
Adaptive Feature Abstraction for Translating Video to Text

Yunchen Pu†⇤, Martin Renqiang Min‡, Zhe Gan† and Lawrence Carin†
†Department of Electrical and Computer Engineering, Duke University

{yunchen.pu, zhe.gan, lcarin}@duke.edu
‡Machine Learning Group, NEC Laboratories America

renqiang@nec-labs.com

Abstract
Previous models for video captioning often use the output
from a specific layer of a Convolutional Neural Network
(CNN) as video features. However, the variable context-
dependent semantics in the video may make it more appro-
priate to adaptively select features from the multiple CNN
layers. We propose a new approach to generating adaptive
spatiotemporal representations of videos for the captioning
task. A novel attention mechanism is developed, which adap-
tively and sequentially focuses on different layers of CNN
features (levels of feature “abstraction”), as well as local spa-
tiotemporal regions of the feature maps at each layer. The
proposed approach is evaluated on three benchmark datasets:
YouTube2Text, M-VAD and MSR-VTT. Along with visu-
alizing the results and how the model works, these experi-
ments quantitatively demonstrate the effectiveness of the pro-
posed adaptive spatiotemporal feature abstraction for trans-
lating videos to sentences with rich semantics.

Introduction
Videos represent among the most widely used forms of data,
and their accurate characterization poses an important chal-
lenge for computer vision and machine learning. Generat-
ing a natural-language description of a video, termed video
captioning, is an important component of video analysis. In-
spired by the successful encoder-decoder framework used
in machine translation (Bahdanau, Cho, and Bengio 2015;
Cho et al. 2014; Sutskever, Vinyals, and Le 2014) and image
caption generation (Karpathy and Li 2015; Kiros, Salakhut-
dinov, and Zemel 2014; Mao et al. 2015; Pu et al. 2016;
Vinyals et al. 2015; Gan et al. 2017a; 2017b), most recent
work on video captioning (Donahue et al. 2015; Pan et al.
2016b; Venugopalan et al. 2015a; 2015b; Yao et al. 2015;
Yu et al. 2016) employs a two-dimensional (2D) or three-
dimensional (3D) Convolutional Neural Network (CNN) as
an encoder, mapping an input video to a compact feature-
vector representation. A Recurrent Neural Network (RNN)
is typically employed as a decoder, unrolling the feature vec-
tor to generate a sequence of words of arbitrary length.

Despite achieving encouraging success in video caption-
ing, previous models suffer important limitations. Often the

⇤Most of this work was done when the first author was a sum-
mer intern at NEC Laboratories America.
Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

rich video content is mapped to a single feature vector for
caption generation; this approach is prone to missing de-
tailed and localized spatiotemporal information. To mitigate
this, one may employ methods to focus attention on local
regions of the feature map, but typically this is done with
features from a selected (usually top) CNN layer. By em-
ploying features from a fixed CNN layer, the algorithm is
limited in its ability to model rich, context-aware semantics
that requires focusing on different feature abstraction lev-
els. As investigated in Mahendran and Vedaldi; Zeiler and
Fergus (2015; 2014), the feature characteristics/abstraction
is correlated with the CNN layers: features from layers at or
near the top of a CNN tend to focus on global (extended)
visual percepts, while features from lower CNN layers pro-
vide more local, fine-grained information. It is desirable to
select/weight features from different CNN layers adaptively
when decoding a caption, selecting different levels of feature
abstraction by sequentially emphasizing features from dif-
ferent CNN layers. In addition to focusing on features from
different CNN layers, it is also desirable to emphasize local
spatiotemporal regions in feature maps at particular layers.

To realize these desiderata, our proposed decoding pro-
cess for generating a sequence of words dynamically empha-
sizes different levels (CNN layers) of 3D convolutional fea-
tures, to model important coarse or fine-grained spatiotem-
poral structure. Additionally, the model adaptively attends
to different locations within the feature maps at particular
layers. While some previous models use 2D CNN features
to generate video representations, our model adopts features
from a deep 3D convolutional neural network (C3D). Such
features have been shown to be effective for video represen-
tation, action recognition and scene understanding (Tran et
al. 2015), by learning the spatiotemporal features that can
provide better appearance and motion information. In addi-
tion, the proposed model is inspired by the recent success of
attention-based models that mimic human perception (Mnih
et al. 2014; Xu et al. 2015).

The proposed model, dual Adaptive Feature Represen-
tation (dualAFR), involves comparing and evaluating dif-
ferent levels of 3D convolutional feature maps. However,
there are three challenges that must be overcome to di-
rectly compare features between layers: (i) the features
from different C3D levels have distinct dimensions, under-
mining the direct use of a multi-layer perceptron (MLP)

based attention model (Bahdanau, Cho, and Bengio 2015;
Xu et al. 2015); (ii) the features represented in each layer
are not spatiotemporally aligned, undermining our ability to
quantify the value of features at a specific spatiotemporal lo-
cation, based on information from all CNN layers; and (iii)
the semantic meaning of feature vectors from the convolu-
tional filters of C3D varies across layers, making it difficult
to feed the features into the same RNN decoder.

To address these issues, one may use either pooling or
MLPs to map different levels of features to the similar
semantic-space dimension. However, these approaches ei-
ther lose feature information or have too many parameters
to generalize well. In our approach, we employ convolution
operations to achieve spatiotemporal alignment among C3D
features from different levels and attention mechanisms to
dynamically select context-dependent feature abstraction in-
formation.

The principal contributions of this paper are as follows:
(i) A new video-caption-generation model is developed by
dynamically modeling context-dependent feature abstrac-
tions; (ii) new attention mechanisms are developed to adap-
tively and sequentially emphasize different levels of fea-
ture abstraction (CNN layers), while also imposing attention
within local spatiotemporal regions of the feature maps at
each layer; (iii) 3D convolutional transformations are intro-
duced to achieve spatiotemporal and semantic feature con-
sistency across different layers; (iv) the proposed model is
demonstrated to outperform other multi-level feature based
methods, such as hypercolumns (Hariharan et al. 2015), and
achieves state-of-the-art performance on several benchmark
datasets using diverse automatic metrics and human evalua-
tions.

Related Work
Recent work often develops a probabilistic model of the cap-
tion, conditioned on a video. In Donahue et al.; Venugopalan
et al.; Venugopalan et al.; Yu et al.; Pan et al. (2015; 2015a;
2015b; 2016; 2016a) the authors performed video analy-
sis by applying a 2D CNN pretrained on ImageNet, with
the top-layer output of the CNN used as features. Given
the sequence of features extracted from the video frames,
the video representation is then obtained by a CRF (Don-
ahue et al. 2015), mean pooling (Venugopalan et al. 2015b),
weighted mean pooling with attention (Yu et al. 2016), or
via the last hidden state of an RNN encoder (Venugopalan
et al. 2015a). In Yao et al. (2015), the 2D CNN features are
replaced with a 3D CNN to model the short temporal dy-
namics. These works were followed by Pan et al.; Shetty and
Laaksonenl (2016b; 2016), which jointly embedded the 2D
CNN features and spatiotemporal features extracted from a
3D CNN (Tran et al. 2015). More recently, there has been
a desire to leverage auxiliary information to improve the
performance of encoder-decoder models. In Pasunuru and
Bansal (2017), auxiliary encoders and decoders are intro-
duced to utilize extra video and sentence data. The entire
model is learned by both predicting sentences conditioned
on videos and self-reconstruction for the videos and cap-
tions. Similiar work includes Ramanishka et al.; Chen et
al. (2016; 2017) where extra audio and topics of videos are

leveraged. However, all of these previous models utilize fea-
tures extracted from the top layer of the CNN.

