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Disrupted or abnormal biological processes responsible for cancers often quantitatively manifest
as disrupted additive and multiplicative interactions of gene/protein expressions correlating with
cancer progression. However, the examination of all possible combinatorial interactions between gene
features in most case-control studies with limited training data is computationally infeasible. In this
paper, we propose a practically feasible data integration approach, QUIRE (QUadratic Interactions
among infoRmative fEatures), to identify discriminative complex interactions among informative
gene features for cancer diagnosis and biomarker discovery directly based on patient blood samples.
QUIRE works in two stages, where it first identifies functionally relevant gene groups for the disease
with the help of gene functional annotations and available physical protein interactions, then it
explores the combinatorial relationships among the genes from the selected informative groups. Based
on our private experimentally generated data from patient blood samples using a novel SOMAmer
(Slow Off-rate Modified Aptamer) technology, we apply QUIRE to cancer diagnosis and biomarker
discovery for Renal Cell Carcinoma (RCC) and Ovarian Cancer (OVC). To further demonstrate the
general applicability of our approach, we also apply QUIRE to a publicly available Colorectal Cancer
(CRC) dataset that can be used to prioritize our SOMAmer design. Our experimental results show
that QUIRE identifies gene-gene interactions that can better identify the different cancer stages of
samples, as compared to other state-of-the-art feature selection methods. A literature survey shows
that many of the interactions identified by QUIRE play important roles in the development of cancer.

Keywords: Blood-based Cancer Diagnosis; Biomarker Discovery; Feature Interactions; Sparse Learn-
ing; Aptamer; SOMAmer Prioritization.

1. Introduction

In this paper, we focus on the task of biomarker discovery and cancer diagnosis directly based
on patient blood samples in the setting of limited training data. Although cancer diagnosis
based on microarray datasets has been extensively studied, blood-based cancer status predic-
tion is still a challenging problem, because complex diseases like cancers are the results of
multiple genetic and epigenetic factors and their manifestation in blood samples is even more
complicated than in tumor samples. It is very difficult to identify these complicated factors
solely based on limited information provided by training data. Previous studies on single gene
markers can provide valuable information about disease status prediction, but they offer lim-
ited insight into the complex interplay among the molecular factors responsible for progression
of complicated diseases such as cancers. So, recently, research in complex diseases shifts to-
wards the identification of multiple genes that interact directly or indirectly in contributing
their association to the target disease. Several complex interactive partners from previous
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studies have been shown to give important insight into the mechanism of breast cancer1 and
colorectal cancer,2 but none of these approaches addressed the problem of disease diagnosis
based on blood samples or considered the multiplicative effect of gene/protein expressions.

The identification of groups of genes that show differential behavior in the manifestation of
complex diseases is computationally infeasible due to the combinatorial nature of the problem.
Several recent methods propose to reduce the search space using orthogonal prior knowledge
about connections amongst the genes, such as interactions collected from protein-protein in-
teraction (PPI) network3 or grouping information from functional annotations of proteins.
One notable computational method named Group Lasso4 incorporates such prior interaction
or grouping among the genes to detect gene groups that contribute to human disease, by
enforcing sparsity at the group level in a supervised regression framework. Group Lasso is ex-
tended by Jacob et al.5 to a more general setting that incorporates groups whose overlaps are
nonempty. Such overlaps in groups is biologically significant, because many genes participate
in multiple pathways and manifest themselves in several biological processes. Although (Over-
lapping) Group Lasso is very useful in identifying biologically relevant groups of genes and
proteins, it cannot capture complex combinatorial relationships among the features within and
across the groups, and it often outputs too many features as biomarkers. Also, current PPI
network data is inherently noisy due to experimental constraints.6 Algorithmic approaches
based solely on these noisy prior information can result in many false positive interactions
which are absent in the real genome space.

