting smaller with increasing
l, due to pooling).

We define ai,l as a nlF -dimensional vector, corresponding to a fixed coordinate in three of the ten-
sor dimensions, i.e., i ∈ [1, . . . , nlx] × [1, . . . , nly] × [1, . . . , nlz], while sweeping across all nlF
feature/filter dimensions. Further, define al(k) as a 3D tensor, associated with 4D tensor al. Specif-
ically, al(k) corresponds to the 3D tensor manifested from al, with k ∈ {1, . . . , nlF } a fixed coor-
dinate in the dimension of the filter index. Hence, al(k) corresponds to the 3D feature map at layer
l, due to the kth filter at that layer.

We introduce two attention mechanisms when predicting word yt: (i) spatiotemporal-localization
attention, and (ii) abstraction-level attention; these, respectively, measure the relative importance of
a particular spatiotemporal location and a particular CNN layer (feature abstraction) for producing
yt, based on the word-history information y<t.

To achieve this, we seek to map al → âl, where 4D tensors âl all have the same dimensions,
are embedded into same semantic spaces, and are aligned spatialtemporally. Specifically, âl, l =
1, . . . , L−1 are aligned in the above ways with aL. To achieve this, we filter each al, l = 1, . . . , L−
1, and then apply max-pooling; the filters seek semantic alignment of the features (including feature
dimension), and the pooling is used to spatiotemporally align the features with aL. Specifically,
consider

âl = f(
∑nl

F

k=1 al(k) ∗Uk,l), (4)

for l = 1, . . . , L− 1, and with âL = aL. As discussed above, al(k) is the 3D feature map (tensor)
for dictionary k ∈ {1, . . . , nlF } at layer l, and Uk,l is a 4D tensor. The convolution ∗ in (4) operates
in the three shift dimensions, and al(k)∗Uk,l manifests a 4D tensor. Specifically, each of the nLF 3D
“slices” of Uk,l are spatiotemporally convolved (3D convolution) with ak,l, and after summing over
the nlF convolutional filters, followed by f(·), this manifests each of the nLF 3D slices of âl. Function
f(·) is an element-wise nonlinear activation function, followed by max pooling, with the pooling
dimensions meant to realize final dimensions consistent with aL, i.e., dimension nLx×nLy ×nLz ×nLF .
Consequently, âi,l ∈ RnL

F is a feature vector with i ∈ [1, . . . , nLx ]× [1, . . . , nLy ]× [1, . . . , nLz ]. Note
that it may only require one 3D tensor Ul applied on each 3D slices al(k) for each layer to achieve
spatiotemporal alignment of the layer-dependent features. However, the features from two distinct
layers will not be in the same “semantic” space, making it difficult to assess the value of the layer-
dependent features. The multiple tensors in set {Uk,l} provide the desired semantic alignment
between layers, allowing analysis of the value of features from different layers via a single MLP, in
the following (5) and (6).

With {âl}l=1,L semantically and spatiotemporally aligned, we now seek to jointly quantify the value
of a particular spatiotemporal region and a particular feature layer (“abstraction”) for prediction of
the next word. For each âi,l, the attention mechanism generates two positive weights, αti and
βtl, which measure the relative importance of location i and layer l for producing yt based y<t.
Attention weights αti and βtl and context vector zt are computed as

eti = wT
α tanh(Waαâi +Whαht−1), αti = softmax({eti}), st = ψ({âi}, {αti}), (5)

btl = wT
β tanh(Wsβstl +Whβht−1), βtl = softmax({btl}), zt = ψ({stl}, {βtl}), (6)

where âi is a vector composed by stacking {âi,l}l=1,L (all features at position i). eti and btl are
scalars reflecting the importance of spatiotemporal region i and layer t to predicting yt, while αti
and βtl are relative weights of this importance, reflected by the softmax output. ψ(·) is a function
that returns a single feature vector when given a set of feature vectors, and their corresponding
weights across all i or l. Vector stl reflects the sub-portion of st associated with layer l.
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In (5) we provide attention in the spatiotemporal dimensions, with that spatiotemporal attention
shared across all L (now aligned) CNN layers. In (6) the attention is further refined, focusing
attention in the layer dimension.