There is also work that combines mult-level features from
a CNN. In Sermanet, Kavukcuoglu, and Chintala (2013), a
combination of intermediate layers is employed with the top
layer for pedestrian detection, while a hypercolumn repre-
sentation is utilized for object segmentation and localization
in Hariharan et al. (2015) . Our proposed model is mostly re-
lated to Ballas et al. (2016), but distinct in important ways.
The intermediate convolutional feature maps are leveraged,
like Ballas et al. (2016), but an attention model is developed
instead of the “stack” RNN in Ballas et al. (2016). In ad-
dition, a decoder enhanced with two attention mechanisms
is constructed for generating captions, while a simple RNN
decoder is employed in (Ballas et al. 2016). Finally, we use
features extracted from C3D instead of a 2D CNN.

Method
Consider N training videos, the nth of which is denoted
X(n), with associated caption Y(n). The length-T

n

caption
is represented Y(n)

= (y(n)
1 , . . . ,y(n)

Tn
), with y(n)

t

a 1-of-V
encoding vector, with V the size of the vocabulary.

For each video, the C3D feature extractor (Tran
et al. 2015) produces a set of features A(n)

=

{a(n)
1 , . . . ,a(n)

L

,a(n)
L+1}, where {a(n)

1 , . . . ,a(n)
L

} are feature
maps extracted from L convolutional layers, and a(n)

L+1 is
a vector obtained from the top fully-connected layer. For
notational simplicity, we omit all the superscript (n) over
X,Y,y,A,a and subscript n under T throughout the pa-
per. Details are provided in Appendix.

Caption Model
The t-th word in a caption, y

t

, is mapped to an M -
dimensional vector w

t

= W
e

y
t

, where W
e

2 RM⇥V is
a learned word-embedding matrix, i.e., w

t

is a column of
W

e

chosen by the one-hot y
t

. The probability of caption
Y = {y

t

}
t=1,T is defined as

p(Y|A) = p(y1|A)

Q
T

t=2 p(yt

|y
<t

,A) . (1)

Specifically, the first word y1 is drawn from p(y1|A) =

softmax(Vh1), where h1 = tanh(Ca
L+1); throughout

the paper bias terms are omitted, for simplicity. C is a
weight matrix mapping video features a

L+1 to the RNN
hidden state space. V is a matrix connecting the RNN hid-
den state to a softmax, for computing a distribution over
words. All other words in the caption are then sequentially
generated using an RNN, until the end-sentence symbol is
generated. Conditional distribution p(y

t

|y
<t

,A) is speci-
fied as softmax(Vh

t

), where h
t

is recursively updated as
h
t

= H(w
t�1,ht�1, zt

). z
t

= �(h
t�1,a1, . . . ,aL

) is the
context vector used in the attention mechanism, capturing
the relevant visual features associated with the spatiotempo-
ral attention (also weighting level of feature abstraction), as
detailed below. The transition function H(·) is implemented
with Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997).

𝒂 = {𝑎1,… , 𝑎𝐿}

𝑦1

ℎ1
LSTM

𝑧1… C
#

DC3D

𝑦2

ℎ2
LSTM

𝑧2

𝑦𝑡

ℎ𝑡
LSTM

𝑧t
… …

𝑦T

ℎT
LSTM

𝑧T
Top

Layer

Intermediate Convolutional Layer

Figure 1: Illustration of our proposed caption-generation model. The model leverages a fully-connected map from the top layer as well as
convolutional maps from different mid-level layers of a pretrained 3D convolutional neural network (C3D). The context vector zt is generated
from the previous hidden unit ht�1 and the convolutional maps {a1, . . . ,aL} (the red frame), which is detailed in Figure 2.

Given the video X (with features A) and associated
caption Y, the objective function is the sum of the log-
likelihood of the caption conditioned on the video represen-
tation:

log p(Y|A) = log p(y1|A) +

PT
t=2 log p(yt|y<t,A) . (2)

Equation (2) is a function of all model parameters to be
learned; they are not explicitly depicted in (2) for notational
simplicity. Further, (2) corresponds to a single video-caption
pair, and when training we sum over all such training pairs.
The proposed model is illustrated in Figure 1.

Attention Mechanism
We first define notation needed to describe attention mech-
anism �(h

t�1,a1, . . . ,aL

). Each feature map, a
l

, is a 4D
tensor, with elements corresponding to two spatial coordi-
nates (i.e., vertical and horizontal dimensions in a given
frame), the third tensor index is the frame-index dimension,
and the fourth dimension is associated with the filter in-
dex (for the convolutional filters). To be explicit, at CNN
layer l, the number of dimensions of this tensor are denoted
nl

x

⇥nl

y

⇥nl

z

⇥nl

F

, with respective dimensions correspond-
ing to vertical, horizontal, frame, and filter (e.g., nl

F

convo-
lutional filters at layer l). Note that dimensions nl

x

, nl

y

and
nl

z

vary with layer level l (getting smaller with increasing l,
due to pooling).

We define a
i,l

as a nl

F

-dimensional vector, corresponding
to a fixed coordinate in three of the tensor dimensions, i.e.,
i 2 [1, . . . , nl

x

]⇥ [1, . . . , nl

y

]⇥ [1, . . . , nl

z

], while sweeping
across all nl

F

feature/filter dimensions. Further, define a
l

(k)
as a 3D tensor, associated with 4D tensor a

l

. Specifically,
a
l

(k) corresponds to the 3D tensor manifested from a
l

, with
k 2 {1, . . . , nl

F

} a fixed coordinate in the dimension of the
filter index. Hence, a

l

(k) corresponds to the 3D feature map
at layer l, due to the kth filter at that layer.