Our goal in this paper is to identify the complex combinations of single genes and multi-
plicative pairwise interactions among genes that help us (1) better perform cancer diagnosis
based on blood samples, and (2) gain novel insights into the mechanistic basis of the diseases.
Since the total number of possible pairwise human gene interactions is huge, it is computa-
tionally infeasible to examine all possible combinatorial combinations of them when trying
to understand their relevance to the diseases under consideration. We propose a two-stage
approach in a sparse learning framework, named as QUIRE, i.e. to detect QUadratic Inter-
actions among infoRmative fEatures which show differential behavior for diagnosing a target
disease using protein or mRNA expressions. Based on our own experimentally generated data
from patient blood samples using a novel SOMAmer technology,7 we apply QUIRE to blood-
based cancer diagnosis for RCC and OVC, and we also apply QUIRE to a publicly available
CRC dataset that can be used to prioritize our SOMAmer design. QUIRE can discover com-
plementary sets of markers and pairwise interactions that can better classify samples from
different stages of cancer and predict post-cancerous events, like cancer recurrence and death
from cancer with higher accuracy than other state-of-the-art feature selection methods. To the
best of our knowledge, QUIRE is the first proposed method to identify combinatorial patterns
among the pairs of informative genes for studying complex diseases like cancers. Subsequent
functional analysis of the interactions identified by QUIRE reveals that it can indeed identify
genes relevant to the progression of diseases under study.



2. Problem and Method

The identification of single gene markers in a genome-wide case-control study is an ill-posed
problem, because the number of genes in human cells is much larger than that of available
samples. For such problems, Lasso, proposed by Tibshirani et al.8 is very popular for selecting
a small number of features relevant to the problem under study. When a set of features are
highly correlated to each other, Lasso selects one from that set, ignoring others. So there is a
possibility that Lasso leaves out biologically relevant genes from its set of selected informative
features.

Suppose we have a data set S containing n samples and p gene features (xi, yi) with response
variable y ∈ R and feature vector x ∈ Rp, where i ∈ {1, . . . , n}, and we assume that the feature
values and the ys are centered in S. The Lasso approach optimizes the following objective
function,
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where `(w) is the loss function of linear regression, and w is the weight parameter. The `1 norm
penalty in lasso induces sparsity in the weight space for selecting features. It is obvious that
the sum of the least squared errors and the `1 norm are convex functions with respect to the
weights w. Lasso has a global optimum, which can be identified by any convex optimization
technique.

In spite of the computational efficiency and the popularity of Lasso for feature selection,
its formulation prevents it from capturing any prior information on possible group structures
among the features. Group Lasso4 proposed using `2,1 penalty to select groups of input features
which are partitioned into non-overlapping groups. The group penalty is the sum of the `2
norm on the features belonging to the same group. Overlapping Group Lasso5 extends Group
Lasso to handle groups of features with overlapping group members by duplicating input
features belonging to multiple groups in the design matrix. Because a lot of real applications
involve overlapping feature groupings, Overlapping Group Lasso is a more natural choice than
Group Lasso for biomarker discovery. Suppose that we partition p features in data set S into
q overlapping groups G = {g1, g2, . . . , gq}, the following objective function is minimized,5

`oglasso = `(w) + λ
∑
g∈G
||wg||, (2)

where λ is the regularization parameter, wg denotes the vector of weights associated with fea-
tures in group g, and || · || is the Euclidean norm. The above optimization problem is separable,
so we can use block coordinate descent to optimize the weights associated with each group g

separately. Although considering grouping structure among input features is very important
for feature selection, Overlapping Group Lasso only encourages sparsity at the feature group
level and there is no sparsity penalty within feature groups. Therefore, Overlapping Group
Lasso often outputs a much larger number of selected features than Lasso. Furthermore, Lasso



Fig. 1. Working model of QUIRE. QUIRE takes as input, gene or protein expression levels of a set of samples,
disease status of those samples and physical interactions amongst the gene products. Then it uses gene ontology
based functional annotation to group the genes and cluster the interaction network. Overlapping group lasso is
run next on the expression and interaction space to identify informative set of genes and interactions. QUIRE
then enumerates all pairwise binary interactions amongst the selected gene features. Finally the proposed novel
objective function is applied on the selected single gene features, the informative protein protein interactions
and the quadratic interactions amongst these genes to identify the final set of interactions and gene markers.

and Overlapping Group Lasso only consider single gene features for prediction, which is limited
for disease status prediction and biomarker discovery as shown by our experimental results.