To make the following discussion concrete, we describe the attention function within the context of
zt = ψ({stl}, {βtl}). This function setup is applied in the same way to st = ψ({âi}, {αti}).

Soft attention Following Bahdanau et al. (2015), we formulate the soft attention model by com-
puting a weighted sum of the input features

zt = ψ({stl}, {βtl}) =
∑L
l=1 βtlstl. (7)

The model is differentiable for all parameters and can be learned end-to-end using standard back-
propagation.

Hard attention Let mt ∈ {0, 1}L be a vector of all zeros, and a single one, and the location of
the non-zero element of mt identifies the location to extract features for generating the next word.
We impose

mt ∼ Mult(1, {βtl}), zt =
∑L
l=1mtlstl. (8)

In this case, optimizing the objective function in (3) is intractable. However, the marginal log-
likelihood can be lower-bounded as

log p(Y|A) = log
∑

m p(m|A)p(Y|m,A) ≥
∑

m p(m|A) log p(Y|m,A), (9)
where m = {mt}t=1,...,T . Inspired by importance sampling, the multi-sample stochastic lower
bound has been recently used for latent variable models (Ba et al., 2015; Burda et al., 2016), defined
as

LK(Y) =
∑

m1:K p(m1:K |A)
[
log 1

K

∑K
k=1 p(Y|mk,A)

]
, (10)

where m1, . . . ,mK are independent samples. This lower bound is guaranteed to be tighter with the
increase of the number of samples K (Burda et al., 2016), thus providing a better approximation of
the objective function than (9). As shown in Mnih & Rezende (2016), the gradient of LK(Y) with
respect to the model parameters is

∇LK(Y) =
∑

m1:K p(m1:K |A)
∑K
k=1

[
L(m1:K)∇ log p(mk|A) + ωk∇p(Y|mk,A)

]
, (11)

where L(m1:K) = log 1
K

∑K
k=1 p(Y|mk,A) and ωk = p(Y|mk,A)∑

j p(Y|mj ,A) . A variance reduction
technique is introduced in Mnih & Rezende (2016) by replacing the above gradient with an unbiased
estimator

∇LK(Y) ≈
∑K
k=1

[
L̂(mk|m−k)∇ log p(mk|A) + ωk∇p(Y|mk,A)

]
, (12)

where
L̂(mk|m−k) = L(m1:K)− log 1

K

(∑
j 6=k p(Y|mj ,A) + f(Y,m−k,A))

)
, (13)

f(Y,m−k,A) = exp( 1
K−1

∑
j 6=k log p(Y|mj ,A). (14)

When learning the model parameters, the lower bound (10) is optimized via the gradient approxi-
mation in (12).

As an alternative method, one may first produce abstraction-level attention weights βl, followed by
generating spatiotemporal attention weights αi, i.e., switching the order of (5) and (6). However,
we empirically found that this method provides slightly worse performance (we implemented and
tested both) in our experiments, partially due to the increase of the number of parameters.

4 EXPERIMENTS

4.1 DATASETS

We present results on three benchmark datasets: Microsoft Research Video Description Corpus
(YouTube2Text) (Chen & Dolan, 2011), Montreal Video Annotation Dataset (M-VAD) (Torabi et al.,
2015), and Microsoft Research Video to Text (MSR-VTT) (Xu et al., 2016).
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The Youtube2Text contains 1970 Youtube clips, and each video is annotated with around 40 sen-
tences. For fair comparison, we used the same splits as provided in Venugopalan et al. (2015b), with
1200 videos for training, 100 videos for validation, and 670 videos for testing.

The M-VAD is a large-scale movie description dataset, which is composed of 46587 movie snippets
annotated with 56752 sentences. We follow the setting in Torabi et al. (2015), taking 36920 videos
for training, 4950 videos for validation, and 4717 videos for testing.

