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Due to the difficulties in identifying microRNA (miRNA) targets experimentally in a
high-throughput manner, several computational approaches have been proposed. To this
date, most leading algorithms are based on sequence information alone. However, there

has been limited overlap between these predictions, implying high false-positive rates,
which underlines the limitation of sequence-based approaches. Considering the repres-
sive nature of miRNAs at the mRNA translational level, here we describe a probabilistic

model to make predictions by combining sequence complementarity, miRNA expression
level, and protein abundance. Our underlying assumption is that, given sequence com-
plementarity between a miRNA and its putative mRNA targets, the miRNA expression
level should be high and the protein abundance of the mRNA should be low. Having

identified a set of confident predictions, we then built a second probabilistic model to
trace back to the mRNA expression of the confident targets to investigate the mecha-
nisms of the miRNA-mediated post-transcriptional regulation. Our results suggest that
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translational repression (which has no effect on mRNA level), instead of mRNA degra-

dation, is the dominant mechanism in miRNA regulation. This observation explained
the previously observed discordant correlation between mRNA expression and protein
abundance.

Keywords: Gene Regulation; MicroRNA Target Prediction; Proteomics Data Analysis.

1. Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically about 22

nucleotides in length, and are known to block protein synthesis of their target

genes by binding to the 3UTR of the mRNA transcripts with perfect (in plants) or

imperfect (in animals and c. elegans) base pairing 4. It was estimated that thou-

sands of genes in the mammalian genome are under regulation by miRNA at the

post-transcriptional level 13, and they have been shown to have many important

functional roles 2.

Despite microRNAs importance and prevalence, it has proved to be difficult

to experimentally identify and validate their target genes. To this date, only 40

miRNA targets have been confirmed in mouse and 200 in human 18. As an alterna-

tive, a number of computational prediction programs had been developed and were

widely used to predict miRNA targets in silico (see 5, 11, 13, and 15). Most of these

computational programs combine two types of data in making predictions: sequence

complementarity between the miRNA and the putative target binding sites, and the

evolutionary conservation of such sites (for a review, see 18). Although great progress

has been made in improving prediction accuracy, accurate prediction of miRNA tar-

gets remains challenging, the major difficulty being the lack of agreement among

these algorithms. A recent benchmark study has compared the predicted targets

of several leading algorithms and reported significant discrepancy among them 18.

The disagreement among these algorithms can be largely attributed to the different

scoring schemes and weights given to imperfect base pairing between miRNA and

binding sites and evolutionary conservation of the binding sites. Moreover, some of

these sequence-based algorithms are known to be less robust as slight changes in

parameters often result in very different predictions 26.

Because of the repressive nature of miRNAs regulatory roles and the availability

of the genome-wide mRNA expression data, it was suggested that using gene ex-

pressions data could be helpful in predicting true miRNA targets 16. The rationale

of such approach is the following: if a miRNA is highly expressed and a putative

target gene is lowly expressed in a particular tissue type, then it is considered as an

additional evidence that the candidate gene is a true target. Although this algorithm

produced encouraging results 10 and such a negative correlation between the expres-

sion levels of miRNA and target mRNA has been observed in various experiments

(see 7, 16, and 19), special cautions should be taken in this approach for the follow-

ing reasons. (1) The reported instances of negative correlation between miRNA and

mRNA expression levels are limited to a very small fraction of the known miRNAs

with anecdotal evidence; it is uncertain whether such negative correlation can be
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Fig. 1. A flowchart of the algorithms described in this work. The described algorithm takes four
types of experimental data: (1) a set of putative miRNA targets, (2) protein abundance, (3) miRNA

expression profiles, and (4) mRNA expression profiles. Details can be found in the main text.

