
Restricted Boltzmann Machine and its High-Order

Extensions

Rishabh Dugar1, Martin Renqiang Min2, and Eric Cosatto3

1NEC Laboratories America , EPFL, Switzerland
2Research Staff Member, NEC Laboratories America

3Senior Research Staff Member, NEC Laboratories America

Nov 25, 2013

Abstract

Deep Neural Network pre-trained with Restricted Boltzmann Ma-
chine (RBM) is widely used in many applications. However, it is quite
tricky to extend RBM to have high-order interactions. Its dependence
on the choice of parameters and hyper-parameters such as the number
of hidden units, learning rate, momentum, sampling methods, number
of factors, initialization of factor weights makes it pretty difficult for a
novice user to apply it to a new application. Moreover, no attempt has
been made to apply high-order semi-RBM for modeling binary data,
for which the RBM was introduced in the first place. In this work, we
have tried to analyze the above mentioned aspects, and tried to use
higher-order interactions similar to mean-covariance RBM (mcRBM)
for binary data. The purpose of this work is to help someone new to
RBM understand the basic RBM, subtle differences in their variations,
and also appreciate the difference in performance resulting from differ-
ent techniques. Experimental results on many datasets demonstrate
the significance of high-order interactions for improving the generative
power of RBM.

1

Contents

1 Introduction 1

2 Energy-based Models and RBMs 2
2.1 Boltzmann Machines . 2
2.2 Restricted Boltzmann Machine 2
2.3 A Simple Example . 4

3 Training RBMs 5
3.1 Sampling Methods . 6

4 RBMs for Continuous Data 8
4.1 Issues with mcRBM . 11
4.2 Even Higher-Order Correlations 12

5 Higher-order Correlations in Binary Data 13
5.1 Lateral Connections . 13
5.2 cRBM for binary data . 14

6 Experiments and Results 17
6.1 Datasets . 17
6.2 Comparing Algorithms . 17
6.3 Analysis of algorithms . 18

6.3.1 CD/PCD/CD-k/PCD-k: 19
6.3.2 Lateral Connections: 19
6.3.3 Corrected mcRBM on Binary Data: 19

7 Conclusion 21

i

1 Introduction

Restricted Boltzmann Machine (RBM) is widely used in many applications
that vary from modeling images [6], speech [4], to natural language [5] and
many more. The success of RBM in efficiently modeling complex datasets
as well as its application in pre-training deep networks has led to a huge
interest in RBM recently, leading to a number of variants of simple RBM.
RBM was initially designed to model binary distributions, but it has been
extended to model distributions of continuous data as well.

In spite of the tremendous evolving and application of RBM, it is quite
tricky to train it. Its dependence on the choice of parameters and hyper-
parameters like the number of hidden units, learning rate, momentum, sam-
pling methods, number of factors, initialization of factor weights makes it
pretty difficult for a novice user to apply it to a new application. RBM
in its most basic form has binary hidden units and is trained using Con-
trastive Divergence [9], but continuous hidden units and training techniques
like Persistent Contrastive Divergence [8] and Fast Persistent Contrastive
Divergence [7] present a variety of options for a user to train the network.

Another widely used variant of RBM for continuous data modeling,
named mcRBM (mean-covariance RBM) has turned out to be very suc-
cessful for modeling images [10] and speech [3]. However, no attempt has
been made to apply a similar technique to improve the performance of RBM
for binary data, for which the RBM was introduced in the first place.

In this work, we have tried to analyze the above mentioned aspects, and
also tried to use higher-order interactions similar to mcRBM for binary data.
The purpose of this work is to help someone new to RBM understand the
basic RBM, subtle differences in their variations, and also appreciate the dif-
ference in performance resulting from different techniques. To validate the
performance of different RBMs we have used two measures: reconstruction
error from cropped (distorted) data and classification error. The first mea-
sure is classical for measuring the effectiveness of an unsupervised model,
and the second one is for the most frequent use of RBMs to pre-train a
multilayer neural network.

1

2 Energy-based Models and RBMs

2.1 Boltzmann Machines

We will first restrict ourselves to binary data and binary RBM, and later
extend it to continuous RBM. The most salient feature of a RBM is the
energy function defined by it. RBMs, as the name suggests, are derived
from Boltzmann Machines. Boltzmann Machines belong to the category of
Energy-based models, which tries to minimize the energy of the data they
have to model. A Boltzmann Machine is very similar to Hopfield network,
in which every configuration of the machine (values of the input units) has
an energy associated with it.

E = −
∑
ij

wijsisj −
∑
i

bisi, (1)

where si and sj are binary states of unit i and j. Each unit is updated, either
synchronously or asynchronously, based on the weighted sum of the input it
receives from all the other units. If this sum is greater than a threshold, the
unit becomes active. Eventually the network will converge to a local min-
imum in the energy space. Boltzmann Machine is very similar to Hopfield
Network, with the only exception that the weights are learned by maximum
likelihood estimation and the units are turned on stochastically as opposed
to deterministically in case of Hopfield network. The energy function of a
Boltzmann Machine (with hidden units or without hidden units) is exactly
identical to that of a Hopfield network, where some of the units can be vis-
ible units, and some can be latent hidden units.