The MSR-VTT is a newly collected large-scale video dataset, consisting of 20 video categories.
The dataset was split into 6513, 2990 and 497 clips in the training, testing and validation sets.
Each video has about 20-sentence descriptions. The ground-truth captions in the testing set are not
available now. Thus, we split the original training dataset into a training set of 5513 clips and a
testing set of 1000 clips.

We convert all captions to lower case and remove the punctuation, yielding vocabulary sizes V =
12594 for Youtube2Text, V = 13276 for M-VAD, and V = 8071 for MSR-VTT.

4.2 TRAINING PROCEDURE

We consider the RGB frames of videos as input, and all videos are resized to 112 × 112 spatially,
with 2 frames per second; note that the temporal sample rate of the videos are consequently con-
sistent, but not necessarily the total number of frames. The C3D (Tran et al., 2015) is pretrained
on Sports-1M dataset Karpathy et al. (2014), consisting of 1.1 million sports videos belonging to
487 categories. We extract the features from four convolutional layers and one fully connected layer,
named as pool2, pool3, pool4, pool5 and fc-7 in the C3D (Tran et al., 2015), respectively. The model
architecture of C3D is provided in Appendix B. The kernel sizes of the convolutional transformation
in (4) are 7 × 7 × 7, 5 × 5 × 5 and 3 × 3 × 3 for layer pool2, pool3 and pool4 with 3 × 3 × 3,
2× 2× 2 and 1× 1× 1 zero padding, respectively. f(·) is implemented by ReLU (Nair & Hinton,
2010), followed by 3D max-pooling with 8× 8× 8, 4× 4× 4 and 2× 2× 2 ratios. More details for
achieving spatiotemporal alignment are provided in Appendix C .

All recurrent matrices in the LSTM are initialized with orthogonal initialization (Saxe et al., 2014).
We initialize non-recurrent weights from a uniform distribution in [−0.01, 0.01] and all the bias
terms are initialized to zero. Word embedding vectors are initialized with the publicly available
word2vec vectors that were trained on 100 billion words from Google News, which have dimen-
sionality 300, and were trained using a continuous bag-of-words architecture (Mikolov et al., 2013).
The embedding vectors of words not present in the pre-trained set are initialized randomly. The
number of hidden units in the LSTM is set as 512 and we use mini-batches of size 32. Gradients
are clipped if the norm of the parameter vector exceeds 5 (Sutskever et al., 2014). The number
of samples for multi-sample stochastic lower bound is set to 10. We do not perform any dataset-
specific tuning and regularization other than dropout (Srivastava et al., 2014) and early stopping on
validation sets. The Adam algorithm Kingma & Ba (2014) with learning rate 0.0002 is utilized for
optimization. All experiments are implemented in Torch (Collobert et al., 2011).

4.3 EVALUATION

The widely used BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005) and CIDEr
(Vedantam et al., 2015) metrics are employed to quantitatively evaluate the performance of our
video caption generation model, and other models in the literature. For each dataset, we show three
types of results, using part of or all of our model to illustrate the role of each component:

1. C3D fc7 + LSTM : The LSTM caption decoder is employed, only using features extracted
from the top fully-connected layer. No context vector zt is generated from intermediate
convolutional layer features.

2. Spatiotemporal attention + LSTM: The context vector zt is included, but only features
extracted from a certain convolutional layer are employed, i.e., zt is equal to st in (5). The
spatiotemporal attention is implemented with the soft attention in (7). For example, “C3D
fc7 + pool2” means we leverage the features from layer pool2 to generate attention weights
and context vector.
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Table 1: Results on BLEU-4, METEOR and CIDEr metrics compared to other state-of-the-art results and
baselines on Youtube2Text and M-VAD datasets. [1,2,3,4] represent Venugopalan et al. (2015a); Pan et al.
(2016b); Ballas et al. (2016); Yu et al. (2016), respectively.