We introduce two attention mechanisms when predicting
word y

t

: (i) spatiotemporal-localization attention, and (ii)
abstraction-level attention; these, respectively, measure the

relative importance of a particular spatiotemporal location
and a particular CNN layer (feature abstraction) for produc-
ing y

t

, based on the word-history information y
<t

.
To achieve this, we seek to map a

l

! ˆa
l

, where 4D
tensors ˆa

l

all have the same dimensions, are embedded
into similar semantic spaces, and are aligned spatialtem-
porally. Specifically, ˆa

l

, l = 1, . . . , L � 1 are aligned in
the above ways with a

L

. To achieve this, we filter each
a
l

, l = 1, . . . , L � 1, and then apply max-pooling; the fil-
ters seek semantic alignment of the features (including fea-
ture dimension), and the pooling is used to spatiotemporally
align the features with a

L

. Specifically, consider

ˆa
l

= f(
P

n

l
F

k=1 al

(k) ⇤U
k,l

), (3)

for l = 1, . . . , L � 1, and with ˆa
L

= a
L

. As discussed
above, a

l

(k) is the 3D feature map (tensor) for dictionary
k 2 {1, . . . , nl

F

} at layer l. U
k,l

is the 3D convolutional
filters to achieve alignment which is a 4D learnable ten-
sor. The convolution ⇤ in (3) operates in the three shift di-
mensions, and a

l

(k) ⇤ U
k,l

manifests a 4D tensor. Specifi-
cally, each of the nL

F

3D “slices” of U
k,l

are spatiotempo-
rally convolved (3D convolution) with a

k,l

, and after sum-
ming over the nl

F

convolutional filters, followed by f(·),
this manifests each of the nL

F

3D slices of ˆa
l

. Function f(·)
is an element-wise nonlinear activation function, followed
by max pooling, with the pooling dimensions meant to re-
alize final dimensions consistent with a

L

, i.e., dimension
nL

x

⇥ nL

y

⇥ nL

z

⇥ nL

F

. Consequently, ˆa
i,l

2 Rn

L
F is a fea-

ture vector with i 2 [1, . . . , nL

x

]⇥ [1, . . . , nL

y

]⇥ [1, . . . , nL

z

].
Note that it may only require one 3D tensor U

l

applied on
each 3D slices a

l

(k) for each layer to achieve spatiotempo-
ral alignment of the layer-dependent features. However, the
features from two distinct layers will not be in the same “se-
mantic” space, making it difficult to assess the value of the
layer-dependent features. The multiple tensors in set {U

k,l

}
provide the desired semantic alignment between layers, al-
lowing analysis of the value of features from different layers
via a single MLP, in the following (5) and (7).

ℎ𝑡−1 ℎ𝑡−1

ℎ𝑡−1

ℎ𝑡−1

Layer 1

Feature Extraction

…

Convolutional
Transformation

 𝑎2

 𝑎1

 𝑎𝐿𝑎𝐿

𝑎2

𝑎1… …

… … … ……

𝑠𝑡,𝐿

𝑠𝑡,2

𝑠𝑡,1

Spatiotemporal
Attention

Abstraction
Attention

𝑧𝑡
…

…

Layer 2

Layer L

Figure 2: Illustration of our attention mechanism. The video features are extracted by C3D, followed by a 3D convolutional transformation.
At each time step, the spatiotemporal attention takes these features and previous hidden units to generate L feature vectors which are fed to
the abstraction attention, manifesting the context vector.

With {ˆa
l

}
l=1,L semantically and spatiotemporally

aligned, we now seek to jointly quantify the value of a
particular spatiotemporal region and a particular feature
layer (“abstraction”) for prediction of the next word. For
each ˆa

i,l

, the attention mechanism generates two positive
weights, ↵

ti

and �
tl

, which measure the relative importance
of location i and layer l for producing y

t

based on y
<t

.
Attention weights ↵

ti

and �
tl

and context vector z
t

are
computed as

e
ti

= wT

↵

tanh(W
a↵

ˆa
i

+W
h↵

h
t�1), (4)

↵
ti

= softmax({e
ti

}), s
t

= ({ˆa
i

}, {↵
ti

}), (5)

b
tl

= wT

�

tanh(W
s�

s
tl

+W
h�

h
t�1), (6)

�
tl

= softmax({b
tl

}), z
t

= ({s
tl

}, {�
tl

}), (7)

where ˆa
i

is a vector composed by stacking {ˆa
i,l

}
l=1,L (all

features at position i). e
ti

and b
tl

are scalars reflecting the
importance of spatiotemporal region i and layer l to predict-
ing y

t

, while ↵
ti

and �
tl

are relative weights of this im-
portance, reflected by the softmax output. (·) is a function
developed further below, that returns a single feature vector
when given a set of feature vectors, and their corresponding
weights across all i or l. Vector s

tl

reflects the sub-portion
of s

t

associated with layer l.
In (5) we provide attention in the spatiotemporal dimen-

sions, with that spatiotemporal attention shared across all L
(now aligned) CNN layers. In (7) the attention is further re-
fined, focusing attention in the layer dimension. To make
the following discussion concrete, we describe the atten-
tion function within the context of z

t

= ({s
tl

}, {�
tl

}).
This function setup is applied in the same way to s

t

=

 ({ˆa
i

}, {↵
ti

}). The attention model is illustrated in Fig-
ure 2.

Soft attention Following Bahdanau, Cho, and Ben-
gio (2015), we formulate the soft attention model by com-
puting a weighted sum of the input features

z
t

= ({s
tl

}, {�
tl

}) = P
L

l=1 �tlstl. (8)

The model is differentiable for all parameters and can be
learned end-to-end using standard back-propagation.

Hard attention Let m
t

2 {0, 1}L be a vector of all zeros,
and a single one, and the location of the non-zero element of
m

t

identifies the location to extract features for generating
the next word. We impose

m
t

⇠ Mult(1, {�
tl

}), z
t

=

P
L

l=1 mtl

s
tl

. (9)

In this case, optimizing the objective function in (2) is
intractable. However, the marginal log-likelihood can be
lower-bounded as

log p(Y|A) = E
p(m|A) log p(Y|m,A), (10)

where m = {m
t

}
t=1,...,T . We utilize Monte Carlo integra-

tion to approximate the expectation, E
p(m|A), and stochastic

gradient descent (SGD) for parameter optimization. The gra-
dients are approximated by importance sampling (Mnih and
Rezende 2016; Burda, Grosse, and Salakhutdinov 2016) to
achieve unbiased estimation and reduce the variance. Details
are provided in Appendix.

Experiments
Datasets
We present results on three benchmark datasets: Microsoft
Research Video Description Corpus (YouTube2Text) (Chen
and Dolan 2011), Montreal Video Annotation Dataset (M-
VAD) (Torabi, C Pal, and Courville 2015), and Microsoft
Research Video to Text (MSR-VTT) (Xu et al. 2016).

The Youtube2Text contains 1970 Youtube clips, and each
video is annotated with around 40 sentences. For fair com-
parison, we used the same splits as provided in Venugopalan
et al. (2015b), with 1200 videos for training, 100 videos for
validation, and 670 videos for testing.

The M-VAD is a large-scale movie description dataset,
which is composed of 46587 movie snippets annotated with
56752 sentences. We follow the setting in (Torabi, C Pal,
and Courville 2015), taking 36920 videos for training, 4950
videos for validation, and 4717 videos for testing.

The MSR-VTT is a newly collected large-scale video
dataset, consisting of 20 video categories. The dataset was
split into 6513, 2990 and 497 clips in the training, testing
and validation sets. Each video has about 20 sentence de-
scriptions. The ground-truth captions in the testing set are
not available now. Thus, we split the original training dataset

into a training set of 5513 clips and a testing set of 1000
clips.

