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Abstract

Generating videos from text has proven to be a significant chal-
lenge for existing generative models. We tackle this problem
by training a conditional generative model to extract both static
and dynamic information from text. This is manifested in a hy-
brid framework, employing a Variational Autoencoder (VAE)
and a Generative Adversarial Network (GAN). The static fea-
tures, called “gist,” are used to sketch text-conditioned back-
ground color and object layout structure. Dynamic features
are considered by transforming input text into an image filter.
To obtain a large amount of data for training the deep-learning
model, we develop a method to automatically create a matched
text-video corpus from publicly available online videos. Exper-
imental results show that the proposed framework generates
plausible and diverse short-duration smooth videos, while ac-
curately reflecting the input text information. It significantly
outperforms baseline models that directly adapt text-to-image
generation procedures to produce videos. Performance is eval-
uated both visually and by adapting the inception score used
to evaluate image generation in GANs.

1 Introduction
Generating images from text is a well-studied topic, but gen-
erating video clips based on text has yet to be explored as
extensively. Previous work on the generative relationship
between text and a short video clip has focused on produc-
ing text captioning from video (Venugopalan et al. 2015;
Donahue et al. 2015; Pan et al. 2016; Pu et al. 2017). How-
ever, the inverse problem of producing videos from text has
more degrees of freedom, and is a challenging problem for
existing methods. A key consideration in video generation
is that both the broad picture and object motion must be de-
termined by the text input. Directly adapting text-to-image
generation methods empirically results in videos in which
the motion is not influenced by the text.

In this work, we consider motion and background syn-
thesis from text, which is related to video prediction. In
video prediction, the goal is to learn a nonlinear transfor-
mation function between given frames to predict subse-
quent frames (Vondrick and Torralba 2017) – this step is
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also required in video generation. However, simply pre-
dicting future frames is not enough to generate a com-
plete video clip. Recent work on video generation has
decomposed video into a static background, a mask and
moving objects (Vondrick, Pirsiavash, and Torralba 2016;
Tulyakov et al. 2017). Both of the cited works use a Gener-
ative Adversarial Network (GAN) 2014, which has shown
encouraging results on sample fidelity and diversity.

However, in contrast with these previous works on video
generation, here we conditionally synthesize the motion and
background features based on side information, specifically
text captions. In the following, we call this procedure text-
to-video generation. Text-to-video generation requires both a
good conditional scheme and a good video generator. There
are a number of existing models for text-to-image generation
(Reed et al. 2016; Mansimov et al. 2016); unfortunately, sim-
ply replacing the image generator by a video generator pro-
vides poor performance (e.g. severe mode collapse), which
we detail in our experiments. These challenges reveal that
even with a well-designed neural network model, directly
generating video from text is difficult.

In order to solve this problem, we breakdown the gener-
ation task into two components. First, a conditional VAE
model is used to generate the “gist” of the video from the in-
put text, where the gist is an image that gives the background
color and object layout of the desired video. The content and
motion of the video is then generated by conditioning on both
the gist and text input. This generation procedure is designed
to mimic how humans create art. Specifically, artists often
draw a broad draft and then fill in the detailed information. In
other words, the gist-generation step extracts static “univer-
sal” features from the text, while the video generator extracts
the dynamic “detailed” information from the text.

One approach to combining the text and gist information
is to simply concatenate the feature vectors from the encoded
text and the gist, as was previously used in image genera-
tion (Yan et al. 2016). This method unfortunately struggles to
balance the relative strength of each feature set, due to their
vastly different dimensionality. Instead, our work computes a
set of image filter kernels based on the input text and applies
the generated filter on the gist picture to get an encoded text-
gist feature vector. This combined vector better models the
interaction between the text and the gist than simple concate-
nation. It is similar to the method used in (De Brabandere
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Figure 1: Samples of video generation from text. Universal background information (the gist) is produced based on the text. The
text-to-filter step generates the action (e.g., “play golf”). The red circle shows the center of motion in the generated video.

et al. 2016) for video prediction and image-style transforma-
tion, and (Shen et al. 2017) for question answering. As we
demonstrate in the experiments, the text filter better captures
the motion information and adds detailed content to the gist.