Methods Youtube2Text M-VAD
BLEU-4 METEOR CIDEr BLEU-4 METEOR CIDEr

S2VT (VGG) [1] - 29.2 - - 5.6 -
LSTM-E (VGG + C3D) [2] 45.3 31.0 - - 6.7 -

GRU-RCN [3] 47.90 31.14 67.82 - - -
h-RNN (C3D+VGG) [4] 49.9 32.6 65.8 - - -

Baselines

ResNet + LSTM 44.08 30.99 66.88 0.81 6.22 5.54
C3D fc7 + LSTM 45.34 31.21 66.12 0.83 6.31 5.96

Spatiotemporal attention + LSTM

C3D fc7 + pool2 45.46 31.53 67.38 0.98 6.42 6.01
C3D fc7 + pool3 48.07 33.52 69.97 1.12 6.71 6.97
C3D fc7 + pool4 48.18 34.47 70.97 1.24 6.89 7.12
C3D fc7 + pool5 47.75 33.35 69.71 1.02 6.49 6.48

Baselines of multi-level features with attention

MLP + soft attention 35.99 23.56 44.21
Max-pooling + soft attention 45.35 31.50 62.99

Average-pooling + soft attention 48.53 33.59 65.07
Hypercolumn + soft attention 44.92 30.18 63.18

ASTAR

Soft Attention 51.74 36.39 72.18 1.94 7.72 7.98
Hard Attention 51.64 34.99 72.08 1.82 7.12 8.12

3. ASTAR: This is our proposed model developed in Sec. 3.2. We present results based on
both soft attention and hard attention.

To compare our method with other multi-level feature methods, we show several baseline results on
Youtube2Text dataset:

1. MLP : Each al is feed to a different MLP to achieve the same dimension of aL, i.e. âl =
MLP(vec(al)) for l = 1, . . . , L−1, where vec(·) denotes vectorization. The context vector
zt is obtained by abstraction-level and spatiotemporal attention.

2. Max/Average-pooling: A max or average pooling operation is utilized to achieve saptiotem-
poral alignment, and an MLP is then employed to embed the feature vectors into the same
semantic space, i.e. for each âl with l = 1, . . . , L:

ãi,l(k) = max
j∈Ni,l

aj,l(k) or
1

|Ni,l|
∑
j∈Ni,l

ai,l(k) for k = 1, . . . , nlF (15)

âi,l = MLP(ãi,l) (16)
where Ni,l is the receptive field (see Appendix C for the definition) of ai,L in the l−th
layer. Similarly, the context vector zt is computed by abstraction-level and spatiotemporal
attention.

3. Hypercolumn: This method is similar with max/average-pooling but replace the pooling
operation with hypercolumn representation. All the features are concatenated into one long
vector for every location and only a saptiotemporal attention is employed to generate the
context vector.

In these methods, the attention weights are produced by the soft attention in (7).

To verify the effectiveness of our video caption generation model and C3D features, we also im-
plement a strong baseline method based on the LSTM encoder-decoder network (Cho et al., 2014),
where ResNet He et al. (2016) is employed as the feature extractor on each frame. We denote results
using this method as ResNet + LSTM .
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4.4 QUANTITATIVE RESULTS

Table 2: Results on BLEU-4, METEOR and CIDEr metrics com-
pared to baselines on MSR-VTT.

Method BLEU-4 METEOR CIDEr

Baselines

ResNet + LSTM 39.54 26.59 45.22
C3D fc7 + LSTM 40.17 26.86 45.95

Spatiotemporal attention + LSTM

C3D fc7 + pool2 40.43 26.93 47.15
C3D fc7 + pool3 42.04 27.18 48.93
C3D fc7 + pool4 41.98 27.42 48.21
C3D fc7 + pool5 40.83 27.01 47.86

ASTAR

soft attention 43.72 29.67 50.21
hard attention 43.89 28.71 50.29

Results are summarized in Tables 1
and 2, and we obtain state-of-the-
art results on both Youtube2Text and
M-VAD datasets. On the MSR-
VTT dataset, our results also signif-
icantly outperform the strong base-
lines, demonstrating the effectiveness
of the proposed model. Note that no
comparative results exist in the liter-
ature for MSR-VTT. As a reference,
with similar settings, Xu et al. (2016)
using C3D fc7 + LSTM achieved
39.9 on BLEU-4 and 29.3 on ME-
TEOR using the standard testing set,
while state-of-the-art results are 40.8
on BLEU-4, 28.2 on METEOR, and
44.8 on CIDEr, achieved by team
“v2t navigator” from RUC and CMU
1.