We convert all captions to lower case and remove the
punctuation, yielding vocabulary sizes V = 12594 for
Youtube2Text, V = 13276 for M-VAD, and V = 8071 for
MSR-VTT.

We consider the RGB frames of videos as input, and all
videos are resized to 112 ⇥ 112 spatially, with 2 frames per
second. The C3D (Tran et al. 2015) is pretrained on Sports-
1M dataset (Karpathy et al. 2014), consisting of 1.1 million
sports videos belonging to 487 categories. We extract the
features from four convolutional layers and one fully con-
nected layer, named as pool2, pool3, pool4, pool5 and fc-7
in the C3D (Tran et al. 2015), respectively. Detailed model
architectures and training settings are provided in Appendix.
We do not perform any dataset-specific tuning and regular-
ization other than dropout (Srivastava et al. 2014) and early
stopping on validation sets.

Evaluation
The widely used BLEU (Papineni et al. 2002), ME-
TEOR (Banerjee and Lavie 2005) and CIDEr (Vedantam,
Lawrence, and Parikh 2015) metrics are employed to quan-
titatively evaluate the performance of our video caption gen-
eration model, and other models in the literature. For each
dataset, we show three types of results, using part of or all
of our model to illustrate the role of each component:

1. C3D fc7 + LSTM : The LSTM caption decoder is em-
ployed, only using features extracted from the top fully-
connected layer. No context vector z

t

is generated from
intermediate convolutional layer features.

2. Spatiotemporal attention + LSTM: The context vector z
t

is included, but only features extracted from a certain con-
volutional layer are employed, i.e., z

t

is equal to s
t

in (5).
The spatiotemporal attention is implemented with the soft
attention in (8).

3. dualAFR: This is our proposed model. We present results
based on both soft attention and hard attention.

To compare our method with other multi-level feature meth-
ods, we show several baseline results on Youtube2Text:

1. MLP : Each a
l

is fed to a different MLP to achieve the
same dimension of a

L

. The context vector z
t

is obtained
by abstraction-level and spatiotemporal attention.

2. Max/Average-pooling: A max or average pooling opera-
tion is utilized to achieve saptiotemporal alignment, and
an MLP is then employed to embed the feature vectors
into the similar semantic space. Details are provided in
Appendix.

3. Hypercolumn: This method is similar to max/average-
pooling but replace the pooling operation with hypercol-
umn representation (Hariharan et al. 2015).

In these methods, the attention weights are produced by the
soft attention in (8).

To verify the effectiveness of our video caption genera-
tion model and C3D features, we also implement a strong

baseline method based on the LSTM encoder-decoder net-
work (Cho et al. 2014), where ResNet (He et al. 2016) is
employed as the feature extractor on each frame. We denote
results using this method as ResNet + LSTM .

We also present human evaluation results based on rele-
vance and coherence 1. Compared with single layer baseline
models, the inference of dualAFR is about 1.2 ⇠ 1.5 times
slower and requires about 2 ⇠ 4 times extra memory.

Quantitative Results
Results are summarized in Tables 1 and 2. The proposed
models achieve state-of-the-art results on most metrics on
all three datasets. The M-to-M method (Pasunuru and Bansal
2017) is the only model showing better BLEU and CIDEr on
Youtube2Text. Note that the M-to-M model is trained with
two additional datasets: UFC-101 which contains 13,320
video clips and Stanford Natural Language Inference cor-
pus which contains 190,113 sentence pairs. In contrast, we
achieve competitive or better results by using only the data
inside the training set and analogous pretrained C3D.

Note that our model consistently yields significant im-
provements over models with only spatiotemporal attention,
which further achieve better performance than only taking
the C3D top fully-connected layer features; this demon-
strates the importance of leveraging intermediate convolu-
tional layer features. In addition, our model outperforms
all the baseline results of multi-level feature based meth-
ods, demonstrating the effectiveness of our 3D convolutional
transformation operation. This is partly a consequence of the
sparse connectivity of the convolution operation, which in-
dicates fewer parameters are required.

Human Evaluation
Besides the automatic metrics, we present human evaluation
on the Youtube2Text dataset. In each survey, we compare
our results from single model (soft attention or hard atten-
tion) with the strongest baseline “C3D fc7 + pool4” by tak-
ing a random sample of 100 generated captions, and ask the
human evaluator to select the result with better relevance and
coherence. We obtain 25 repsonses (2448 samples in total)
and the results are shown in Table 3. The proposed dualAFR
outperforms the strongest baseline on both relevance and co-
herence which is consistent with the automatic metrics.

Qualitative Results
Following (Xu et al. 2015), we visualize the attention com-
ponents learned by our model on Youtube2Text. As ob-
served from Figure 3, the spatiotemporal attention aligns the
objects in the video well with the corresponding words. In
addition, the abstraction-level attention tends to focusing on
low level features when the model generates a noun and high
level features when an article or a preposition is being gen-
erated. More results are provided in Appendix. Examples of
generated captions from unseen videos on Youtube2Text are
shown in Figure 4. We find the results with abstraction-layer

1Our human evaluation follows the algorithm in the COCO
captioning challenge (http://cocodataset.org/dataset.htm#captions-
challenge2015).

Table 1: Results on BLEU-4, METEOR and CIDEr metrics compared to other models and baselines on Youtube2Text and M-VAD datasets.

Methods Youtube2Text M-VAD
BLEU-4 METEOR CIDEr BLEU-4 METEOR CIDEr

LSTM-E (VGG + C3D) (Pan et al. 2016b) 45.3 31.0 - - 6.7 -
GRU-RCN (Ballas et al. 2016) 47.90 31.14 67.82 - - -

h-RNN (C3D+VGG) (Yu et al. 2016) 49.9 32.6 65.8 - - -
TGM (Chen et al. 2017) 48.76 34.36 80.45 - - -

M-to-M (Pasunuru and Bansal 2017) 54.5 36.0 92.4 - 7.4 -

Baselines

ResNet + LSTM 44.08 30.99 66.88 0.81 6.22 5.54
C3D fc7 + LSTM 45.34 31.21 66.12 0.83 6.31 5.96
C3D fc7 + pool2 45.46 31.53 67.38 0.98 6.42 6.01
C3D fc7 + pool3 48.07 33.52 69.97 1.12 6.71 6.97
C3D fc7 + pool4 48.18 34.47 70.97 1.24 6.89 7.12
C3D fc7 + pool5 47.75 33.35 69.71 1.02 6.49 6.48

Baselines of multi-level features with attention

MLP + soft attention 35.99 23.56 44.21 0.41 5.99 5.43
Max-pooling + soft attention 45.35 31.50 62.99 0.82 6.21 5.55

Average-pooling + soft attention 48.53 33.59 65.07 0.91 6.45 6.12
Hypercolumn + soft attention 44.92 30.18 63.18 0.88 6.33 6.24

dualAFR

Soft Attention (Single model) 51.74 36.39 72.18 1.94 7.72 7.98
Hard Attention (Single model) 51.77 36.41 72.21 1.82 7.12 8.12

Soft Attention (Ensemble of 10) 53.94 37.91 78.43 2.14 8.22 9.03
Hard Attention (Ensemble of 10) 54.27 38.03 78.31 2.08 7.12 9.14

Table 2: Results on BLEU-4, METEOR and CIDEr metrics com-
pared to other models and baselines on MSR-VTT. §(Ramanishka
et al. 2016); †(Shetty and Laaksonenl 2016); §(Chen et al. 2017);
‡(Pasunuru and Bansal 2017).