For cancer diagnosis and biomarker discovery from blood samples or tissue samples, we con-
sider all possible combinations of single gene features and quadratic gene interaction features.
Ideally, we want to optimize the following optimization problem to identify discriminative
features given the dataset S,
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where U is the weights associated with pairwise feature interactions. However, the above
model has O(p2) features and is not applicable to genome-wide biomarker discovery studies
because p2 is too large. Provided that the training data is often very limited, it is almost
impossible to identify the discriminative single or quadratic interaction features by solving the
above optimization problem. We propose QUIRE (QUadratic Interactions among infoRmative
fEatures) to address these challenges, which is based on Overlapping Group Lasso and Lasso.
And it takes advantage of both of these feature selection methods.

The underlying idea of QUIRE is to incorporate all possible complementary biological
knowledge (see Figure 1) into the above intractable optimization problem to reduce search
space. By restricting discriminative gene interactions to happen only between genes in some
informative gene groups, we can use existing functional annotations of input genes to identify
these groups thereby to throw away a lot of interaction terms during the optimization. In
addition, available physical interactions between the protein products of input genes can also
be used to cut the search space, although discriminative gene feature interactions for prediction
do not always necessarily correspond to physical interactions. The general working model of
QUIRE is shown in Figure 1. In details, QUIRE takes the expression profile of n samples over
p genes (proteins), the physical interaction network among the genes products (i.e. protein-



protein interaction network) and the disease status of these samples as input, and it outputs
a (small) set of discriminative genes and gene interactions with corresponding learned weights
for predicting the disease status of any incoming test sample. The step-by-step working model
of QUIRE is given below:

(1) Functional group generation:

(a) QUIRE groups the p input gene features into q overlapping functional categories accord-
ing to the existing Gene Ontology (GO) based functional annotations such as Cellular
Colocalization (CC).

(b) QUIRE clusters the given interaction network (i.e. PPI) into subsets of overlapping
gene products based on CC.b

(2) Informative genes and functional interactions selection:

(a) Given the GO functional grouping of input gene features, Overlapping Group Lasso
is run to select m top discriminative genes for disease status prediction according to
the absolute values of the learned weights of gene features.c

(b) Overlapping group lasso is run on the clustered interaction network to select informa-
tive groups of protein-protein interactions. In this case, each cluster is considered as a
group and the products of pairwise gene/protein feature values among the interacting
proteins in a group are used as interaction feature values.

(3) Selection of most informative interactions and genes: QUIRE first enumerates all possible
quadratic feature interactions among the informative genes selected at step 2(a). Then it
takes these quadratic interactions, single informative gene features and the informative
functional interactions identified at step 2(b) as input and it outputs the final selected
gene interactions and single genes as biomarkers.

In order to identify the discriminative combinations of single gene features and quadratic
interactions among pairwise informative genes, we define our proposed objective function for
Lasso as follows,
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where j and k index the m seed informative genes and l indexes the r informative protein-
protein interactions selected by the Overlapping Group Lasso in the previous step, U and R are
weights associated with feature interactions, and λ1, λ2, and λ3 are regularization parametersd.
The objective function contains `1 penalties at single gene level, pairwise gene interaction
level, and protein interaction level. The intuition behind this formulation is that it captures

bWe chose CC as final functional grouping of gene/protein features because it produces groups with reasonable
size (see experiment section for details) and it is the most relevant annotation to blood-based diagnosis.
cm is selected by 5-fold cross validation.
dIn our experiments, we make λ1 = λ2 = λ3 and set it by 5-fold cross validation.



the interactions that are complementary to the individual informative genes. Because it is
computationally infeasible to consider every pair of interaction in a genome-wide case-control
study, QUIRE reduces the search space by using the features that are selected by Overlapping
Group Lasso as the informative ones, and then it relies on Lasso with `1 penalties to identify
the discriminative combination of informative individual gene features and gene interaction
features, which provides an approximation to the problem of searching an exponential number
(O(2p+p2