It is worth noting that our model consistently yields significant improvements over models with
only spatiotemporal attention, which further achieve better performance than only taking the C3D
top fully-connected layer features; this demonstrates the importance of leveraging intermediate con-
volutional layer features. In addition, our model outperforms all the baseline results of multi-level
feature based method, demonstrating the effectiveness of our 3D convolutional transformation op-
eration. It is partly because the sparse connectivity of convolutional operation, which indicates
fewer parameters are required. Furthermore, We achieve these results using a single model, without
averaging over an ensemble of such models.

4.5 QUALITATIVE RESULTS

Following Xu et al. (2015), we visualize the attention components learned by our model on
Youtube2Text in Figure 3. As can be seen from Figure 3, the spatiotemporal attention aligns the
objects in the video well with the corresponding words. In addition, the abstraction-level attention
tends to focus on low level features when the model will generate a noun and high level features
when an article or a preposition is to be generated. More results are provided in Appendix A.1.

Examples of generated captions from unseen videos on Youtube2Text are shown in Figure 4.
We find the results with abstraction-layer attention (indicated as “soft attention” or “ hard at-
tention”) is generally equal to or better than the best results, compared to those only taking
a certain convolutional-layer feature (indicated as “Pool2” etc.) . It demonstrates the effec-
tiveness of our abstraction layer attention. More results are provided in Appendix A.2 and
http://www.cs.toronto.edu/pub/cuty/videocaption/.

5 CONCLUSION AND FUTURE WORK

We have proposed a novel video captioning model, that adaptively selects/weights the feature ab-
straction (CNN layer), as well as the location within a layer-dependent feature map. We have imple-
mented the attention using both “hard” and “soft” mechanisms, with the latter typically delivering
better performance. Our model achieves excellent video caption generation performance, and has
the capacity to provide interpretable alignments seemingly analogous to human perception.

We have focused on analysis of videos and associated captions. Similar ideas may be applied in
the future to image captioning. Additionally, the CNN parameters were learned separately as a first
step, prior to analysis of the captions. It is also of interest to consider CNN-parameter refinement
conditioned on observed training captions.

1http://ms-multimedia-challenge.com/leaderboard
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Figure 3: Visualization of attention weights aligned with input video and generated caption on Youtube2Text:
(top) Sampled frames of input video, (middle) soft attention, (bottom) hard attention. We show the frame with
the strongest attention weights. The bar plot above each frame corresponds layer attention weights βtl when
the corresponding word (under the frame) is generated.
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Figure 4: Examples of generated captions with sampled frames of input video on YouTube2Text.
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A MORE RESULTS

A.1 VISUALIZATION OF ATTENTION WEIGHTS
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A.2 GENERATED CAPTIONS
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B MODEL ARCHITECTURE OF C3D

Conv1a
64

Conv2a
128

Conv3a
256

Conv3b
256

Conv4a
512

Conv4b
512

Conv5a
512

Conv5b
512Po

ol
1 fc6

4096
fc7
4096Po

ol
3

Po
ol
4

Po
ol
2

Po
ol
5

so
ft
m
ax

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer.
All 3D convolution kernels are 3× 3× 3 with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box.
The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are 2× 2× 2, except for pool1 is 1× 2× 2. Each fully
connected layer has 4096 output units.