Method BLEU-4 METEOR CIDEr

MMVD§ 40.7 28.6 46.5
M-to-M‡ 40.8 28.8 47.1

Aalto† 41.1 27.7 46.4
TGM§ 44.33 29.37 49.26

Baselines

ResNet + LSTM 39.54 26.59 45.22
C3D fc7 + LSTM 40.17 26.86 45.95
C3D fc7 + pool2 40.43 26.93 47.15
C3D fc7 + pool3 42.04 27.18 48.93
C3D fc7 + pool4 41.98 27.42 48.21
C3D fc7 + pool5 40.83 27.01 47.86

dualAFR

Soft Attention (Single) 43.72 29.67 50.21
Hard Attention (Single) 43.89 28.71 50.29

Soft Attention (Ensemble) 44.99 30.16 51.13
Hard Attention (Ensemble) 45.01 29.98 51.41

attention (indicated as “soft attention” or “ hard attention”)
is generally equal to or better than the best results, compared
to those only taking a certain convolutional-layer feature (in-
dicated as “Pool2” etc.). This demonstrates the effectiveness

Table 3: Human evaluation results on Youtube2Text.

Method Relevance Coherence

Baseline wins 4.78% 1.63%
DualAFR wins 27.53% 6.49%

Not distinguishable 67.69% 91.88%

of our abstraction layer attention. More results are provided
in Appendix.

Conclusion and Future Work

A novel video captioning model has been proposed, that
adaptively selects/weights the feature abstraction (CNN
layer), as well as the location within a layer-dependent fea-
ture map. We have implemented the attention using both
“hard” and “soft” mechanisms, with the latter typically de-
livering better performance. Our model achieves excellent
video caption generation performance, and has the capacity
to provide interpretable alignments seemingly analogous to
human perception.

We have focused on analysis of videos and associated cap-
tions. Similar ideas may be applied in the future to image
captioning. Additionally, the CNN parameters were learned
separately as a first step, prior to analysis of the captions.
It is also of interest to consider CNN-parameter refinement
conditioned on observed training captions.

Figure 3: Visualization of attention weights aligned with input video and generated caption on Youtube2Text: (top) Sampled frames of input
video, (middle) soft attention, (bottom) hard attention. We show the frame with the strongest attention weights. The bar plot above each frame
corresponds layer attention weights �tl when the corresponding word (under the frame) is generated.

 Pool2:
 Pool3:
 Pool4:
 Pool5:
 Soft attention:
 Hard attention:

a baby is walking
a bear is walking
a bear is walking
a badger is walking
a turtle is walking
a turtle is walking

 Pool2:
 Pool3:
 Pool4:
 Pool5:
 Soft attention:
 Hard attention:

a girl is smiling
a girl is talking
a woman is licking a face
a girl is putting stickers on her face
a woman is putting stickers on her face
a woman is putting stickers on her face

Pool2:
Pool3:
Pool4:
Pool5:
Soft attention:
Hard attention:

a group of men are playing
a group of men are playing
a girl is doing gymnastics
a gymnast falls down
a woman is doing gymnastics
a girl is doing gymnastics

 Pool2:
 Pool3:
 Pool4:
 Pool5:
 Soft attention:
 Hard attention:

a woman is peeling a toad
a woman is applying eye makeup
a woman is licking a brush
a woman is plucking her face
a woman is applying eye shadow
a woman is applying eye makeup

Figure 4: Examples of generated captions with sampled frames of input video on YouTube2Text.

