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KNN is popular in almost all fields of data analysis: simple and
effective

When kNN fails:
— A lot of class-irrelevant features present
— Bad distance metric adopted
Distance Metric Learning required for good performance

— Linear feature transformation is widely used, but it is
incapable of capturing higher-order statistics hidden in input
feature vector components

— Non-Linear feature transformation using a kernel trick has
also been tried, but it is not scalable to large datasets

— Neural Networks has also been used to learn non-linear
mappings to improve kNN classification, but the neural
networks used are often shallow.
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» The difference between statistics, machine learning, and data mining:

— Statistics prefer simple models to distinguish data with simple structure from
noise

— The task of machine learning and data mining, especially machine learning, is to
extract a huge amount of meaningful structure from data, which can often only
be represented by complicated model

* Models with shallow architectures fail to represent complex structure hidden in input
data:

— For e.qg., perceptron, kernel SVM, neural network with one hidden layer

* Models with deep architectures mimic human brains to perform multi-stage
information processing to extract meaningful structure from high-dimensional sensory
input

— Humans can easily recognize shapes and objects and easily extract gist
information from complex scenes because human brains has a deep architecture

— Deep non-linear mapping has many layers, each layer models the combination of
patterns in the layer below

— Researchers often use Neural Networks to construct deep non-linear mapping
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In 1990s, many researchers abandoned neural networks and turned to use SVMs
Maximizing margin enables robust classifiers to be learned

Linear SVM and Kernel SVM

Linear metric learning toward the goal of large-margin separation in the kNN
classification framework (Weinberger, NIPS 2005)

Limited due to shallow architecture and linear mapping used
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The Next-Generation Machine Learning Models:
Large Margin Learning with Deep Architectures

We want to learn a powerful model with deep architecture and at the same time we want it to be robust in
the sense of large margin classification

Our approach:
— Learn a deep neural network (a deep encoder or auto-encoder)
— Maintain large-margin classification boundaries in the learned feature (code) space

— We chose kNN as the classification method to be used in the code space
Objective function:
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How to Learn A Deep Supervised Model by

Hinton
stuff stuff
high low
bandwidth bandwidth
image > label image label

Hypothesis by Geoff Hinton: Recognizing Objects by Generating
Objects First (if you want to do computer vision, do computer
graphics first)
— Perform unsupervised learning to learn a good generative model
first

— Then fine-tune the model parameters by minimizing the loss
function of the supervised learning model



Learn a Deep Generative Model Using Restricted
Boltzmann Machines by Hinton (1)
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Learn a Deep Generative Model Using
Restricted Boltzmann Machines by Hinton (2)

Q /.@ Q Q Start with a training vector on the

visible units.
<v,hJ <v,hJ
Update all the hidden units in parallel

Update the all the visible units in
parallel to get a “reconstruction”.

t=0 t=1

: Update the hidden units again.
data reconstruction

AWij = 8(<Vihj>o —<Vihj>1)



Learn a Deep Generative Model Using
Restricted Boltzmann Machines (3)

E(v,h) = Zu”z h; Z Zh_rcj
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Gradient Calculations of the loss function of

Dnet-kNN
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For each data point i, create triples (i, 1,))
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than the class of i, m>>k
Searching on these triples to look for active violated margin constraints
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Learn Dnet-kNN: A Deep Non-Linear Feature
Mapping for Large-Margin kNN Classification
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Figure 2. Deep Encoder

Algorithm 1 The training procedure of DNet-kNN (the de-
scription in [] is optional).

r2

b S

10:

Input: training data {x'¥ ¥ i = 1,... . n}. k. m.
(1]
pretrain the network in Fig. 2 with RBMs using Eq. 8
to get initial network weights W**t,
| Further train a deep autoencoder for 7' iterations to get
R?F“Im*éf_rmw. and set Winit — Rﬁbﬁnéf_rmwr]
calculate each data point i’s £ true nearest neighbors in
its class, i = 1,...,n.
calculate each i’s m x (¢ — 1) imposter nearest neigh-
bors,i =1....,n.
create triples (i, [, 7).
set W = Wi,
while (< not convergence >)

update W using conjugate gradient based on Eq.
11-12
Output: W,




Classification Results of Dnet-kNN on USPS

Handwritten Digits
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Dimensionality i
US1 | US2 | US3 | US4 | USS US1 | US2 | US3 | US4 | USS
DNet-kNN | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 DNet-kNN 1.20 | 0.87 | 1.43 | 1.06 | 1.13
L.LMNN 076 1 1.101 071 | 0.85 | 0.95 DNet-kNN-E | 1.43 | 0.97 | 1.50 | 1.20 | 1.00
DA 266 | 2351 228 | 224 | 2.48 LMNN 220 | 2.13 | 236 | 2.35 | 1.93
kNN 5121500 495 | 5.08 | 4.93 LMNN-E 1.77 | 1.53 ] 1.80 | 1.80 | 1.63
DA 280 1236 2331193223
kNN 4.47 | 493 | 5.23 | 4.17 | 5.37




Embedding Results of Dnet-kNN on USPS
Handwritten Digits

Figure 5. T‘fﬂo'dimenSional e_mbedding of Figure 6. Two-dimensional embedding of
3000 USPS-fixed test data using the Deep 3000 USPS-fixed test data using the Deep Au-

Neural Network kNN classifier (DNet-kNN). toencoder (DA).

Figure 7. Two-dimensional embedding of
3000 USPS-fixed test data using PCA.



Classification Results of Dnet-kNN on
MNIST Handwritten Digits

Methods results
DNet-kNN (dim = 30, batch size=1.0e4) 0.94
DNet-kNN-E (dim = 30, batch size=1.0e4) 0.95
Deep Autoencoder (dim = 30, batch size=1.0e4) 2.13
Non-linear NCA based on a Deep Autoencoder ([16] | 1.03
Deep Belief Net [11] 1.25
SVM: degree 9 [4] 1.4
kNN (pixel space) 3.05
LMNN 2.62
LMNN-E 1.58
DNet-kNN (dim = 2, batch size=1.0e4) 2.65
DNet-kNN-E (dim = 2, batch size=1.0e4) 2.65
Deep Autoencoder (dim = 2, batch size=1.0e4) 24.7




Embedding Results of Dnet-kNN on MNIST
Handwritten Digits

Figure 8. Two-dimensional embedding of Figure 9. Two-dimensional embedding of
10,000 MNIST test data using the Deep Neural 10,000 MNIST test data using the Deep Au-
Network kNN classifier (DNet-kNN). toencoder (DA).

Figure 10. Two-dimensional embedding of
10,000 MNIST test data using PCA.



Classification Results of Dnet-kNN on
20newsgroup Text Data

Table 4. Test error of different methods for 5-
fold cross validation on binary 20 newsgroup
text data. "-E” denotes the energy classifica-
tion method (%). The lowest errors are shown
in bold. DNet code dim=30

] 2 3 4 5
DNet-kNN 238 | 22.9 | 23.1 | 24.0 | 22.1
DNet-kNN-E | 19.1 | 18.8 | 18.9 | 19.6 | 179
DA 27.0 1 25.0 1 27.0 | 28.4 | 27.0
kNN 32.6 | 33.1 | 32.8 | 34.3 | 30.9

The released implementation of LMNN failed to work
on this binary dataset.
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We used mini-batch training for Dnet-kNN on large datasets.
Instead of fixing imposter nearest neighbors, we can
dynamically update imposter nearest neighbors in each
dynamically changing mini-batch.

Instead of training a general deep neural network, pre-training
Dnet-kNN using a deep hand-coded convolutional neural
network will possibly greatly improve the classification
performance (see Lu Cun’s research)

Learn large-margin linear classifiers in the feature space
produced by deep (convolutional) neural networks

Learn a deep network from a Bayesian perspective to
constrain the weights to be learned

Learn the weight matrices in a regularization framework for
classification and discuss possible generalization bound for
deep learners
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