)) of all possible combinations of single features and pairwise interaction features. Our
current implementation of QUIRE is based on the standard Lasso package from glmnet9 and
the Overlapping Group Lasso programs from Jacob et al., 2009.5

3. Experimental Results and Discussion

In this section, we present experimental results of QUIRE on three different cancer datasets:
blood-based cancer diagnosis and biomarker discovery for (1) Renal Cell Carcinoma (RCC)
and (2) Ovarian Cancer (OVC) based on our private datasets, and cancer recurrence and
death prediction for (3) Colorectal Cancer (CRC) based on a public microarray dataset, in
which the identified markers can be used to prioritize our SOMAmer design. We compare the
performance of QUIRE to the state-of-the-art feature selection techniques, Lasso, Overlapping
Group Lasso and SVM. We then perform a literature survey and enrichment analysis of the
informative interactions selected by QUIRE and show that they are relevant to the progression
of the disease.

3.1. Our Blood-based Datasets Generated by the SOMAmer Technology

To predict cancer progression status directly from blood samples, we generated our own
datasetse. All samples and clinical information were collected under Health Insurance Porta-
bility and Accountability Act compliance from study participants after obtaining written in-
formed consent under clinical research protocols approved by the institutional review boards
for each site. Demographic data was collected by self-report and clinical data by chart review.
Blood was processed within 2 hours of collection according to established standard operating
procedures. To predict RCC status, serum samples were collected at a single study site from
patients diagnosed with RCC or benign renal mass prior to treatment. Definitive pathology
diagnosis of RCC and cancer stage was made after resection. Outcome data was obtained
through follow-up from 3 months to 5 years after initial treatment. To predict OVC status,
plasma samples were collected from women with a suspicious pelvic mass prior to treatment.
Definitive pathology diagnosis of ovarian cancer stage or benign mass was made after resection.
CA-125 (Carbohydrate Antigen 125 also known as MUC16) was measured by a routine clin-
ical laboratory assay. To generate RCC and OVC datasets, the SOMAmer based proteomic
technology7 is used to measure the concentration of a selected set of about 1000 proteins
in Relative Fluorescence Unit. The CRC samples belong to a publicly available microarray
dataset collected from gene expression omnibus (GEO), and referenced by accession number

eDue to conflict of interest, the datasets are not publicly available. Data requests should be sent to the last
author of this paper.



GSE17536 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17536).10

Our RCC dataset contains 212 RCC samples from benign and 4 different stages of tumor.
Expression levels of 1092 proteins are collected. The number of Benign, Stage 1, Stage 2, Stage 3

and Stage 4 tumor samples are 40, 101, 17, 24 and 31 respectively. Our OVC dataset contains 845

proteins’ expressions for 248 samples across Benign and 3 different stages of ovarian cancer.
The number of Benign, Stage 1, Stage 2 and Stage 3 tumor samples are 134, 45, 8 and 61

respectively. The public CRC microarray dataset (GSE17536) contains 177 samples from 4

different stages (Stage 1 to Stage 4) of CRC. Expression levels of 20125 genes are collected.
Besides stage information, this dataset also has records for each patient, the binary valued
information of “Cancer Recurrence” and “Death from Cancer”. Out of 177 patients, 55 had
recurrence of cancer and 68 died from cancer.

In order to group the genes using gene ontology terms, we use the web based
tool “Database for Annotation, Visualization, and Integrated Discovery” (DAVID,
http://david.abcc.ncifcrf.gov/).11 There are a set of parameters that can be adjusted
in DAVID based on which the functional classification is done. This whole set of parameters
is controlled by a higher level parameter “Classification Stringency”, which determines how
tight the resulting groups are in terms of association of the genes in each group. In general, a
“High” stringency setting generates less number of functional groups with the member genes
tightly associated and more genes will be treated as irrelevant ones into an unclustered group.
We set the stringency level to “Medium” which results in balanced functional groups where
the association of the genes are moderately tight. The total number of groups based on CC
annotations for RCC and OVC datasets are 56 and 23 respectively, and the number of groups
for the CRC dataset is 520.