2.2 Restricted Boltzmann Machine

Restricted Boltzmann machine is a variant of the Boltzmann Machine with
a restriction that there are no connections between visible units. So the
energy function for an RBM becomes

E(v, h) = −
∑
ij

wijvihj −
∑
i

aivi −
∑
j

bjhj , (2)

where vi and hj are, respectively, the binary states of visible unit i and hid-
den unit j, and a′is and b′js are biases (we will use v to denote visible units
and h to denote hidden units throughout the report). This energy function
suggests that each configuration (states of the hidden units and visible units)

2

has an energy and consequently a probability associated with it. Obviously,
the configurations with low energy are assigned high probability, and this
can be expressed mathematically as

p(v, h) ∝ −E(v, h) (3)

p(v, h) =
−E(v, h)

Z
(4)

Z =
∑
v,h

e−E(v,h) (5)

where Z is called the partition function or the normalization function.

The parameter values, weights and biases in this case define a probability
distribution over the visible and hidden units. It is noteworthy here that in
RBM the hidden units are conditionally independent given the visible units,
and the visible units are conditionally independent given the hidden units.
This fact is the most salient feature of an RBM as far as the computational
efficiency is concerned. Using this and equations 2-4, we can easily derive
the two conditional probabilities:

P (hj = 1|v) = σ(bj +
∑
i

viwij), (6)

P (vi = 1|h) = σ(ai +
∑
j

hjwij), (7)

where σ(z) = 1
1+exp(−z) . Thus, given the visible units we can sample

the hidden units and vice versa. Sampling the visible units from the hidden
units is required in the training procedure.

We can also calculate the free energy of the visible units since the hidden
units used are binary, which gives us the unnormalized probability of the
visible units, which in our case would be the data points.

F (v) = −
∑
i

aivi −
∑
j

log(1 + e
bj+

∑
i,j

wijvi) (8)

3

2.3 A Simple Example

We here provide a simple example to show how an RBM can define a proba-
bility distribution, by considering a simple RBM with 2 visible binary units
and 1 binary hidden unit. Consider the energy function in equation 2 and
assume that there are no biases. Figure 1 shows the probability of the all
the 4 possible states for different values of wij . The probability distribution
of any RBM is characterized by its weight and biases, and we can see how
by changing the weights the RBM assign different probabilities to different
visible states. The addition of hidden units increases the capacity of an
RBM to express complex joint probability distributions, allowing the RBM
to work as a product of experts model.

Figure 1: Clockwise from top left: The probabilities of 11, 10, 00, 01 defined by the RBM
as the weights are changed. The z-axis is the probability and the x and y axes are the
values of the w11 and w21

4

3 Training RBMs

Given that the RBM associates a probability with each configuration (data
point), the straightforward way to train the network would be maximum
likelihood. The parameters should be updated so that the entire set of
training data points have high probability. We can use either free energy(
probability of each data point exclusively) or the energy(probability of a
data-point hidden unit combination) to maximize the log-likelihood of the
observed dataset. We have always used the energy term in our work to up-
date the parameters.

Given the energy term in 2 and the probabilities in 6-7, the derivative
of the log probability, which will be used in gradient decent to update the
weights can be written as :

∂p(v)

wij
=< vihj >data point − < vihj >distribution (9)

∂p(v)

wij
= vip(hj = 1/v)− < vihj >distribution (10)

The corresponding derivatives for the biases would be

∂p(v)

ai
=< vi >data point − < vi >distribution (11)

∂p(v)

bj
= p(hj = 1/v)− < hj >distribution (12)

With the help of equations 6 it is very easy to compute the first term of
all the derivative, using the probabilities instead of the sampled binary value
for the hidden units, and the observed data as the visible units. This term
is also termed as positive statistics, as it tries to increase the probability
of the observed data point. However the second term contains an expecta-
tion over the whole distribution defined by the RBM. This is called negative
statistics, as it tried to decrease the probability of the samples generated
form the current distribution. This means that we need samples (also called
fantasy particles) from the exact distribution defined the RBM, and it is
in the way this sample is generated that leads to different algorithms for
training RBMs.

5

Equation 9 is very intuitive to understand, the learning tries to decrease
the energy of the given data point, and increase the overall energy of all
the data points defined by the RBM distribution. Eventually, the learning
will stop when the RBM has updated it parameters in such a way, that the
distribution defined by it is very close to the distribution of the data it is
trying to model.

3.1 Sampling Methods

1. Gibbs Sampling:

One way to get a sample from a joint distribution is Gibbs sampling.
The idea is to start from a random state v0 (visible units in our case),
and using equations 6 and 7 an infinite number of time to reach the
state vinf . If this is done for a very long time, then vinf would be an
accurate sample of the distribution. Even though theoretically robust,
this procedure is not practical at all, because we need to run the chain
for a very long time to get the exact sample each time we need to
update the parameters.