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural machine
translation by jointly learning to align and translate. In ICLR.
Ballas, N.; Yao, L.; Pal, C.; and Courville, A. 2016. Delving deeper
into convolutional networks for learning video representations. In
ICLR.
Banerjee, S., and Lavie, A. 2005. Meteor: An automatic metric for
mt evaluation with improved correlation with human judgments. In
ACL workshop.
Burda, Y.; Grosse, R.; and Salakhutdinov, R. 2016. Importance
weighted autoencoders. In ICLR.
Chen, D., and Dolan, W. B. 2011. Collecting highly parallel data
for paraphrase evaluation. In ACL.
Chen, S.; Chen, J.; Jin, Q.; and Hauptmann, A. 2017. Video cap-
tioning with guidance of multimodal latent topics. In arXiv.
Cho, K.; Merrienboer, B. V.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning phrase
representations using rnn encoder-decoder for statistical machine
translation. In EMNLP.
Donahue, J.; Anne Hendricks, L.; Guadarrama, S.; Rohrbach, M.;
Venugopalan, S.; Saenko, K.; and Darrell, T. 2015. Long-term re-
current convolutional networks for visual recognition and descrip-
tion. In CVPR.
Gan, C.; Gan, Z.; He, X.; Gao, J.; and Deng, L. 2017a. Stylenet:
Generating attractive visual captions with styles. In CVPR.
Gan, Z.; Gan, C.; He, X.; Pu, Y.; Tran, K.; Gao, J.; Carin, L.; and
Deng, L. 2017b. Semantic compositional networks for visual cap-
tioning. In CVPR.
Hariharan, B.; Arbeláez, .; Girshick, R.; and Malik, J. 2015. Hy-
percolumns for object segmentation and fine-grained localization.
In CVPR.
He, K.; Zhang, X.; Ren, S.; and J, S. 2016. Deep residual learning
for image recognition. In CVPR.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural Computation.
Karpathy, A., and Li, F. 2015. Deep visual-semantic alignments
for generating image descriptions. In CVPR.
Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.;
and Fei-Fei, L. 2014. Large-scale video classification with convo-
lutional neural networks. In CVPR.
Kiros, R.; Salakhutdinov, R.; and Zemel, R. 2014. Multimodal
neural language models. In ICML.
Mahendran, A., and Vedaldi, A. 2015. Understanding deep image
representations by inverting them. In CVPR.
Mao, J.; Xu, W.; Yang, Y.; Wang, J.; and Yuille, A. 2015. Deep
captioning with multimodal recurrent neural networks (m-RNN).
In ICLR.
Mnih, A., and Rezende, D. J. 2016. Variational inference for monte
carlo objectives. In ICML.
Mnih, V.; Heess, N.; Graves, A.; and Kavukcuoglu, K. 2014. Re-
current models of visual attention. In NIPS.
Pan, P.; Xu, Z.; Yang, Y.; Wu, F.; and Zhuang, Y. 2016a. Hi-
erarchical recurrent neural encoder for video representation with
application to captioning. In CVPR.
Pan, Y.; Mei, T.; Yao, T.; Li, H.; and Rui, Y. 2016b. Jointly mod-
eling embedding and translation to bridge video and language. In
CVPR.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W. 2002. Bleu: a
method for automatic evaluation of machine translation. Transac-
tions of the Association for Computational Linguistics.
Pasunuru, R., and Bansal, M. 2017. Multi-task video captioning
with video and entailment generation. In ACL.
Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; and Carin,
L. 2016. Variational autoencoder for deep learning of images,
labels and captions. In NIPS.
Ramanishka, V.; Das, A.; Park, D. H.; Venugopalan, S.; Hendricks,
L. A.; Rohrbach, M.; and Saenko, K. 2016. Multimodal video
description. In ACM MM.
Sermanet, P.; Kavukcuoglu, K.; and Chintala, S.and LeCun, Y.
2013. Pedestrian detection with unsupervised multi-stage feature
learning. In CVPR.
Shetty, R., and Laaksonenl, J. 2016. Frame- and segment-level fea-
tures and candidate pool evaluation for video caption generation. In
ACM MM.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural
networks from overfitting. JMLR.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to se-
quence learning with neural networks. In NIPS.
Torabi, A.; C Pal, H. L.; and Courville, A. 2015. Using descriptive
video services to create a large data source for video annotation
research. In arXiv preprint arXiv:1503.01070.
Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri, M.
2015. Learning spatiotemporal features with 3d convolutional net-
works. In ICCV.
Vedantam, R.; Lawrence, Z. C.; and Parikh, D. 2015. Cider:
Consensus-based image description evaluation. In CVPR.
Venugopalan, S.; Rohrbach, M.; Donahue, J.; Mooney, R.; Darrell,
T.; and Saenko, K. 2015a. Sequence to sequence-video to text. In
ICCV.
Venugopalan, S.; Xu, H.; Donahue, J.; Rohrbach, M.; Mooney, R.;
and Saenko, K. 2015b. Translating videos to natural language using
deep recurrent neural networks. In NAACL.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015. Show and
tell: A neural image caption generator. In CVPR.
Xu, K.; Ba, J. L.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov,
R.; Zemel, R. S.; and Bengio, Y. 2015. Show, attend and tell:
Neural image caption generation with visual attention. In ICML.
Xu, J.; Mei, T.; Yao, T.; and Rui, Y. 2016. Msr-vtt: A large video
description dataset for bridging video and language. In CVPR.
Yao, L.; Torabi, A.; Cho, K.; Ballas, N.; Pal, C.; Larochelle, H.;
and Courville, A. 2015. Describing videos by exploiting temporal
structure. In ICCV.
Yu, H.; Wang, J.; Huang, Z.; Yang, Y.; and Xu, W. 2016. Video
paragraph captioning using hierarchical recurrent neural networks.
In CVPR.
Zeiler, M., and Fergus, R. 2014. Visualizing and understanding
convolutional networks. In ECCV.

Adaptive Feature Abstraction for Translating Video to Text

Anonymous Authors

More results
Visualization of attention weights

Generated Captions

Pool2:
Pool3:
Pool4:
Pool5:
Soft attention:
Hard attention:

a man is smiling
a man is eating a banana
a man is talking
a man is talking
a man is eating a banana
a man is eating a banana

 Pool2:
 Pool3:
 Pool4:
 Pool5:
 Soft attention:
 Hard attention:

a monkey is running
a monkey is doing martial arts
a monkey is fighting
a monkey is fighting
a monkey is doing martial arts
a monkey is doing martial arts

Pool2:
Pool3:
Pool4:
Pool5:
Soft attention:
Hard attention:

a puppy is playing
a puppy is playing with a toy
a puppy is playing
a baby panda is playing
a pig is eating a carrot
a baby pig is eating a carrot

Pool2:
Pool3:
Pool4:
Pool5:
Soft attention:
Hard attention:

a man is lifting weights
a man is sharpening a knife
a man is doing something
a man is lifting weights
a man is putting a knife in a vice
a man is sharpening a knife

Pool2:
Pool3:
Pool4:
Pool5:
Soft attention:
Hard attention:

a man is kicking a basketball
a boy is hitting a basketball
a man is hitting a basketball
a man is dribbling a basketball
a man is dribbling a basketball
a man is dribbling a basketball

 Pool2:
 Pool3:
 Pool4:
 Pool5:
 Soft attention:
 Hard attention:

a man is dancing
a man is performing on stage
a man is playing a guitar
a man is playing a guitar
a band is performing on a stage
a band is playing a guitar

Pool2:
Pool3:
Pool4:
Pool5:
Soft attention:
Hard attention:

a person is cutting a vegetable
a person is cutting a vegetable
a person is cutting a vegetable
a man is cutting a vegetable
a woman is slicing a vegetable
a woman is slicing a vegetable

 Pool2:
 Pool3:
 Pool4:
 Pool5:
 Soft attention:
 Hard attention:

a man is talking
a man is talking
a man is singing
a man is singing
a man and woman are talking
a man and woman are sitting on
a motorcycle

Fully Connected Layer Features
The convolutional-layer features, {a(n)

1 , . . . ,a(n)
L

}, are ex-
tracted by feeding the entire video into C3D, and hence the
dimensions of {a(n)

1 , . . . ,a(n)
L

} are dependent on the video
length (number of frames). As discussed in main paper, we
employ spatiotemporal attention at each layer (and between
layers), and therefore it is not required that the sizes of
{a(n)

1 , . . . ,a(n)
L

} be the same for all videos. However, the
fully connected layer at the top, responsible for a(n)

L+1, as-
sumes that the input video is of the same size for all videos
(like the 16-frame-length videos in (Tran et al. 2015)). To
account for variable-length videos, we extract features on
the video clips, based on a window of length 16 (as in (Tran
et al. 2015)) with an overlap of 8 frames. a(n)

L+1 is then pro-
duced by mean pooling over these features. The particular
form of pooling used here (one could also use max pool-
ing) is less important than the need to make the dimension
of the top-layer features the same for feeding into the final
fully-connected layer.