Method Number of Nets Clip hit@1 Video hit@1 Video hit@5
DeepVideo’s Single-Frame + Multires [18] 3 nets 42.4 60.0 78.5
DeepVideo’s Slow Fusion [18] 1 net 41.9 60.9 80.2
Convolution pooling on 120-frame clips [29] 3 net 70.8* 72.4 90.8
C3D (trained from scratch) 1 net 44.9 60.0 84.4
C3D (fine-tuned from I380K pre-trained model) 1 net 46.1 61.1 85.2

Table 2. Sports-1M classification result. C3D outperforms [18] by 5% on top-5 video-level accuracy. (*)We note that the method of [29]
uses long clips, thus its clip-level accuracy is not directly comparable to that of C3D and DeepVideo.

extract C3D feature, a video is split into 16 frame long
clips with a 8-frame overlap between two consecutive clips.
These clips are passed to the C3D network to extract fc6
activations. These clip fc6 activations are averaged to
form a 4096-dim video descriptor which is then followed
by an L2-normalization. We refer to this representation as
C3D video descriptor/feature in all experiments, unless we
clearly specify the difference.

What does C3D learn? We use the deconvolution
method explained in [46] to understand what C3D is learn-
ing internally. We observe that C3D starts by focusing on
appearance in the first few frames and tracks the salient mo-
tion in the subsequent frames. Figure 4 visualizes deconvo-
lution of two C3D conv5b feature maps with highest acti-
vations projected back to the image space. In the first exam-
ple, the feature focuses on the whole person and then tracks
the motion of the pole vault performance over the rest of the
frames. Similarly in the second example it first focuses on
the eyes and then tracks the motion happening around the
eyes while applying the makeup. Thus C3D differs from
standard 2D ConvNets in that it selectively attends to both
motion and appearance. We provide more visualizations in
the supplementary material to give a better insight about the
learned feature.

4. Action recognition
Dataset: We evaluate C3D features on UCF101

dataset [38]. The dataset consists of 13, 320 videos of 101
human action categories. We use the three split setting pro-
vided with this dataset.

Classification model: We extract C3D features and in-
put them to a multi-class linear SVM for training models.
We experiment with C3D descriptor using 3 different nets:
C3D trained on I380K, C3D trained on Sports-1M, and C3D
trained on I380K and fine-tuned on Sports-1M. In the mul-

tiple nets setting, we concatenate the L2-normalized C3D
descriptors of these nets.

Baselines: We compare C3D feature with a few base-
lines: the current best hand-crafted features, namely im-
proved dense trajectories (iDT) [44] and the popular-used
deep image features, namely Imagenet [16], using Caffe’s
Imagenet pre-train model. For iDT, we use the bag-of-word
representation with a codebook size of 5000 for each feature
channel of iDT which are trajectories, HOG, HOF, MBHx,
and MBHy. We normalize histogram of each channel sepa-
rately using L1-norm and concatenate these normalized his-
tograms to form a 25K feature vector for a video. For Im-
agenet baseline, similar to C3D, we extract Imagenet fc6
feature for each frame, average these frame features to make
video descriptor. A multi-class linear SVM is also used for
these two baselines for a fair comparison.

Results: Table 3 presents action recognition accuracy
of C3D compared with the two baselines and current best
methods. The upper part shows results of the two base-
lines. The middle part presents methods that use only RGB
frames as inputs. And the lower part reports all current best
methods using all possible feature combinations (e.g. opti-
cal flows, iDT).

C3D fine-tuned net performs best among three C3D nets
described previously. The performance gap between these
three nets, however, is small (1%). From now on, we refer
to the fine-tuned net as C3D, unless otherwise stated. C3D
using one net which has only 4, 096 dimensions obtains an
accuracy of 82.3%. C3D with 3 nets boosts the accuracy
to 85.2% with the dimension is increased to 12, 288. C3D
when combined with iDT further improves the accuracy to
90.4%, while when it is combined with Imagenet, we ob-
serve only 0.6% improvement. This indicates C3D can well
capture both appearance and motion information, thus there
is no benefit to combining with Imagenet which is an ap-