Besides using it for selecting informative single gene features, we use Overlapping Group
Lasso to select the informative protein protein interactions. We download the binary protein
protein interactions (PPI) data from HPRD (http://www.hprd.org/). For each feature group
Gi, we identify the pairs of member genes of Gi whose products interact directly with each other
in the PPI network. The set of all such pairs where both interacting partners are members of
Gi forms a group. For a pair of interacting genes xj and xk in a group, we use their quadratic
interaction term xjxk as their expression level. Usage of the quadratic interaction formulation
in Overlapping Group Lasso helps us to integrate the resulting informative protein protein
interactions into the formulation of QUIRE directly without any transformation. Thus the
total number of groups are same in the case of interactions and single gene features. But the
cardinality of each group and the expression levels of the members are different.

3.2. Experimental Design

We perform three stage-wise binary classification experiments using RCC samples: Classifica-
tion of Benign samples from Stage 1−4 samples, Classification of Benign and Stage 1 samples
from Stage 2 − 4 samples, and Classification of Benign, Stage 1, 2 samples from Stage 3, 4

samples. In the OVC dataset, CA125 is a well-known marker in ovarian cancer.12 Concentra-
tion of CA125 is used to measure the progression of the disease. The suspicious cutoff level
of CA125 is 40 U/mL, meaning that concentration level above 40 of this marker might be



indicative of OVC. But CA125 is not a good indicator of early detection of the disease onset,
especially when the concentration of this biomarker is between 40 and 100.13 So we use samples
with CA125 concentration level between 40 and 100 as our test set in this experiment. The
remaining samples, with concentration of CA125 below 40 and above 100 are used as training
set. We perform the following experiments: Classification of Benign samples from Stage 1− 3

samples, Classification of Benign, Stage 1 samples from Stage 2, 3 samples, and Classification
of Benign, Stage 1, 2 samples from Stage 3 samples. On the CRC dataset, we perform binary
classifications to predict whether there is disease-free survival in the follow-up time or not
for cancer recurrence prediction and whether there is death from CRC across all pathological
stages of the disease for death from colorectal cancer prediction.

3.3. Classification performance of QUIRE

In this section, we report systematic experimental results on classifying samples from different
stages of RCC and OVC and in predicting CRC recurrence and death from CRC. In the first
stage of QUIRE, we use Overlapping Group Lasso to identify the biologically relevant groups
of features and pairwise protein interactions, which in turn, is used in the subsequent stage
to explore the set of informative markers and quadratic interactions. However, for the RCC
and OVC datasets, we do not use protein protein interactions for prediction purpose. This is
because, these datasets include only selected marker proteins distributed sparsely across the
protein interaction network and thus most of them do not interact with each other directly.

After we run Overlapping Group Lasso on the gene groups, we sort the genes based on the
weight value assigned to it by the algorithm. We used cross validation to select the optional
parameter m in QUIRE from {100, 200, 300, 400, 500}, and m = 200 was selected for all our
experiments. For classification of CRC samples, Overlapping Group Lasso on average selects
1000 PPIs as informative ones. We use this whole set of selected protein interactions as input
to QUIRE to be considered besides the paired quadratic interactions.

The predictive performance of the markers and pairwise interactions selected by QUIRE
is compared against the markers selected by Lasso, linear Support Vector Machine (SVM)
and Overlapping Group Lasso. We use glmnet9 and LiblineaR14 packages for implementation
of Lasso and SVM respectively. We use the Group Lasso implementation (with overlapping
groups) from.5 The overall performance of the algorithms are shown in Figure 2. In this
figure, we report average AUC (Area Under the Curve) score for ten runs of five-fold cross
validation experiments for cancer stage prediction in RCC (Figure 2(A)) and for predicting
cancer recurrence and death from cancer in CRC(Figure 2(C)). In five fold cross validation
experiments, we divide the samples equally into five disjoint sets or folds. We keep one fold
for testing. On the remaining four folds, we use Overlapping Group Lasso to identify the
informative set of markers and protein protein interactions (for CRC). We train QUIRE on
these four folds using these markers to identify the pairwise interactions and markers and
use the set-aside test set for prediction purpose. For each run, this procedure is repeated
for each of the five folds and average AUC score is reported for ten such runs. For OVC,
we report average AUC score (Figure 2(B)) for predicting the cancer stage of the samples
with intermediate levels of CA125 (concentration of CA125 is between 40 and 100) using the



remaining samples for training and informative feature selection. In cancer stage prediction