Gradient Estimation for Hard Attention
Recall the lower-bounded

log p(Y|A) = E
p(m|A) log p(Y|m,A), (1)

where m = {m
t

}
t=1,...,T . Inspired by importance sam-

pling, the multi-sample stochastic lower bound has been re-
cently used for latent variable models (Burda, Grosse, and
Salakhutdinov 2016), defined as

LK

(Y) =

X

m1:K

p(m1:K |A)

h
log

1

K

KX

k=1

p(Y|mk,A)

i
,

(2)

where m1, . . . ,mK are independent samples. This lower
bound is guaranteed to be tighter with the increase of the
number of samples K (Burda, Grosse, and Salakhutdinov
2016), thus providing a better approximation of the objective
function than (1). As shown in (Mnih and Rezende 2016),
the gradient of LK

(Y) with respect to the model parameters
is

rLK

(Y) =

X

m1:K

p(m1:K |A)

KX

k=1

h
L(m1:K

)r log p(mk|A)

+ !
k

rp(Y|mk,A)

i
, (3)

where L(m1:K
) = log

1
K

P
K

k=1 p(Y|mk,A) and !
k

=

p(Y|mk
,A)P

j p(Y|mj
,A) . A variance reduction technique is introduced

in (Mnih and Rezende 2016) by replacing the above gradient
with an unbiased estimator

rLK

(Y) ⇡
KX

k=1

h
ˆL(mk|m�k

)r log p(mk|A)

+ !
k

rp(Y|mk,A)

i
, (4)

where

ˆL(mk|m�k

) = L(m1:K
)� log

1

K

�X

j 6=k

p(Y|mj ,A)

+ f(Y,m�k,A))

�
, (5)

f(Y,m�k,A) = exp(

1

K � 1

X

j 6=k

log p(Y|mj ,A) (6)

When learning the model parameters, the lower bound (2) is
optimized via the gradient approximation in (4).

Convouluational Transformation for
Spatiotemporal Alignment

The model architecture of C3D and detials of convoulua-
tional transformation are provided in figure 1. The kernel
sizes of the convolutional transformation in (3) in main pa-
per are 7⇥7⇥7, 5⇥5⇥5 and 3⇥3⇥3 for layer pool2, pool3

and pool4 with 3⇥3⇥3, 2⇥2⇥2 and 1⇥1⇥1 zero padding,
respectively. f(·) is implemented by ReLU (Nair and Hinton
2010), followed by 3D max-pooling with 8⇥8⇥8, 4⇥4⇥4

and 2⇥ 2⇥ 2 ratios.
The dimensions for features extracted from pool2, pool3,

pool4 and pool5 are 28⇥28⇥N/2⇥128, 14⇥14⇥N/4⇥
256, 7 ⇥ 7 ⇥ N/8 ⇥ 512 and 4 ⇥ 4 ⇥ N/16 ⇥ 512, re-
spectively. N is the number of frames of input video. After
the convolutional transformation, the dimensions will be all
4⇥ 4⇥N/16⇥ 512.

To prove these features are spatiotemporal aligned, we
first provide the receptive field for 3D convolutional layer
and 3D pooling layer. Let Y = 3D-Conv(X), where 3D-
Conv is the 3D convolutional layer with kernel size 3⇥3⇥3.
The features indexed by i = [i

x

, i
y

, i
z

] in Y is obtained
by convolving a subset of X indexed by j = [j

x

, j
y

, j
z

]

with convolutional kernel, where j
x

2 [i
x

� 1, i
x

, i
x

+ 1],
j
y

2 [i
y

� 1, i
y

, i
y

+ 1] and j
z

2 [i
z

� 1, i
z

, i
z

+ 1]. Then,
we call that the receptive field of i = [i

x

, i
y

, i
z

] in Y is
[i
x

�1, . . . , i
x

+1]⇥ [i
y

�1, . . . , i
y

+1]⇥ [i
z

�1, . . . , i
z

+1]

in X. Similarly, if Y = 3D-pooling(X) with pooling ra-
tio 2 ⇥ 2 ⇥ 2, the receptive field of i = [i

x

, i
y

, i
z

] in Y is
[2i

x

� 1, 2i
x

]⇥ [2i
y

� 1, 2i
y

]⇥ [2i
z

� 1, 2i
z

] in X.
We then provide the receptive field of features a

l

from
each layer in the input video in Table 1 and receptive field of
features after convolutional transformation, ˆa

l

, in the orig-
inal feature a

l

in Tabel 2. The features are all indexed by
i = [i

x

, i
y

, i
z

]. Combining Table 1 and Tabel 2, we can find
the receptive field of ˆa

l

indexed by i = [i
x

, i
y

, i
z

] for all l in
the input video are all [32i

x

� 63, . . . , 32i
x

+30]⇥ [32i
y

�
63, . . . , 32i

y

+ 30]⇥ [16i
z

� 32, . . . , 16i
z

+ 15].
We index the top-left element in the first frame as [1, 1, 1].

Note that the index of receptive field could be negative due
to padding.

Conv1a
64

Conv2a
128

Conv3a
256

Conv3b
256

Conv4a
512

Conv4b
512

Conv5a
512

Conv5b
512Po

ol
1 fc6

4096
fc7
4096Po

ol
3

Po
ol
4

Po
ol
2

Po
ol
5

so
ft
m
ax

Figure 3. C3D architecture. C3D net has 8 convolution, 5 max-pooling, and 2 fully connected layers, followed by a softmax output layer.
All 3D convolution kernels are 3⇥ 3⇥ 3 with stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box.
The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are 2⇥ 2⇥ 2, except for pool1 is 1⇥ 2⇥ 2. Each fully
connected layer has 4096 output units.

Method Number of Nets Clip hit@1 Video hit@1 Video hit@5
DeepVideo’s Single-Frame + Multires [18] 3 nets 42.4 60.0 78.5
DeepVideo’s Slow Fusion [18] 1 net 41.9 60.9 80.2
Convolution pooling on 120-frame clips [29] 3 net 70.8* 72.4 90.8
C3D (trained from scratch) 1 net 44.9 60.0 84.4
C3D (fine-tuned from I380K pre-trained model) 1 net 46.1 61.1 85.2

Table 2. Sports-1M classification result. C3D outperforms [18] by 5% on top-5 video-level accuracy. (*)We note that the method of [29]
uses long clips, thus its clip-level accuracy is not directly comparable to that of C3D and DeepVideo.

extract C3D feature, a video is split into 16 frame long
clips with a 8-frame overlap between two consecutive clips.
These clips are passed to the C3D network to extract fc6
activations. These clip fc6 activations are averaged to
form a 4096-dim video descriptor which is then followed
by an L2-normalization. We refer to this representation as
C3D video descriptor/feature in all experiments, unless we
clearly specify the difference.

What does C3D learn? We use the deconvolution
method explained in [46] to understand what C3D is learn-
ing internally. We observe that C3D starts by focusing on
appearance in the first few frames and tracks the salient mo-
tion in the subsequent frames. Figure 4 visualizes deconvo-
lution of two C3D conv5b feature maps with highest acti-
vations projected back to the image space. In the first exam-
ple, the feature focuses on the whole person and then tracks
the motion of the pole vault performance over the rest of the
frames. Similarly in the second example it first focuses on
the eyes and then tracks the motion happening around the
eyes while applying the makeup. Thus C3D differs from
standard 2D ConvNets in that it selectively attends to both
motion and appearance. We provide more visualizations in
the supplementary material to give a better insight about the
learned feature.

4. Action recognition
Dataset: We evaluate C3D features on UCF101

dataset [38]. The dataset consists of 13, 320 videos of 101
human action categories. We use the three split setting pro-
vided with this dataset.