2. Contrastive Divergence:

This is the most commonly used procedure for sampling the nega-
tive particles. The procedure is very simple, instead of generating the
exact sample from the distribution by running the chain for a long
time, this procedure uses the samples generated from the first step of
the chain itself. The samples v1 and h1 are used to compute the neg-
ative statistics. It is important to note here that the chain is always
started from the data point, unlike the Gibbs Sampling when the chain
could be started from any random input point. This simple strategy
makes this algorithm very computationally efficient. [1] gives an intu-
itive as well as mathematical explanation why such an sampling would
work. The idea is that the one-step reconstruction would be closer to
the data distribution than the data itself (since running the chain for
an infinite time leads to the data distribution), and so treating this
sample as negative particle would also serve our purpose of increasing
the expected energy of the samples from the distribution. From the
above explanation it is clear that running the chain for n steps instead
of one step would provide even better samples, as the sample become
more and more close to the data distribution. The algorithm, which
obtains the negative sample by running the chain for one step is called
CD-1, and the one that runs the algorithm for n chains is called CD-n.

6

3. Persistent Contrastive Divergence:

In case of Contrastive Divergence (CD-1 or CD-n), each time the net-
work sees a new data point, it starts a Markov chain from that data
point itself. Here, instead of doing that, in PCD the network starts
a Markov chain form a random point, and maintains (persists) this
chain throughout the algorithm. This means that each time, the net-
work wants to generate negative sample to update the parameters, it
runs this chain one time (or n times for PCD-n) to sample a particle.
The idea is that if the learning rate of the parameters are slow enough,
then eventually the samples would be accurate. In the extreme case,
lets consider that the learning rate is zero, then this is exactly the
same as performing the infinite chain Gibbs sampling, since the pa-
rameters do not change at all. This is theoretically more sound than
Contrastive Divergence, as it generates more accurate samples and
there is not much computational overhead apart from maintaining the
states of the chains. A variant of PCD available in the literature is
Fast PCD, in which the negative samples are obtained using the orig-
inal weights of the RBM, as well as an additional set of weights which
are updated using a higher (fast) learning rate. We tried using this,
but it did not improve the performance of the simple RBM.

7

4 RBMs for Continuous Data

Even though RBMs were introduced to model binary data, they have been
successfully used to model continuous data as well with binary hidden units.
Gaussian RBM is one such model which can capture the distribution of
Gaussian units. The energy for the Gaussian RBM is :

E(v, h) = −
∑
i,j

vi
σi
hjwij −

∑
i

(vi − ai)2

2σi2
−

∑
j

bjhj (13)

For simplicity we assume the variance of the visible units to be 1, leading
to the energy function:

E(v, h) = −
∑
i,j

vihjwij −
∑
i

(vi − ai)2

2
−

∑
j

bjhj (14)

Using this energy, we can derive the activation probability of hidden
units as well as the conditional probability distribution of the visible units
given the hidden units in a similar way to binary units. The only difference
being that the visible units can now take an infinite number of real values
instead of just binary values. It turns out that the visible units are condi-
tionally independent and Gaussian distributed themselves:

p(vi|h) = N (
∑
j

hjwij , 1) (15)

On top of this we used rectified linear units for visible points to sample
the visible units. Equations 13 and 14 can be used with of the sampling
techniques mentioned in 3.1 to generate negative particles for training the
network. One key factor to be remembered when using Gaussian RBM is
that the input has to be normalized before training. This was not necessary
for binary RBM, but for Gaussian RBM the data should be normalized to
mean 0 and variance 1.

Gaussian RBMs are very difficult to train using binary hidden units.
This is because unlike binary data, continuous valued data lie in a much
larger space (for images, each unit can take 255 different value, for binary
each point can only take only 2). One obvious problem with the Gaussian
RBM is that given the hidden units, the visible units are assumed to be
conditionally independent, meaning it tries to reconstruct the visible units

8

independently without using the abundant covariance information present in
all datasets. The knowledge of the covariance information reduces the com-
plexity of the input space where the visible units could lie, thereby helping
RBMs to model the distribution.[1] tried to gate the interaction between the
visible units, leading to the energy function:

E(v, h) =
1

2

∑
i,j,k

vivjhkwijk −
∑
i

aivi −
∑
k

bkhk (16)

To understand the role of gated hidden units, let us consider the exam-
ple of images. In case of images nearby pixels are always highly correlated,
but presence of an edge or occlusion would make these pixels different. It is
this flexibility that the above network is able to achieve, leading to multiple
covariances of the dataset. Every state of the hidden units defines a covari-
ance matrix. This type of RBMs are called Covariance RBM (cRBM).