Fig. 2. Comparison of the classification performances of different feature selection approaches with QUIRE
in identifying the different stages of (A)RCC , (B) OVC and (C) in predicting CRC recurrence and death
from CRC. In (A) and (C), five fold cross validation is repeated ten times and average AUC score is reported.
For (B), samples with CA125 marker’s expression level between 40 and 100 are used as test cases, while the
remaining samples are used for training. This experiment is also repeated ten times and average AUC score is
reported.

experiments for RCC and OVC, we see from Figure 2 that the combination of informative
markers and pairwise interactions identified by QUIRE show better classification performance
in every case, as compared to the markers selected by Lasso, SVM and Overlapping Group
Lasso. For early detection of the diseases (classification of Benign, Stage 1 vs. rest of the
samples), QUIRE achieves average AUC scores of 0.88 and 0.82 for RCC and OVC respectively.
Overlapping group lasso shows next best performance with average AUC scores of 0.83 and
0.80 respectively. Lasso and SVM, which do not use any grouping or interaction information
amongst the features, show the worst performance in all of the classification tasks apart
from one. As QUIRE markers show consistently better performance across all the stages of
RCC and OVC, they can be used for improved diagnosis and prognosis of these two different
types of cancers. Also QUIRE helps better prediction of OVC progression for samples with
intermediate levels of CA125 ; so it can be used by the physicians for early detection of this
disease.

From Figure 2(C), we can see that gene-gene interactions help us better predict both CRC
recurrence and death from CRC, as compared to the other feature selection mechanisms. In
the events of cancer recurrence and death from cancer, the average AUC values achieved
by features selected with QUIRE are 0.79 and 0.81 respectively, while markers identified by
Overlapping Group Lasso show the next best performance with average AUC value of 0.71 in



both of these categories. Markers identified by Lasso show the worst performance in prediction
of both of these events. The performance gap between QUIRE and the other three popular
feature selection techniques hint to the fact that QUIRE can identify interactions that might
help us better understand the mechanistic basis of CRC.

These experimental results show that QUIRE identifies markers and interactions that
complement each other in such a way that they not only help better diagnosis and prognosis
of cancer, but also can predict the advanced events of recurrence of cancer and survival after
cancer with higher accuracy than other state-of-the-art algorithms. For each of these datasets,
identification of informative pairwise interactions using brute-force enumerative technique is
computationally impractical due to the huge dimensionality of the search space. QUIRE helps
reducing this space by a large margin. The total running time of QUIRE is dominated by the
Overlapping Group Lasso stage which takes around one hour to identify biologically relevant
groups of genes and protein interactions in traditional desktop computers for the types of
problems we study. After the dimensionality is reduced, QUIRE exhaustively enumerates all
the pairwise interactions and use the protein interactions identified in the previous stage
on this low dimensional space in a couple of minutes. QUIRE is computationally very fast
considering that it identifies discriminative pairwise gene interactions at a genome-wide scale.

3.4. Informative QUIRE markers and interactions associated with cancer
Cancer is a genetic disease, which originates and develops through a process of mutations.
Mutations in individual gene not only disrupts its own function, but also affects its interaction
patterns with other genes. As complex diseases like cancer is a result of dysregulation in the
interactions among the genes, researchers focus on identifying those relevant interactions to
gain more insight into the molecular basis of the disease. On the CRC dataset, QUIRE selects
about 120 quadratic interactions and single features in total on average as informative ones
for both CRC recurrence and death from CRC. On the other hand, the average number of
markers selected by Overlapping Group Lasso and Lasso on the same prediction tasks are
about 1100 and 150 respectively. Therefore, Overlapping Group Lasso itself is unsuitable for
biomarker discovery although it produced the second best performance.