Our contributions are summarized as follows: (i) By view-
ing the gist as an intermediate step, we propose an effective
text-to-video generation framework. (ii) We demonstrate that
using input text to generate a filter better models dynamic
features. (iii) We propose a method to construct a training
dataset based on YouTube (www.youtube.com) videos
where the video titles and descriptions are used as the accom-
panying text. This allows abundant on-line video data to be
used to construct robust and powerful video representations.

2 Related Work
2.1 Video Prediction and Generation
Video generation is intimately related to video prediction.
Video prediction focuses on making object motion realistic
in a stable background. Recurrent Neural Networks (RNNs)
and the widely used sequence-to-sequence model (Sutskever,
Vinyals, and Le 2014) have shown significant promise in
these applications (Villegas et al. 2017; De Brabandere et
al. 2016; van Amersfoort et al. 2017; Kalchbrenner et al.
2017). A common thread among these works is that a convo-
lutional neural network (CNN) encodes/decodes each frame
and connects to a sequence-to-sequence model to predict
the pixels of future frames. In addition, Liu et al. (2017)
proposed deep voxel-flow networks for video-frame inter-
polation. Human-pose features have also been used to re-
duce the complexity of the generation (Villegas et al. 2017;
Chao et al. 2017).

There is also significant work on video generation condi-
tioned on a given image. Specifically, Vukotić et al.; Chao et
al.; Walker et al.; Chen et al.; Xue et al. (2017; 2017; 2016;
2017; 2016) propose methods to generate videos based on
static images. In these works, it is important to distinguish
potential moving objects from the given image. In contrast to
video prediction, these methods are useful for generating a va-
riety of potential futures, based upon the current image. Xue
et al. (2016) inspired our work by using a cross-convolutional

layer. The input image is convolved with its image-dependent
kernels to give predicted future frames. A similar approach
has previously been used to generate future frames (De Bra-
bandere et al. 2016). For our work, however, we do not have
a matching frame for most possible text inputs. Thus, this is
not feasible to feed in a first frame.

GAN frameworks have been proposed for video generation
without the need for a priming image. A first attempt in
this direction was made by separating scene and dynamic
content (Vondrick, Pirsiavash, and Torralba 2016). Using the
GAN framework, a video could be generated purely from
randomly sampled noise. Recently, Tulyakov et al. (2017)
incorporated an RNN model for video generation into a GAN-
based framework. This model can construct a video simply
by pushing random noise into a RNN model.

2.2 Conditional Generative Networks
Two of the most popular deep generative models are the Vari-
ational Autoencoder (VAE) (Kingma and Welling 2013) and
the Generative Adversarial Network (GAN) (Goodfellow et
al. 2014). A VAE is learned by maximizing the variational
lower bound of the observation while encouraging the approx-
imate (variational) posterior distribution of the hidden latent
variables to be close to the prior distribution. The GAN frame-
work relies on a minimax game between a “generator” and a
“discriminator.” The generator synthesizes data whereas the
discriminator seeks to distinguish between real and generated
data. In multi-modal situations, GAN empirically shows ad-
vantages over the VAE framework (Goodfellow et al. 2014).

In order to build relationships between text and videos,
it is necessary to build conditionally generative models,
which have received significant recent attention. In partic-
ular, (Mirza and Osindero 2014) proposed a conditional
GAN model for text-to-image generation. The conditional
information was given to both the generator and the discrim-
inator by concatenating a feature vector to the input and
the generated image. Conditional generative models have
been extended in several directions. Mansimov et al. (2016)
generated images from captions with an RNN model using
“attention” on the text. Liu and Tuzel; Zhu et al. (2016;
2017) proposed conditional GAN models for either style or
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Figure 2: Framework of the proposed text-to-video generation method. The gist generator is within the green box. The encoded
text is concatenated with the encoded frame to form the joint hidden representation zd, which is further transformed into zg . The
video generator is within the yellow box. The text description is transformed into a filter kernel (Text2Filter) and applied to
the gist. The generation uses the feature zg. Following this point, the flow chart forms a standard GAN framework with a final
discriminator to judge whether a video and text pair is real or synthetic. After training, the CNN image encoder is ignored.

domain transfer learning. However, these methods focused
on transfer from image to image. Converting these methods
for application to text and image/video pairs is non-trivial.