To take advantage of both the Gaussian RBM (which provides the mean)
and the cRBM, mcRBM uses an energy function that includes both the term:

E(v, hg, hm) =
1

2

∑
i,j,k

vivjhk
gwijk −

∑
i

aivi −
∑
k

bkhk
g

−
∑
ij

vihj
mwij −

∑
k

ckhk
m (17)

In equations 16 and 17, each hidden unit modulate the interaction be-
tween each pair of pixels leading to a large number of parameters in wijk to
be tuned. However, most of the real world data for structured and do not
need such explicit modulation between each pair of visible units. To reduce
this complexity, [2] introduced factors approach to approximate the weight
wijk.

wijk =
∑
f

CifCjfPkf (18)

The energy function can now be written as

E(v, hg, hm) =
1

2

∑
f

(
∑
i

viCif)
2
(
∑
k

hkwkf)−
∑
i

aivi −
∑
k

bkhk
g

9

−
∑
ij

vihj
mwij −

∑
k

ckhk
m (19)

Using this energy function, we can again derive the activation probabil-
ities of the hidden units, as well the respective gradients for training the
network. Figure 2 explains the structure of this factored mcRBM, the hid-
den units on the left are called mean hidden units and those on the right
are called covariance hidden units.

Figure 2: Structure of factored mcRBM with 2 mean hidden and 2 covariance hidden
units

The energy function can also be used to sample the negative particles
given the hidden units, but this requires computing the inverse of a ma-
trix which is computationally very expensive for each training update. To
get over this problem, [10] defines a sampling method called Hybrid Monte
Carlo sampling to generate the negative particles. The is that given a start-
ing point P0 and an energy function, the sampler starts at P0 and moves
with randomly chosen velocity along the opposite direction of gradient of
the energy function to reach a point Pn with low energy. This is similar to
the concept of CD (or PCD), where an attempt is make to reach as close
as possible to the actual model distribution. The term n is specified by the
leap-frog steps, which we chose to be 20. [10]provides the details of the exact
algorithm.

10

Since we want to sample a visible point, we need the free energy of the
samples instead of the joint energy of the samples and hidden units. The
free energy can be easily computed for binary hidden units can be obtained
in a similar way to equation 8

4.1 Issues with mcRBM

Training mcRBMs is very tricky, because they depend a lot on initialization
of the factor weights(P and C), their learning rates and normalization of P
and C.

• P is initialized and constrained to be positive. According to equation
19, if any value of P is allowed to be negative, the HMC can obtain
extreme negative or positive value for the negative particles, since they
would have very low energy(close to inf). To understand this, we can
think of a concave quadratic function and try to sample a point with
low energy from it. This is indeed the reality with mcRBM and so it
is very important to satisfy this constraint.

• The biases of the covariance hidden units are all assigned positive
values, which makes the units to be ON most of the time. The only
way to make a hidden unit off is when the factors connected to the
hidden units provide large input. This is multiplied with the negative
value of P, and can turn OFF the hidden unit. This can be thought of
a constraint gating, where the violation of a constraint leads to turning
off the hidden units.

• Both the P and C matrix are normalized to have unit norm along their
columns. Along with this, the data is also normalized along its length.
The normalization of data and C leads to the model being invariant
to the magnitude of the input point, rather it only depends on the
cosine of the angle between the input and P filters. Normalization of
P does not influence the performance, and we have not used it. This
normalization of the input data, changes the energy function which
has to be taken care of while computing its gradient during HMC.

• Learning rate for C is assumed to be very low. This is required because
by empirical evaluation we found that a comparable learning rate to
P, leads to instability in the performance.

• The input data is preprocessed using PCA whitening to remove the
noise present in the data. Whitening helps to get rid of the strong
pairwise correlations in the data, which are not much informative like
correlation between adjacent pixels in an image. This step also reduces

11

the dimensionality of the data points, thereby helping the algorithm
computationally. It is a crucial step, because working on the raw data
leads to the network modeling noise more than the important features.

• The P matrix is often initialized using a topographical mapping, which
leads to pooling of the factors. This means that nearby factors (in a
topographical sense) capture similar features. To understand topo-
graphical mapping, we can think of n2 hidden units arranged on nxn
grid at layer 1, and similarly the m2 factors arranged on a mxm grid
at layer 0. Each hidden unit is now only connected to its closest few
factors in the lower layer.

These are some of the precautions and initialization tricks that have to be
taken care of while using an mcRBM. With these the mcRBM can detect
interesting second-order correlations present in the data, leading to better
modeling of data.

4.2 Even Higher-Order Correlations

The mcRBMs successfully captures second-order correlations in the data. If
the data would be purely Gaussian, the highest correlation present would be
second-order. But real world data are not purely Gaussian, so we can also
look for even higher order correlations in a similar procedure. To capture
third order correlations, we modify the energy function in equation 19 as
follows:

E(v, hg3, hm) =
1

3

∑
f

(abs(
∑
i

viCif))
3
(
∑
k

hk
g3wkf)−

∑
i

aivi −
∑
k

bkhk
g3

−
∑
ij

vihj
mwij −

∑
k

ckhk
m (20)

We take the absolute value of the C filter outputs. If this was not used,
there was no way we could constraint P to ensure that the HMC does not
give extreme values as negative particles. The absolute value has to be
considered when computing the gradient during HMC. Figure 3 shows the
filters learned by third order-interactions.