An investigation of the pairwise interactions identified by QUIRE on CRC dataset re-
veals that many of these interactions are indeed relevant to the progression of cancer in
general. Some of such interactions identified for prediction of CRC recurrence include JAK2
- LYN ,15 Transforming growth factor beta (TGFβ) - SMAD ,16 Epidermal growth factor re-
ceptor (EGFR) - Caveolin (CAV ),17 TP53 - TATA binding protein (TBP),18 Connective
tissue growth factor (CTGF ) - Vascular endothelial growth factor (VEGF ),19 Edoglin (ENG)
- Transforming growth factor beta receptor (TGFβR).20 Further investigations of the interac-
tions identified by QUIRE might reveal novel gene partners associated with cancer and thus
lead to testable hypothesis.

Disturbance in pairwise interactions among the genes affects the pathways in
which they are located in. Cancer pathways are a set of pathways dysregulations
in which have been shown to be associated with initiation and progression of the
disease. A pictorial view of the well-known cancer pathways can be found in the
KEGG database(http://www.genome.jp/kegg/pathway/hsa/hsa05200.html).21 We per-



form a pathway enrichment analysis where we test if the set of the markers and interactions
identified by QUIRE on the CRC dataset reside in the cancer pathways. As part of this
experiment, we first use the partner genes identified by QUIRE as part of the informative
interactions while predicting CRC recurrence. We use DAVID to identify the statistically sig-
nificant pathways that are enriched in these genes. An investigation of the enriched pathways
returned by DAVID indicates that many of them are indeed responsible for cancer or related
to functions dysregulation in which results in cancer. Some of such KEGG pathways include
Apoptosis (p-value 4.7x10−4), Focal adhesion (p-value 3x10−3), Cell adhesion molecules (p-
value 9.2x10−4), p53 signaling pathway (p-value 1.3x10−2), Gap junction (p-value 1.3x10−2),
MAPK signaling pathway (p-value 4.5x10−2), ErbB signaling pathway (p-value 5.8x10−2), Cell
cycle (p-value 6.6x10−2), Pathways in Cancer (p-value 7.2x10−4), Colorectal cancer (p-value
10−3). Repeating the same analysis on the interacting partners identified by QUIRE while
predicting “Death from CRC” result in identification of similar pathways (data not shown).

3.5. Significance of feature interactions in QUIRE

We also perform classification experiments to observe the performance of PPIs and informative
single features on predicting CRC recurrence and death from CRC without quadratic feature
interactions. For this experiment, we use the single gene markers and the PPIs selected by
Overlapping Group Lasso as input to QUIRE and enumeration of the pairwise interactions
among the marker genes is avoided. For ten runs of five fold cross validation experiment on
this modified feature set, we observe average AUC score of 0.71 for both classification tasks. If
we only use informative single features with the same experimental setting, the average AUC
score we got is 0.70. These results show that besides physical interactions and single features,
indirect higher level interactions among the informative genes must be taken into account to
understand the basic mechanism of complex diseases.

4. Conclusion

In this paper, we propose a computational approach, QUIRE, to identify combinatorial in-
teractions among the informative genes in complex diseases, like cancer. Our algorithm uses
Overlapping Group Lasso to identify functionally relevant gene markers and protein interac-
tions associated with cancer. It then explores the pairwise interactions among these relevant
genes within this reduced space exhaustively and the selected pairwise physical protein in-
teractions to discover the combination of individual markers and gene-gene interactions that
are informative for prediction of the disease status of interest. The application of QUIRE on
three different types of cancer samples collected using two different techniques shows that our
approach performs significantly better than the state-of-the-art feature selection methods such
as Lasso and SVM for biomarker discovery while selecting a smaller number of features, and
it also shows that our approach can capture discriminative interactions with high relevance to
cancer progression. Further investigations show that QUIRE can identify markers and inter-
actions that have been associated previously with pathways associated with cancer. Moreover,
the good performance of QUIRE on the CRC dataset suggests that applications of QUIRE on
genome-wide microarray experimental data can be used to help prioritize SOMAmer design



for blood-based cancer diagnosis. And QUIRE applied to blood-based experimental data has
the great potential to impact the field of practical medical diagnosis.
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