Figure 5: C3D net is composed of 8 3D convolution layers, 5 3D max-pooling layers, 2 fully connected layers,
and a softmax output layer. All 3D convolution kernels are 3 × 3 × 3 with 1 × 1 × 1 padding and stride 1 in
both spatial and temporal dimensions. Number of filters are denoted in each box. The 3D max-pooling layers
are named from pool1 to pool5. All pooling ratios are 2 × 2 × 2, except for pool1 is 1 × 2 × 2 (1 is in the
temporal dimension). Each fully connected layer has 4096 output units. (Tran et al., 2015)

C DIMENSIONS AND RECEPTIVE FIELD OF C3D FEATURES

The dimensions for features extracted from pool2, pool3, pool4 and pool5 are 28×28×N/2×128,
14 × 14 × N/4 × 256, 7 × 7 × N/8 × 512 and 4 × 4 × N/16 × 512, respectively. N is the
number of frames of input video. After the convolutional transformation, the dimensions will be all
4× 4×N/16× 512.

To prove these features are spatiotemporal aligned, we first provide the receptive field for 3D convo-
lutional layer and 3D pooling layer. Let Y = 3D-Conv(X), where 3D-Conv is the 3D convolutional
layer with kernel size 3×3×3. The features indexed by i = [ix, iy, iz] in Y is obtained by convolv-
ing a subset of X indexed by j = [jx, jy, jz] with convolutional kernel, where jx ∈ [ix−1, ix, ix+1],
jy ∈ [iy − 1, iy, iy + 1] and jz ∈ [iz − 1, iz, iz + 1]. Then, we call that the receptive field of
i = [ix, iy, iz] in Y is [ix−1, . . . , ix+1]× [iy−1, . . . , iy+1]× [iz−1, . . . , iz+1] in X. Similarly,
if Y = 3D-pooling(X) with pooling ratio 2 × 2 × 2, the receptive field of i = [ix, iy, iz] in Y is
[2ix − 1, 2ix]× [2iy − 1, 2iy]× [2iz − 1, 2iz] in X.

We then provide the receptive field of features al from each layer in the input video in Table 3
and receptive field of features after convolutional transformation, âl, in the original feature al in
Tabel 4. The features are all indexed by i = [ix, iy, iz]. Combining Table 3 and Tabel 4, we
can find the receptive field of âl indexed by i = [ix, iy, iz] for all l in the input video are all
[32ix − 63, . . . , 32ix + 30]× [32iy − 63, . . . , 32iy + 30]× [16iz − 32, . . . , 16iz + 15].

We index the top-left element in the first frame as [1, 1, 1]. Note that the index of receptive field
could be negative due to padding.

Table 3: Receptive field of al in input video
Layer name Receptive field

Pool2 [4ix − 7, . . . , 4ix + 2]× [4iy − 7, . . . , 4iy + 2]× [2iz − 4, . . . , 2iz + 1]

Pool3 [8ix − 15, . . . , 8ix + 6]× [8iy − 15, . . . , 8iy + 6]× [4iz − 8, . . . , 4iz + 3]

Pool4 [16ix − 31, . . . , 16ix + 14]× [16iy − 31, . . . , 16iy + 14]× [8iz − 16, . . . , 8iz + 7]

Pool5 [32ix − 63, . . . , 32ix + 30]× [32iy − 63, . . . , 32iy + 30]× [16iz − 32, . . . , 16iz + 15]

Table 4: Receptive field of âl in the corresponding al

Layer name Receptive field

Pool2 [8ix − 14, . . . , 8ix + 7]× [8iy − 14, . . . , 8iy + 7]× [8iz − 14, . . . , 8iz + 7]

Pool3 [4ix − 6, . . . , 4ix + 4]× [4iy − 6, . . . , 4iy + 4]× [4iz − 6, . . . , 4iz + 4]

Pool4 [2ix − 2, . . . , 2ix + 1]× [2iy − 2, . . . , 2iy + 1]× [2iz − 2, . . . , 2iz + 1]
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