The most similar work to ours is from Reed et al. (2016),
which is the first successful attempt to generate natural im-
ages from text using a GAN model. In this work, pairs of data
are constructed from the text features and a real or synthetic
image. The discriminator tries to detect synthetic images or
the mismatch between the text and the image. A direct adap-
tation unfortunately struggles to produce reasonable videos,
as detailed in our experiments. Text-to-video generation re-
quires a stronger conditional generator than what is necessary
for text-to-image generation, due to the increased dimension-
ality. Video is a 4D tensor, where each frame is a 2D image
with color information and spatiotemporal dependency. The
increased dimensionality challenges the generator to extract
both static and motion information from input text.

3 Model Description
We first introduce the components of our model, and then
expand on each module in subsequent sections. The overall
structure of the proposed model is given in Figure 2. There
are three model components: the conditional gist generator
(green box), the video generator (yellow box), and the video
discriminator. The intermediate step of gist generation is de-
veloped using a conditional VAE (CVAE). Its structure is
detailed in Section 3.1. The video generation is based on
the scene dynamic decomposition with a GAN framework
(Vondrick, Pirsiavash, and Torralba 2016). The generation
structure is detailed in Section 3.2. Because the proposed
video generator is dependent on both the text and the gist,
it is hard to incorporate all the information by a simple con-
catenation, as proposed by Reed et al. (2016). Instead, this
generation is dependent on a “Text2Filter” step described in
Section 3.3. Finally, the video discriminator is used to train
the model in an end-to-end fashion.

The data are a collection of N videos and associated text
descriptions, {Vi, ti} for i = 1, . . . , N . Each video Vi ∈
RT×C×H×W with frames Vi = {v1i, · · · ,vTi}, where C
reflects the number of color bands (typically C = 1 or C =
3), and H and W are the number of pixels in the height and

width dimensions, respectively, for each video frame. Note
that all videos are cut to the same number of frames; this
limitation can be avoided by using an RNN generator, but
this is left for future work. The text description t is given as
a sequence of words (natural language). The index i is only
included when necessary for clarity.

The text input was processed with a standard text encoder,
which can be jointly trained with the model. Empirically, the
chosen encoder is a minor contributer to model performance.
Thus for simplicity, we directly adopt the skip-thought vector
encoding model (Kiros et al. 2015).

3.1 Gist Generator
In a short video clip, the background is usually static with
only small motion changes. The gist generator uses a CVAE
to produce the static background from the text (see example
gists in Figure 1). Training the CVAE requires pairs of text
and images; in practice, we have found that simply using the
first frame of the video, v1, works well.

The CVAE is trained by maximizing the variational lower
bound

LCV AE(θg,φg;v, t) = Eqφg (zg|v,t)
[
log pθg (v|zg, t)

]
−KL

(
qφg (zg|v, t)||p(zg)

)
. (1)

Following the original VAE construction (Kingma and
Welling 2013), the prior p(zg) is set as an isotropic mul-
tivariate Gaussian distribution; θg and φg are parameters
related to the decoder and encoder network, respectively. The
subscript g denotes gist. The encoder network qφg (zg|v, t)
has two sub-encoder networks η(·) and ψ(·). η(·) is ap-
plied to the video frame v and ψ(·) is applied to the text
input t. A linear-combination layer is used on top of the en-
coder to combine the encoded video frame and text. Thus
zg ∼ N

(
µφg [η(v);ψ(t)], diag

(
σφg [η(v);ψ(t)]

))
. The de-

coding network takes zg as an input. The output of this CVAE
network is called “gist”, which is then one of the inputs to
the video generator.

At test time, the encoding network on the video frame is
ignored, and only the encoding network ψ(·) on the text is
applied. This step ensures the model sketches for the text-
conditioned video. In our experiments, we demonstrate that



directly creating a plausible video with diversity from text is
critically dependent on this intermediate generation step.