Classification model: We extract C3D features and in-
put them to a multi-class linear SVM for training models.
We experiment with C3D descriptor using 3 different nets:
C3D trained on I380K, C3D trained on Sports-1M, and C3D
trained on I380K and fine-tuned on Sports-1M. In the mul-

tiple nets setting, we concatenate the L2-normalized C3D
descriptors of these nets.

Baselines: We compare C3D feature with a few base-
lines: the current best hand-crafted features, namely im-
proved dense trajectories (iDT) [44] and the popular-used
deep image features, namely Imagenet [16], using Caffe’s
Imagenet pre-train model. For iDT, we use the bag-of-word
representation with a codebook size of 5000 for each feature
channel of iDT which are trajectories, HOG, HOF, MBHx,
and MBHy. We normalize histogram of each channel sepa-
rately using L1-norm and concatenate these normalized his-
tograms to form a 25K feature vector for a video. For Im-
agenet baseline, similar to C3D, we extract Imagenet fc6
feature for each frame, average these frame features to make
video descriptor. A multi-class linear SVM is also used for
these two baselines for a fair comparison.

Results: Table 3 presents action recognition accuracy
of C3D compared with the two baselines and current best
methods. The upper part shows results of the two base-
lines. The middle part presents methods that use only RGB
frames as inputs. And the lower part reports all current best
methods using all possible feature combinations (e.g. opti-
cal flows, iDT).

C3D fine-tuned net performs best among three C3D nets
described previously. The performance gap between these
three nets, however, is small (1%). From now on, we refer
to the fine-tuned net as C3D, unless otherwise stated. C3D
using one net which has only 4, 096 dimensions obtains an
accuracy of 82.3%. C3D with 3 nets boosts the accuracy
to 85.2% with the dimension is increased to 12, 288. C3D
when combined with iDT further improves the accuracy to
90.4%, while when it is combined with Imagenet, we ob-
serve only 0.6% improvement. This indicates C3D can well
capture both appearance and motion information, thus there
is no benefit to combining with Imagenet which is an ap-

Figure 1: C3D net is composed of 8 3D convolution layers, 5 3D max-pooling layers, 2 fully connected layers, and a softmax output layer.
All 3D convolution kernels are 3 ⇥ 3 ⇥ 3 with 1 ⇥ 1 ⇥ 1 padding and stride 1 in both spatial and temporal dimensions. Number of filters
are denoted in each box. The 3D max-pooling layers are named from pool1 to pool5. All pooling ratios are 2 ⇥ 2 ⇥ 2, except for pool1 is
1⇥ 2⇥ 2 (1 is in the temporal dimension). Each fully connected layer has 4096 output units (Tran et al. 2015).

Table 1: Receptive field of al in input video

Layer name Receptive field

Pool2 [4i
x

� 7, . . . , 4i
x

+ 2]⇥ [4i
y

� 7, . . . , 4i
y

+ 2]⇥ [2i
z

� 4, . . . , 2i
z

+ 1]

Pool3 [8i
x

� 15, . . . , 8i
x

+ 6]⇥ [8i
y

� 15, . . . , 8i
y

+ 6]⇥ [4i
z

� 8, . . . , 4i
z

+ 3]

Pool4 [16i
x

� 31, . . . , 16i
x

+ 14]⇥ [16i
y

� 31, . . . , 16i
y

+ 14]⇥ [8i
z

� 16, . . . , 8i
z

+ 7]

Pool5 [32i
x

� 63, . . . , 32i
x

+ 30]⇥ [32i
y

� 63, . . . , 32i
y

+ 30]⇥ [16i
z

� 32, . . . , 16i
z

+ 15]

Table 2: Receptive field of âl in the corresponding al

Layer name Receptive field

Pool2 [8i
x

� 14, . . . , 8i
x

+ 7]⇥ [8i
y

� 14, . . . , 8i
y

+ 7]⇥ [8i
z

� 14, . . . , 8i
z

+ 7]

Pool3 [4i
x

� 6, . . . , 4i
x

+ 4]⇥ [4i
y

� 6, . . . , 4i
y

+ 4]⇥ [4i
z

� 6, . . . , 4i
z

+ 4]

Pool4 [2i
x

� 2, . . . , 2i
x

+ 1]⇥ [2i
y

� 2, . . . , 2i
y

+ 1]⇥ [2i
z

� 2, . . . , 2i
z

+ 1]

Training and Experiments Detail

Initialization and Training Procedure

All recurrent matrices in the LSTM are initialized with
orthogonal initialization (Saxe, McClelland, and Ganguli
2014). We initialize non-recurrent weights from a uniform
distribution in [�0.01, 0.01] and all the bias terms are initial-
ized to zero. Word embedding vectors are initialized with the
publicly available word2vec vectors that were trained on 100
billion words from Google News, which have dimensional-
ity 300, and were trained using a continuous bag-of-words
architecture (Mikolov et al. 2013). The embedding vectors
of words not present in the pre-trained set are initialized ran-
domly. The number of hidden units in the LSTM is set as 512
and we use mini-batches of size 32. Gradients are clipped
if the norm of the parameter vector exceeds 5 (Sutskever,
Vinyals, and Le 2014). The number of samples for multi-
sample stochastic lower bound is set to 10.

The Adam algorithm (Kingma and Ba 2014) with learning
rate 0.0002 is utilized for optimization. All experiments are
implemented in Torch (Collobert, Kavukcuoglu, and Farabet
2011).

Max/Average Pooling Baseline Detail on
Youtube2Text

A max or average pooling operation is utilized to achieve
saptiotemporal alignment, and an MLP is then employed to
embed the feature vectors into the same semantic space. i.e.

for each ˆa
l

with l = 1, . . . , L:

˜a
i,l

(k) = max

j2Ni,l

a
j,l

(k) or
1

|N
i,l

|
X

j2Ni,l

a
i,l

(k) (7)

ˆa
i,l

= MLP(˜a
i,l

) (8)

where N
i,l

is the receptive field (see previous section for the
definition) of a

i,L

in the l-th layer. Similarly, the context
vector z

t

is computed by abstraction-level and spatiotempo-
ral attention.

References
Ba, J.; Grosse, R.; Salakhutdinov, R.; and Frey, B. 2015. Learning
wake-sleep recurrent attention models. In NIPS.
Burda, Y.; Grosse, R.; and Salakhutdinov, R. 2016. Importance
weighted autoencoders. In ICLR.
Collobert, R.; Kavukcuoglu, K.; and Farabet, C. 2011. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS

Workshop.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. In ICLR.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J.
2013. Distributed representations of words and phrases and their
compositionality. In NIPS.
Mnih, A., and Rezende, D. J. 2016. Variational inference for monte
carlo objectives. In ICML.
Nair, V., and Hinton, G. E. 2010. Rectied linear units improve
restricted boltzmann machines. In ICML.
Saxe, A. M.; McClelland, J. L.; and Ganguli, S. 2014. Exact so-
lutions to the nonlinear dynamics of learning in deep linear neural
networks. In ICLR.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to se-
quence learning with neural networks. In NIPS.
Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri, M.
2015. Learning spatiotemporal features with 3d convolutional net-
works. In ICCV.