The natural thing would be now to combine the second order and third
order terms. Figure 3 shows the filters obtained for the second order mcRBM,
third order mcRBM and their combination when they are trained on patches
of colored images. It can be observed that the presence of explicit second-
order capturing filters leaves the third order filters to capture third order
interactions only, which is very less in natural images. Again we can see the

12

(a) Only second order (b) Only third order

Figure 3: C filters obtained when second order and third order mcRBM are used indepen-
dently, Equation 19 and 20

(a) Second order filters (b) Third order filters

Figure 4: C filters obtained when second order and third order mcRBM are used together.

presence of third order filters enables the second order ones to model only
second order interactions, making the filters more sharp. The third-order
filters are still able to detect some colored edges (not clear in the figure).
With different datasets, hopefully even the third order ones would be able
to capture significant third-order correlations.

5 Higher-order Correlations in Binary Data

5.1 Lateral Connections

One extension of a simple RBM is to introduce lateral connections between
the visible units to capture second order interactions in the data. The idea is
that if two units are highly correlated, then this correlation can be captured
by the lateral weights, and the RBM weights can capture more interesting
features than strong pairwise correlations. [14] The energy function of such
a Boltzmann machine, also termed as Semi-Restricted Boltzmann Machines
with lateral connection can be written as:

13

E(v, h) = −
∑
i,k

wikvihk −
∑
i

aivi −
∑
k

bkhk −
∑
ij

vivjLij (21)

where L defines the lateral weights between the visible units constrained
with Lii = 0

In such a network, the hidden units are still conditionally independent
given the visible units, but the visible units are no longer conditionally in-
dependent. So, the visible units cannot be sampled according to equation 7,
and we need to apply mean-field reconstruction of the visible units. This is
a computational disadvantage on the regular RBM, where the visible units
can be sampled in parallel. Using the energy function above ,we can derive
the following:

αi(n) = σ(ai +
∑
k

hkwik +
∑
j

vi(n− 1)Lij) (22)

vi(n) = λvi(n− 1) + (1− λ)αi(n) (23)

where λ is the parameter for mean-filed reconstruction. We chose this
parameter to be 0.2, however, the choice of lambda did not seems to have a
great impact on the performance. and used the above equation from n = 1
to n = 10, assigned v(0) to be either the data (CD) or the persistent fantasy
particle (PCD)

The Lij weight vector indeed captures the true covariance matrix (ap-
proximately) of the dataset. There is also a difference in the quality of
filters obtained as a result of lateral connections, whereby the filters appear
to extract more interesting features than filters without lateral connections
which are active for a small blob of input space (like when modeling images).
However, if the hidden units are high enough then all the good features are
captured without lateral connections as well.

5.2 cRBM for binary data

Lateral connections is one way to capture higher order correlations in bi-
nary data. However, it provides only one correlation matrix for the dataset.
The idea of cRBM, described above was first introduced for binary data
[2], claiming that it can capture better features than a simple RBM. Un-
fortunately, there has been no possible attempt to use this modification in
improving the performance of the binary RBM. The energy function of equa-
tion 16 can be used for binary data.

14

This is indeed a better model for binary data, as it allows hidden units
to gate the interactions between visible units. It is to be noted here that
the visible units are no longer independent given the hidden units, so we
cannot use Gibbs sampling to compute all the visible unit activations si-
multaneously. Instead we need to perform Gibbs sampling sequentially for
all the dimensions of the visible units. This can be very computationally
expensive for inputs with relatively high dimension (even 500). To avoid
this, we use an approximations in the form of mean field updates to get the
samples. This is not as accurate as exact Gibbs sampling but fulfills our
purpose most of the time. We used mean field in a similar way to the one
used in lateral connections with λ 0.2, and performed 10 mean field updates
for each sampling. Similar to GRBM, we tried to extend this cRBM to
mcRBM for binary data, leading to the energy functions 24 (which is same
as 17)

E(v, hg, hm) =
1

2

∑
i,j,k

vivjhk
gwijk −

∑
ij

vihj
mwij + bias terms (24)

This contains both the terms for modeling the mean as well as the co-
variance of the dataset. However, this does not perform better than a simple
RBM in practice. This is because the expansion of the left terms in equa-
tion 24 contains terms like vi

2hk
gwiik, which are also present in the mean

side vihk
mwik, because vi

2 = vi for binary data. This leads to some kind
of competition between the mean and covariance hidden units depending
on their learning rates, leading to instability in learning. Similarly, it can
be observed that equation 16 contains terms for both mean and covariance
information, but in this case a hidden unit is made to model both this in-
formation simultaneously. To get rid of these issues, we introduced a slight
modification in the energy function, to make sure that mean and covariance
hidden units do not overlap with each other. We call this corrected mcRBM,
with the following energy function expressed in terms of the factors:

E(v, hg, hm) = −1

2

∑
f

((
∑
i

viCif)
2
−

∑
i

vi
2Cif2)(

∑
k

hkwkf)

−
∑
ij

vihj
mwij + bias terms (25)

This is exactly same to ensuring that in , wiik = 0 ∀i . This ensures
that the two hidden units model the mean and covariance information re-

15

spectively. Remaining part of the algorithm , HMC sampling and deriva-
tives, are adjusted accordingly. This gives better performance than normal
mcRBM as well as ordinary RBM.