3.2 Video Generator
The video is generated by three entangled neural networks,
in a GAN framework, adopting the ideas of Vondrick, Pirsi-
avash, and Torralba (2016). The GAN framework is trained
by having a generator and a discriminator compete in a min-
imax game (Goodfellow et al. 2014). The generator syn-
thesizes fake samples to confuse the discriminator, while
the discriminator aims to accurately distinguish synthetic
and real samples. This work utilizes the recently developed
Wasserstein GAN formulation (Arjovsky, Chintala, and Bot-
tou 2017), given by

min
θG∈ΘG

max
θD

EV ∼p(V ) [D(V ; θD)]

−Ezv∼p(zv) [D(G(zv; θG); θD)] . (2)

The function D discriminates between real and synthetic
video-text pairs, and the parameters θD are limited to main-
tain a maximum Lipschitz constant of the function. The gen-
erator G generates synthetic samples from random noise that
attempt to confuse the discriminator.

As mentioned, conditional GANs have been previously
used to construct images from text (Reed et al. 2016). Be-
cause this work needs to condition on both the gist and text,
it is unfortunately complicated to construct gist-text-video
triplets in a similar manner. Instead, first a motion filter is
computed based on the text t and applied to the gist, further
described in Section 3.3. This step forces the model to use
the text information to generate plausible motion; simply con-
catenating the feature sets allows the text information to be
given minimal importance on motion generation. These fea-
ture maps are further used as input into a CNN encoder (the
green cube in Figure 2), as proposed by Isola et al. (2016).
The output of the encoder is denoted by the text-gist vector
gt, which jointly considers the gist and text information.

To this point, there is no diversity induced for the motion
in the text-gist vector, although some variation is introduced
in the sampling of the gist based on the text information.
The diversity of the motion and the detailed information is
primarily introduced by concatenating isometric Gaussian
noise nv with the text-gist vector, to form zv = [gt;nv]. The
subscript v is short for video. The random-noise vector nv
gives motion diversity to the video and synthesizes detailed
information.

We use the scene dynamic decomposition (Vondrick, Pir-
siavash, and Torralba 2016). Given the vector zv , the output
video from the generator is given by

G(zv) = α(zv)�m(zv) + (1− α(zv))� s(zv). (3)

The output of α(zv) is a 4D tensor with all elements con-
strained in [0, 1] and � is element-wise multiplication. α(·)
and m(·) are both neural networks using 3D fully convolu-
tional layers (Long, Shelhamer, and Darrell 2015). α(·) is
a mask matrix to separate the static scene from the motion.
The output of s(zv) is a static background picture repeated
through time to match the video dimensionality, where the
values in s(·) are from an independent neural network with

2D convolutional layers. Therefore, the text-gist vector gt
and the random noise combine to create further details on the
gist (the scene) and dynamic parts of the video.

The discriminator function D(·) in (2) is parameterized as
a deep neural network with 3D convolutional layers; it has
a total of five convolution and batch normalization layers.
The encoded text is concatenated with the video feature on
the top fully connected layer to form the conditional GAN
framework.

3.3 Text2Filter
Simply concatenating the gist and text encoding empirically
resulted in an overly reliant usage of either gist or text infor-
mation. Tuning the length and relative strength of the features
is challenging in a complex framework. Instead, a more ro-
bust and effective way to utilize the text information is to
construct the motion-generating filter weights based on the
text information, which is denoted by Text2Filter. This is
shown as the orange cube in Figure 2.

The Text2Filter operation consists of only convolutional
layers, following existing literature (Long, Shelhamer, and
Darrell 2015). We extend the 2D fully convolutional archi-
tecture to a 3D fully convolutional architecture for gen-
erating filters from text. The filter is generated from the
encoded text vector by a 3D convolutional layer of size
Fc × Ft × kx × ky × kz, where Ft is the length of the
encoded text vector ψ(t). Fc is number of output channels
and kx× ky × kz is filter kernel size. The 3D convolution
is applied to the text vector. In our experiments, Fc = 64.
kx = 3 in accordance with the RGB channels. ky and kz
are set by the user, since they will become the kernel size
of the gist after the 3D convolution. After this operation, the
encoded text vector ψ(t) of length Ft becomes a filter of size
Fc × 3× ky × kz, which is applied on the RGB gist image
g. A deep network could also be adopted here if desired.