extrapolated to other types of miRNAs and their targets. (2) It is known that, in

contrast to the miRNAs in plants, the miRNAs in animals typically have imperfect

sequence complementarity to their target sites and function mostly by binding to

the target sites to inhibit the translation process, instead of causing degradation

of the mRNA transcripts (6, 24). (3) In some cases, a strong positive correlation

has also been observed between the expression levels of miRNA and their target

mRNAs 23, which could be attributed to common regulators shared by the miRNA

and their target genes. All the evidence described above suggest that in animals,

the repression effect of miRNAs on their target genes is more obviously manifested

at the translational level (i.e. protein abundance), thus, identifying miRNA targets

solely based on transcriptional data might be less effective. In contrast, regardless

of by degradation or by translational repression, the protein abundance of the tar-

get genes should be always negatively regulated. Motivated by this observation and

by previous work, in this paper we propose a new Bayesian approach to predicting



September 28, 2010 9:44 WSPC/INSTRUCTION FILE miRNA

4 Li et al

miRNA targets in mouse using proteomic data in a high-throughput manner. In
22, researchers have used miRNA expression data and proteomics data to identify

miRNA targets. However, their predictions are mainly based on biological experi-

ments and no computational algorithm was proposed, and sequence-based methods

such as TargetScan, PicTar and miRanda were only used to support their predic-

tions. Besides, their experimental predictions were only performed in one tissue of

rat, kidney. To our knowledge, our approach is the first computational one that in-

corporates miRNA expression data and proteomics data in multiple tissues to carry

out high-throughput miRNA target predictions.

Our method consists of two steps. In the first step, it takes as input a set of puta-

tive miRNA target genes derived from sequence information alone; it then applies a

probabilistic model using protein abundance data to assign confidence scores to the

predicted miRNA-target pairs. In the second step, another probabilistic model is

applied to the miRNA and mRNA expression data to predict whether the miRNA-

mediated regulation is through translation repression or mRNA degradation. Figure

1 shows a flowchart of our approach.

2. Data Gathering

The mouse protein abundance data was derived from a recently published mass spec-

trometry study 12, in which the abundance of 4,768 proteins across 6 mouse tissues

(brain, heart, liver, lung, placenta and kidney) was surveyed. After comparing with

gene expression data from two microarray studies (21, 27), 1,758 proteins were con-

fidently cross-mapped to their corresponding mRNAs. The incomplete coverage of

the proteomic data was likely due to instrumentation bias, stringent filtering rules of

database search or instability of low-level transcripts. The miRNA expression data

was extracted from previous published microarray studies 3. These authors also

used TargetScan and miRanda separately to derive two lists of putative miRNA

targets in mouse. The normalized mRNA expression profiling of 41,699 transcripts

in 55 tissues was from 27. Among these, 1,758 were confidently cross-mapped to the

proteins (see above).

We chose to use full Bayesian formulism to make inference so as to take into

account all possible uncertainties in our model. Inferences were made based on

Gibbs sampling 8, which was performed in the WinBugs environment 20.

3. Method and Results

3.1. Deriving a list of putative miRNA targets by sequence data

alone

We described the sources of the data in the above Methods section. As described

in the Introduction, our current methods take as input a set of putative predictions

from a sequence-based prediction algorithm. We decided to run our procedures

twice using two different prediction algorithms: TargetScan 14 and miRanda 5. The
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general results and conclusions are unchanged. Based on the intersection among

the four types of datasets (predicted miRNA targets, miRNA expression, protein

abundance and mRNA expression), we retained 21,721 putative interactions for Tar-

getScan predictions (75 miRNAs, 1,404 cross-mapped mRNAs) and 17,339 putative

interactions for miRanda predictions (70 miRNAs, 1408 cross-mapped mRNAs).

After compiling the datasets, we investigated mRNA or protein expression pro-

files in 6 tissues (brain, heart, liver, lung, placenta and kidney), among which ex-

pression in 4 tissues (brain, heart, liver and lung) were used for model construction

and making predictions, while the remaining 2 tissue types (placenta and kidney)

were used for blind tests.

3.2. Modeling protein abundance

Instead of looking for negative correlation between miRNAs and mRNA transcripts

as previously described in 10, our method relies on the correlation between miRNA

and proteins (see Figure 1). We start with a set of miRNA and target genes as pre-

dicted from a sequence-based approach, we then model the protein abundance of the

putative targets and the miRNA in individual tissues. If we observe a negative cor-

relation between the miRNA and the putative target in one particular tissue, then

the algorithm will assign a higher confidence score to this miRNA-protein pair. Con-

versely a positive correlation between miRNA expression and protein abundance,

especially the cases where a high miRNA expression coincide with high protein

abundance, will result in a low confidence score for the miRNA-protein pair.

We chose to use a probabilistic framework to model the rela-tionship between

miRNA and the protein abundances. The first challenge in this approach is to

find an appropriate background distribution to model the protein abundance data.