It is to be noted here that this modification was relatively simple while
capturing second order correlations, for higher order correlations, it would
not be as straightforward.

One reason why this idea of capturing high order correlation has not
been investigated for binary data, is that mean RBM perform exceptionally
well for RBM. In fact, it has been showed mean RBM can capture any kind
of probability distribution, given that there are sufficient hidden units.[?].
But we still see that sometimes, capturing the second order and even higher
order information explicitly helps the performance of RBM, and perhaps
using this information in a Deep Belief Network might be beneficial even for
binary data.

16

6 Experiments and Results

6.1 Datasets

We used four datasets to validate the previous works on RBM, various vari-
ations on RBM, as well as our proposed method to capture higher order
interactions in binary and continuous data

MNIST dataset: This is a dataset of 70000 hand written digits belong-
ing to 10 class, and is the most popular dataset used for binary classification.
Each input image is of size 28×28 leading to an input dimension of 784. The
training set consists of 60000 points, equally divided in the 10 classes. The
data is gray-scale pixel values and is divided uniformly by 255 to get values
between 0 and 1. Although the data is not exactly binary, the distribution
of each dimension is peaked at 0 and 1 making it suitable to use for binary
purposes.

USPS dataset: This is another hand written digit image dataset of
size 16X16. There are 11000 data points belonging to 10 classes uniformly,
which we divided into training and testing in the ratio 8 : 3. The dataset
is normalized in the same manner as MNIST. One motivation to use this
dataset was the low dimensionality of 256.

The ENCODE Transcription Factor binding dataset: This is a
dataset of 11400 protein-coding genes, each containing the binding activities
of 116 Transcription Factors (TFs). This is a purely binary dataset, and we
chose this dataset as it has some high order correlations. This is an unsu-
pervised dataset with no class labels.

Newsgroup 20 by date: This is a dataset for document classification,
containing 11200 training documents, and 7500 testing points. Each docu-
ments consists of many words, and we chose the 5000 most frequent words
in all the documents combined to form a binary bag of word representation
for the documents, consisting of 5000 features.

6.2 Comparing Algorithms

The main motivation of this work has been to compare various aspects
(parameters, learning rates, sampling procedures) of RBMs , and come up

17

with one that works the best. Given that this is an unsupervised algorithm,
we could not directly use classification percentages to compare them. So we
used two techniques:

• Reconstruction
A good quality which is looked after in any unsupervised algorithm
is its ability to regenerate original data from corrupt data. To ac-
complish this for binary data, we randomly assigned some bits of the
input data to 0 or 1, and tried to recover the original data. For images,
we cropped the test data by some rows of pixels from the bottom of
the images and for the ENCODE data we assigned some of the TFs
(randomly chosen) to be absent/present. Then we used the RBM
equations to regenerate the original data by running multiple steps of
Gibbs sampling for hidden and visible units, each time clamping the
uncorrupted part of the data (rows which are not removed, and TFs
which are not altered) to the corresponding visible units. We chose
the number of Gibbs step to be 500. For reconstruction, we did not
search for the number of hidden units that give the best reconstruc-
tion, rather we fixed the total number of hidden units to be same for
all the algorithms.

• Classification (RBM for pre-training)
RBMs are widely used as pre-training a Deep Belief network. We did
not try to go deep, rather just built a logistic layer on top of a pre-
trained RBM to classify the data. A better model of the data, would
give better features and consequently lead to lower classification. The
learning rate used for 0.1 and no momentum was used. Out goal was
not to be better than the state of the art algorithms, rather the goal
was to find out whether different parameters of RBM influence the
learning or not. Unlike reconstruction, in classification we did model
selection to find the best number of hidden units.

Apart from these techniques we also visualize the filters obtained af-
ter training (mean or covariance) to measure the effectiveness of the
algorithm, particularly for image datasets (MNIST and USPS).

6.3 Analysis of algorithms

For all the datasets and algorithms, we used mini-batch of 20 data points
for training.

18

6.3.1 CD/PCD/CD-k/PCD-k:

For a basic RBM, this is a crucial decision as it defines the sampling method
needed for generating the negative statistics. k defines the number of Markov
steps for both CD and PCD, and does not play a part for continuous data,
as sampling is done by HMC. Tables 1,2,3 shows the reconstruction errors
for the two binary image datasets and Table 4 shows the classification per-
formance. This shows that PCD performs slightly better than CD, and
increasing the value of k indeed improves the performance. It is to be noted
that PCD demands a low learning rate for reasons explained before, and the
computational expense of PCD is same as CD. However, introducing ’k’ has
a significant influence on the computation as can be seen from the Table
1. So, the general conclusion is to work with k=1 and use PCD instead of
CD,however with an abundance of computational resource PCD-k outper-
forms PCD. Learning rates used were 0.01, no momentum and training was
done for 50 epoch with annealing after 20 epochs.