Mathematically, the text filter is represented as

fg(t) = 3Dconv(ψ(t)). (4)

Note that “3Dconv” represents the 3D full convolution oper-
ation and ψ(·) is the text encoder. The filter fg(t) is directly
applied on the gist to give the text-gist vector

gt = Encoder (2Dconv (g, fg(t))) . (5)

3.4 Objective Function, Training, and Testing
The overall objective function is manifested by the combi-
nation of LCV AE and LGAN . Including an additional recon-
struction lossLRECONS = ||G−V̂ ||1 empirically improves
performance, where V̂ is the output of the video generator
andG is T repeats of g in time dimension. The final objective
function is given by

L = γ1LCV AE + γ2LGAN + γ3LRECONS , (6)

where γ1, γ2 and γ3 are scalar weights for each loss term.
In the experiments, γ1 = γ2 = 1 and γ3 = 10, making the
values of the three terms comparable empirically. The genera-
tor and discriminator are both updated once in each iteration.
Adam (Kingma and Ba 2014) is used as an optimizer.



When generating new videos, the video encoder before
zg in Figure 2 is discarded, and the additive noise is drawn
zg ∼ N (0, I). The text description and random noise are
then used to generate a synthetic video.

4 Dataset Creation
Because there is no standard publicly available text-to-video
generation dataset, we propose a way to download videos
with matching text description. This method is similar in
concept to the method in Ye et al. (2015) that was used to
create a large-scale video-classification dataset.

Retrieving massive numbers of videos from YouTube is
easy; however, automatic curation of this dataset is not as
straightforward. The data-collection process we have consid-
ered proceeds as follows. For each keyword, we first collected
a set of videos together with their title, description, dura-
tion and tags from YouTube. The dataset was then cleaned
by outlier-removal techniques. Specifically, the methods of
(Berg, Berg, and Shih 2010) were used to get the 10 most
frequent tags for the set of video. The quality of the selected
tags is further guaranteed by matching them to the words
in existing categories in ImageNet (Deng et al. 2009) and
ActionBank (Sadanand and Corso 2012). These two datasets
help ensure that the selected tags have visually detectable
objects and actions. Only videos with at least three of the se-
lected tags were included. Other requirements include (i) the
duration of the video should be within the range of 10 to 400
seconds, (ii) the title and description should be in English,
and (iii) the title should have more than four meaningful
words after removing numbers and stop words.

Clean videos from the Kinetics Human Action Video
Dataset (Kinetics) (Kay et al. 2017) are additionally used with
the steps described above to further expand the dataset. The
Kinetic dataset contains up to one thousand videos in each
category, but the combined visual and text quality and consis-
tency is mixed. For instance, some videos have non-English
titles and others have bad video quality. In our experiments,
we choose ten keywords as our selected categories: ‘biking
in snow’, ‘playing hockey’, ‘jogging’, ‘playing soccer ball’,
‘playing football’, ‘kite surfing’, ‘playing golf’, ‘swimming’,
‘sailing’ and ‘water skiing’. Note that the selected keywords
are related to some categories in the Kinetic dataset. Most of
the videos in the Kinetic dataset and the downloaded videos
unfortunately have meaningless titles, such as a date indicat-
ing when the video was shot. After screening these videos,
we end up with about 400 videos for each category. Using
the YouTube8M (Abu-El-Haija et al. 2016) dataset for this
process is also feasible, but the Kinetic dataset has cleaner
videos than YouTube8M.