Unlike mRNA expression profiles, which can be effectively modeled using a Gaussian

distribution, the peptide counts are discrete values. A possible choice is to use

Poisson to model the count events; however, a simple Poisson model is not suitable

for modeling the peptide counts in this study since there are excessive zeros in the

dataset and the non-zero counts are also over-dispersed (variance are much greater

than the mean). After comparing with other possible models such as zero-inflated

Poisson and transformed Gaussian, we chose to use negative binomial model (NB)

to characterize the peptide counts, with which the mean and over-dispersion can

be considered simultaneously with lower model complexity. Recent research also

suggested NB is an optimal choice to model the abundance data with excessive

zeros 25.

The protein abundance data has disrete integer values corresponding to protein

counts and a lot of zeros corresponding to no protein abundance, and has very

different sample variance from sample mean, which cannot be effectively modeled by

a Possion distribution but can be fitted very well by a negative binomial distribution

empirically. A negative binomial distribution with a positive real parameter r and
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a real parameter γ ( 0 < γ < 1) is described in the following equation:

p(k|r, γ) =

(

k + r − 1

r − 1

)

γr(1 − γ)
k

=
Γ(k + r)

k!Γ(r)
γr(1 − γ)

k
. (1)

In the above equation, k is an integer, and the mean of the distribution is r 1−γ
γ

.

If we re-parametrize the negative binomial distribution using the mean parameter

λ = r 1−γ
γ

and the positive real parameter r, we have the following equation:

p(k|r, γ) = NB(k|λ, r)

=
λk

k!

Γ(r + k)

Γ(r)(r + λ)k

1

1 + λ
r

. (2)

In the above equation, Γ(·) is the Gamma function, r controls the over-dispersion

of the distribution, and, when the over-dispersion paramter r approaches infinity,

NB(k|λ, r) approaches a Possion distribution with mean parameter λ. The above

NB model uses r to adjust the variance independently of the mean parameter λ of

the distribution, differing from a Possion distribution which has equal mean and

variance. We model protein abundance data by NB using the parametrization in

Equation 2. We assume the abundance of each protein i in tissue type t, Wit, follows

NB distribution, with two parameters θit and rt, 1 ≤ i ≤ N and 1 ≤ t ≤ T , where

N and T are the total number of genes (proteins) and total number of tissues types,

respectively. Thus, the probability of protein i with peptide count k in tissue t can

be modeled as the following in Equation 3.

p(Wit = k|θit, rt) = NB(k|θit, rt). (3)

In Equation 3, θit represents the mean for protein i in tissue t and rt represents

the over-dispersion of the data, which was shared by all the proteins in the same

tissue t. We then used hierarchical Bayesian negative binomial regression to regress

the mean θit with miRNA expression in corresponding tissues, Mjt, 1 ≤ j ≤ J , and

1 ≤ t ≤ T , where J is the total number of miRNAs in the dataset. Equation 4 gives

the regression of the mean in the model. Thus,

ln(θit) = ln(τt) − ρt

J
∑

j=1

ωjδijMjt (4)

In Equation 4, τt stands for the background protein abundance shared by all the

proteins in the same tissue t. As suggested in 10, we introduced δij as a binary

latent variable indicating whether or not the miRNA j regulates the gene i; ωj is

a regression coefficient associated with j-th miRNA expression shared by all the

tissue types, and ρt is a scaling parameter for tissue t accounting for the measure-

ment difference in different tissues. Since sequence complementarity is a necessary

condition for true targets, we use a binary variable Sij as the putative predictions
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between miRNA j and protein i, which was derived from sequence-based predic-

tions (TargetScanS, miRanda, or PicTar, etc); Sij = 1 means that there is a putative

predictions between i and j. The probability of a putative prediction being a true

positive, p, is formally given in Equation 5.

p(δij = 1|Sij = 1) = p,

p(δij = 1|Sij = 0) = 0 (5)

To avoid over-fitting the data and to account for all possible uncertainties, we

chose to use full Bayesian approach to infer δij so that all the uncertainties and

nuisance variables can be integrated out. Thus we assigned the priors to other

parameters as follows (most were assigned flat priors):

p ∼ beta(1, 1),

τt ∼ uniform(0, 50),

ρt ∼ gamma(α, α),

α ∼ uniform(0,+∞),

ωj ∼ exponential(β),

β ∼ uniform(0, 1000),

rt ∼ exponential(a),

a ∼ uniform(0, 1000),

(6)

With the likelihood and priors defined above, we then imple-mented Gibbs sam-

pling 8 to compute marginal distribution of δij conditioned on all evidence. All the

inferences were made on drawing 5, 000 samples after 10,000 iterations.