6.3.2 Lateral Connections:

We cannot use classification to measure the effectiveness or utility of lat-
eral connections, because even though [14] claims that introducing lateral
connections leads to some redundant features being ignored, but we found
that an RBM with sufficient hidden units can still capture all the discrim-
inating features. To see whether the covariance information helps or not,
we use reconstruction errors. Table 1,2 shows the reconstruction error for
USPS and the ENCODE datasets. The lateral connections did not seem to
help much as there are sufficient hidden units. It can be concluded that if
the number of hidden units are less, the lateral connections help a lot but
once the number of hidden units is sufficient, they do not help that much.
Table 5 shows the reconstruction error on USPS data for PCD and Lateral
connections as the number of hidden units are increased.

6.3.3 Corrected mcRBM on Binary Data:

We tried to compare the performance of cRBM, mcRBM and corrected
mcRBM on MNIST, USPS and the ENCODE dataset using classification
(for the first two) and reconstruction (Table 4). We used learning rate of
0.01 for mean weights, 0.01 for C matrix (for documents we used learning
of 0.001 for mean and C as well) and 0.001 for P matrix. The P and C
filters were initialized randomly , and we applied column-normalization for
P matrix. The number of epcoh used for training were 50, and we annealed
the learning rate after 20 epochs. Table 10 gives a comparative view of the
classification percentage and Table 6,7,8 shows the reconstruction errors.
For reconstruction, we keep the total number of hidden units along different

19

algorithms to be same to get unbiased comparisons. The reconstruction er-
ror is better for the corrected mcRBM most of the times particularly when
there is more cropping (or distortion), showing that indeed some good fea-
tures are captured which help the mean features for modeling data. For
classification, we used the best case number of hidden units, and observed
not much improvement. However, mcRBM is very computationally expen-
sive as compared to binary RBM, as can be seen from Table 6.

20

MNIST(the number of rows cropped) CD CD-10 PCD PCD-10 Lateral
16 17.87 17.35 17.34 17.00 17.51
14 14.13 13.83 13.89 13.85 14.23
12 11.24 11.00 10.86 10.73 11.20
10 8.99 8.65 8.77 8.68 8.88
8 6.34 6.14 6.14 6.00 6.35

Time taken (sec/epoch) 17.1 88.2 23.1 101.1 95.0

Table 1: Reconstruction performance for MNIST under various algorithms, each with 300
hidden units and different cropping size. Timing analysis is for 500 hidden units and
mini-batch of 100.

USPS(the number of rows cropped) CD CD-10 PCD PCD-10 Lateral
8 25.39 24.88 25.64 24.78 24.83
7 24.45 24.02 24.67 23.62 24.60
6 23.18 22.89 22.89 22.20 23.21
5 21.92 21.01 21.68 20.81 22.03
4 20.00 19.35 20.35 18.78 20.13

Table 2: Reconstruction performance for USPS under various algorithms, each with 300
hidden units and different cropping size

7 Conclusion

In this work, we tried to analyze the different varieties of RBMs existing in
the literature. The objective is to provide someone relatively new to RBM
a basic guide about some of the advanced applications and modifications of
RBM, both in binary and continuous domain. Along with this, an attempt
was made to apply mcRBM type energy function to binary data to capture
the covariance information in binary data. Although, the results do show
some improvement in the performance of basic RBMs, but it comes at a
very high computational cost. The simple binary RBM is very strong in
itself in modeling data, so the use of mcRBM to model data may not be an
attractive option, but if the task is collaborative filtering or reconstruction
distorted data, it does extract better features than a basic RBM. As far
as continuous data is concerned, the 2-mcRBM performs very well and the
experiments provide hope for even 3 and more higher order mcRBM.

ENCODE(the number of TFs corrupted %) CD CD-10 PCD PCD-10
50 20.35 19.98 20.72 20.01
33 20.11 19.45 20.07 18.85
25 21.32 21.00 21.45 20.87
20 17.05 16.85 17.88 17.45
10 21.89 21.30 21.78 21.42

Table 3: Reconstruction performance for ENCODE dataset under various algorithms, each
with 300 hidden units and different cropping size

21

Classification CD CD-10 PCD PCD-10 Lateral
MNIST 1.52 1.50 1.43 1.43 1.50
USPS 2.1 2.1 2.2 2.0 2.1

Table 4: Classification under various algorithms(MNIST-500 hidden units, USPS-300 hid-
den units) and different cropping size

Number of hidden units PCD-1 Lateral
50 25.00 22.32
100 22.10 19.35
200 18.23 18.45
300 17.34 18.20
400 17.24 17.89

Table 5: Reconstruction of MNIST data, (16 rows cropped) under PCD and with lateral
connections

MNIST(the number of rows cropped) RBM(PCD-1) cRBM mcRBM corrected mcRBM
16 17.00 20.1 18.23 15.45
14 13.95 16.35 14.22 12.31
12 10.73 12.05 11.84 10.45
10 8.68 10.67 9.67 8.13
8 6.34 8.23 8.10 6.95