5 Experiments
5.1 Video Preprocessing
Current video-generation techniques only deal with smooth
dynamic changes. A sudden change of shot or fast-changing
background introduces complex non-linearities between
frames, causing existing models to fail. Therefore, each video
is cut and only qualified clips are used for the training (Von-
drick, Pirsiavash, and Torralba 2016). The clips were quali-

t: kitesurfing at beach

RNN Encoder

𝑛𝑣 ∼ 𝒩(0,1)

Video Generator

Video Discriminator

Real?
Fake?

Real Sample

𝑔𝑡

𝑧𝑣

(a) Baseline with only text encoder.
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Figure 3: Two baselines adapted from previous work. Fig-
ure 3(a) uses the conditional framework proposed by Von-
drick, Pirsiavash, and Torralba (2016). The model was orig-
inally used for video prediction conditioned on a starting
frame. The starting frame in the model is replaced with text
description. Figure 3(b) uses a discriminator performing on
the concatenation of encoded video and text vectors. This is
inspired by Reed et al. (2016).

fied as follows. Each video uses a sampling rate of 25 frames
per second. SIFT key points are extracted for each frame,
and the RANSAC algorithm determines whether continuous
frames have enough key-point overlap (Lowe 1999). This
step ensures smooth motions in the background and objects
in the used videos. Each video clip is limited to 32 frames,
with 64× 64 resolution. Pixel values are normalized to the
range of [−1, 1], matching the use of the tanh function in
the network output layer.

5.2 Models for Comparison
To demonstrate the effectiveness of our gist generation and
conditional text filter, we compare the proposed method to
several baseline models. The scene dynamic decomposition
framework (Vondrick, Pirsiavash, and Torralba 2016) is used
in all the following baselines, which could be replaced with
alternative frameworks. These baseline models are as follows:

• Direct text to video generation (DT2V): Concatenated
encoded text ψ(t) and randomly sampled noise are fed into
a video generator without the intermediate gist generation
step. This also includes a reconstruction loss LRECONS
in (6). This is the method shown in Figure 3(a).

• Text-to-video generation with pair information
(PT2V): DT2V is extended using the framework of (Reed
et al. 2016). The discriminator judges whether the video
and text pair are real, synthetic, or a mismatched pair. This
is the method in Figure 3(b). We use a linear concatenation
for the video and text feature in the discriminator.

• Text-to-video generation with gist (GT2V): The pro-
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Figure 4: Comparison of generated videos with different methods. The generated movie clips are given as supplemental files
(http://www.cs.toronto.edu/pub/cuty/Text2VideoSupp).

posed model, including only the conditional VAE for gist
generation but not the conditional text filter (Text2Filter).

• Video generation from text with gist and Text2Filter
(T2V) This is the complete proposed model in Section 3
with both gist generation and Text2Filter components.

Figure 4 presents samples generated by these four models,
given text inputs “swimming in the swimming pool” and
“playing golf”. The DT2V method fails to generate plausible
videos, implying that the model in Figure 3(a) does not have
the ability to simultaneously represent both the static and
motion features of the input. Using the “pair trick” (Reed et
al. 2016; Isola et al. 2016) does not drastically alter these
results. We hypothesize that because the video is a 4D tensor
while the text is a 1D vector, balancing strength of each
domain in the discriminator is rendered difficult. By using
gist generation, GT2V gives a correct background and object
layout but is deficient in motion generation. By concatenating
the encoded gist vector, the encoded text vector, and the
noise vector, the video generator of (3) is hard to control.
Specifically, this method may completely ignore the encoded
text feature when generating motion. This is further explained
in Section 5.5.

In comparison, the T2V model provides both background
and motion features. The intermediate gist-generation step
fixes the background style and structure, and the following
Text2Filter step forces the synthesized motion to use the
text information. These results demonstrate the necessity of
both the gist generator and the Text2Filter components in
our model. In the following subsections, we intentionally
generate videos that do not usually happen in real world. This
is to address concerns of simply replicating videos in the
training set.

5.3 Static Features
This section shows qualitative results of the gist generation,
demonstrating that the gist reflects the static and background
information from input text.

Figures 5(a) and 5(b) show sample gists of kite surfing at
two different places. When generating videos with a grass
field, the gist shows a green color. In contrast, when kite

(a) Kitesurfing on the sea. (b) Kitesurfing on grass.