Time taken (sec/epoch) 23.1 122.3 134.4 142.5

Table 6: Reconstruction error performance for MNIST under various high order RBM:
RBM (300 mean), cRBM(300 covariance), mcRBM (200 mean + 100 cov), corrected
mcRBM(200 mean +100 cov).
Timing analysis of for 500 hidden units(total), and minibatch of 100

USPS(the number of rows cropped) RBM(PCD-1) cRBM mcRBM corrected mcRBM
8 24.78 26.76 25.25 22.38
7 23.62 25.34 23.89 22.10
6 22.20 24.33 22.89 21.75
5 20.81 22.10 21.78 21.12
4 18.78 21.07 19.83 19.00

Table 7: Reconstruction performance for USPS under various high order RBM: RBM (300
mean), cRBM(300 covariance), mcRBM (200 mean + 100 cov), corrected mcRBM(200
mean +100 cov)

ENCODE(the number of TFs corrupted %) RBM(PCD-1) cRBM mcRBM corrected mcRBM
50 20.72 22.32 20.35 17.35
33 20.07 22.21 20.14 17.77
25 21.45 22.76 21.78 19.38
20 17.88 20.10 17.23 15.68
10 21.78 23.12 21.02 19.23

Table 8: Reconstruction performance for the ENCODE dataset under various high order
RBM: RBM (300 mean), cRBM(300 covariance), mcRBM (200 mean + 100 cov), corrected
mcRBM(200 mean +100 cov)

22

Document(the number of words corrupted %) RBM(PCD-1) corrected mcRBM
50 14.38 2.33
33 11.32 2.13
25 7.96 2.04
20 7.08 2.13
10 4.12 1.80

Table 9: Reconstruction performance for News Group dataset under high order RBMs:
RBM (700 mean) and corrected mcRBM (500 mean + 200 covariance)

Classification RBM(PCD-1) cRBM mcRBM corrected mcRBM
MNIST 1.43 1.50 1.50 1.46
USPS 2.1 2.0 2.1 1.7

Table 10: Classification under various algorithms and different cropping size:RBM (500
mean), cRBM(500 covariance), mcRBM (300 mean + 300 cov), corrected mcRBM(300
mean +300 cov)

23

References

[1] Geoffrey E. Hinton, ”Learning to represent visual input” Philosophical
Transactions of the Royal Society B: Biological Sciences 365(1537):177–
184 Jan 12, 2010

[2] Geoffrey E. Hinton: A Practical Guide to Training Restricted Boltz-
mann Machines. Neural Networks: Tricks of the Trade (2nd ed.) 2012:
599-619

[3] Marc’Aurelio Ranzato, Geoffrey E. Hinton: Modeling pixel means and
covariances using factorized third-order boltzmann machines. CVPR
2010: 2551-2558

[4] Abdel-rahman Mohamed, Geoffrey E. Hinton: Phone recognition using
Restricted Boltzmann Machines. ICASSP 2010: 4354-4357

[5] Salakhutdinov, R. R. and Hinton, G. E. (2009). Replicated softmax: An
undirected topic model. In Advances in Neural Information Processing
Systems,2009 volume 22.

[6] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh, A fast learn-
ing algorithm for deep belief nets. Neural Comput. 18, 7 (July 2006),
1527-1554.

[7] Tijmen Tieleman, Geoffrey E. Hinton: Using fast weights to improve
persistent contrastive divergence. ICML 2009: 130

[8] Tijmen Tieleman: Training restricted Boltzmann machines using ap-
proximations to the likelihood gradient. ICML 2008: 1064-1071

[9] Geoffrey E. Hinton: Training Products of Experts by Minimizing Con-
trastive Divergence. Neural Computation 14(8): 1771-1800 (2002)

[10] George E. Dahl, Marc’Aurelio Ranzato, Abdel-rahman Mohamed, Ge-
offrey E. Hinton: Phone Recognition with the Mean-Covariance Re-
stricted Boltzmann Machine. NIPS 2010: 469-477

[11] J. J. Hopfield, ”Neural networks and physical systems with emer-
gent collective computational abilities”, Proceedings of the National
Academy of Sciences of the USA, vol. 79 no. 8 pp. 25542558, April
1982.

[12] Hinton, G. E.; Sejnowski, T. J. (1986). ”Learning and Relearning in
Boltzmann Machines”. In D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Volume 1: Foundations (Cambridge:
MIT Press): 282317.

24

[13] A. Krizhevsky. Learning multiple layers of features from tiny images,
2009. MSc Thesis, Dept. of Comp. Science, Univ. of Toronto.

[14] Simon Osindero, Geoffrey E. Hinton: Modeling image patches with a
directed hierarchy of Markov random fields. NIPS 2007

[15] Hugo Larochelle, Yoshua Bengio: Classification using discriminative
restricted Boltzmann machines. ICML 2008: 536-543

25