(c) Swimming in swimming
pool.

(d) Swimming in snow.

Figure 5: Input text with same motion and different back-
ground information. The input text is given as the figure
caption.

Figure 6: Left is from text input “kitesurfing on the sea”.
Right is from text input “kitesurfing on grass”

surfing on the sea, the background changes to a light blue. A
black blurred shape appears in the gist in both cases, which



(a) Left is “swimming at swimming pool”. Right is “playing golf
at swimming pool”.

(b) Left is “sailing on the sea”. Right is “running on the sea”.

Figure 7: Same textual motion for different locations. These
texts inputs show generalization, as the text in the right col-
umn does not exist in the training data.

is filled in with detail in the video generation. In Figure 5(c),
the lanes of a swimming pool are clearly visible. In contrast,
the gist for swimming in snow gives a white background.
Note that for two different motions at the same location, the
gists are similar (results not shown due to space).

One of the limitations of our model is the capacity of
motion generation. In Figure 6, although the background
color is correct, the kite-surfing motion on the grass is not
consistent with reality. Additional samples can be found in
Figure 1.

5.4 Motion Features
We further investigate motion-generation performance, which
is shown by giving similar background and sampling the
generated motion. The samples are given in Figure 7.

This figure shows that a different motion can be suc-
cessfully generated with similar backgrounds. However,
the greatest limitation of the current CNN video gener-
ator is its difficulty in keeping the object shape while
generating a reasonable motion. Moving to specific fea-
tures such as human pose or skeleton generation could
provide improvements to this issue (Chao et al. 2017;
Walker et al. 2017).

5.5 Quantitative Results
Following the idea of inception score (Salimans et al. 2016),
we first train a classifier on six categories: ‘kite surfing’,
‘playing golf’, ‘biking in snow’, ‘sailing’, ‘swimming’ and
‘water skiing.’ Additional categories were excluded due to
the low in-set accuracy of the classifier on those categories.

A relatively simple video classifier is used, which is a
five-layer neural network with 3D full convolutions (Long,
Shelhamer, and Darrell 2015) and ReLU nonlinearities. The
output of the network is converted to classification scores
through a fully connected layer followed by a soft-max layer.
In the training process, the whole video dataset is split with

In-set DT2V PT2V GT2V T2V
Accuracy 0.781 0.101 0.134 0.192 0.426

Table 1: Accuracy on different test sets. ‘In-set’ means the
test set of real videos. DT2V, PT2V, GT2V, and T2V (the full
proposed model) are described in Section 5.2.

Figure 8: Classification confusion matrix on T2V generated
samples.

ratios 7 : 1 : 2 to create training, validation and test sets. The
trained classifier was used on the 20% left-out test data as
well as the generated samples from the proposed and baseline
models. The classification accuracy is given in Table 1.

We observe clear mode collapse when using DT2V and
PT2V, explaining their poor performance. Further, it appears
that directly generating video from a GAN framework fails
because the video generator is not powerful enough to ac-
count for both the static and motion features from text. Using
the gist generation in GT2V provides an improvement over
the other baseline models. This demonstrates the usefulness
of the gist, which alleviates the burden of the video genera-
tor. Notably, the full proposed model (including Text2Filter)
performs best on this metric by a significant margin, showing
the necessity of both the gist generation and Text2Filter.

Figure 8 shows the confusion matrix when the classifier is
applied to the generated videos of our full model. Generated
videos of swimming and playing golf are easier to classify
than other categories. In contrast, both ‘sailing’ and ‘kite
surfing’ are on the sea. Thus it is difficult to distinguish
between them. This demonstrates that the gist generation
step distinguishes different background style successfully.

6 Conclusion
This paper proposes a framework for generating video from
text using a hybrid VAE-GAN framework. The intermediate
gist-generation step greatly helps enforce the static back-
ground of video from input text. The proposed Text2Filter
helps capture dynamic motion information from text. In the
future, we plan to build a more powerful video generator by
generating human pose or skeleton features, which will fur-
ther improve the visual quality of generated human activity
videos.
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