3.3. Apply Bayesian model to predict miRNA targets

We applied the model described above to the 21,712 putative miRNA-protein inter-

actions derived from TargetScan, and as-signed a confidence score to each putative

interaction. Then we ranked the 21,712 putative interactions from the highest to

the lowest confidence, and grouped them into 44 bins with each bin containing 500

ranked interactions. The results are shown in Figure 2A-D for 4 different tissue

types.

As shown in Figure 2, our model can well capture the miRNAs repression ef-

fects in these four tissues. The miRNA-protein pairs that are predicted to have

the highest confidence scores have lower protein abundance and higher miRNA ex-

pression; conversely the miRNA-protein pairs with the lowest confidence scores also

have higher protein abundance and higher miRNA expression. For the interactions

ranked with intermediate confidence scores, the miRNA expression is low, and the

protein abundance can be either low or high. The fact that a large number of Tar-

getScan predictions are located in the right side of the curve, i.e. low confidence
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Fig. 2. miRNA targets prediction using miRNA expression and protein abundance. With our
model, in the 4 tissues (panel A-D), the most confi-dent predictions (on the left) have the lowest

protein abundance and the highest miRNA expression; while the least confident predictions (on
the right) are high in both protein abundance and miRNA expression. All the data were scaled
between 0 and 1. The putative predictions were from (Babak, et al, 2004) using TargetScan.

score with high miRNA expression and high protein abundance, indicates the ex-

tent of possible false-positives in the predictions made from sequence data alone.

Because the Bayesian approach is intrinsically evidence-based, a prediction can only

be made with high confidence if the miRNA is highly expressed in a certain tissue.

Note that the high-confidence miRNA-protein interaction pairs as shown in Fig-

ure 2 are predictions pooled from all 4 tissues. We do not explicitly model the tissue

specificity of miRNAs in our formulism (see Equation 3); instead, the strengths of

the miRNA regulation in specific tissues are inferred from the expression level of

miRNAs. For instance, a miRNA can be interpreted as a functional regulator in a

given tissue only if it is highly expressed and it has high confidence score with a

potential target protein that is lowly expressed in that tissue.
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3.4. Blind tests for the Bayesian predictions method

As described above, we only used the protein abundance and miRNA expression

in brain, lung, heart and liver to train our model and make predictions; the data

in the remaining two tissues (placenta and kidney) was left out during the model

construction stage. To further validate our method, we subsequently conducted a

blind test on the placenta and kidney data sets.

Figure 3A shows the results of the blind test. On the X-axis, we sorted the

miRNA C protein pairs according to the confidence scores predicted by using the

four training tissues; on the Y-axis, we plotted the protein abundance and miRNA

expression level that are observed in placenta. The results indicate that, as a general

trend, the predicted interactions can also reflect the desired tendency in placenta.

The predicted interactions with high confidence usually have low protein abun-

dance and high miRNA expression. The least confident predictions also have highly

expressed proteins and highly expressed miRNAs, indicating those proteins are un-

likely to be repressed by the miRNAs in placenta.

In kidney as the second blind test, shown in Figure 3B, al-though the miRNA

expression data were not available for this tissue type, clearly our predictions were

also effective and the most confident predictions have the lowest protein abundance

and vice verse. All the above analyses were based on the sequence-based predictions

from TargetScan. The same results also hold true after we repeated the analysis

using predictions from another program miRanda 5. Next, to test the robustness of

our method, we shuffled the gene labels to randomize the data. The results from

the shuffled data appear clearly random (Figure 2C), which strongly suggest that

our prediction did not occur by chance.

3.5. Comparison with TarBase and other methods

We further searched for published experimental evidence for our predicted in-

teractions in TarBase 18, which is a comprehensive database containing exper-

imentally verified miRNA targets in a number of organisms. However, to this

date, there are only 41 experimentally verified miRNA targets for mouse in

the database. Since in the database all targets used gene symbol, we then con-

verted the Swiss-Prot protein names in our study to corresponding gene sym-

bols via http://idconverter.bioinfo.cnio.es/ 1. However, except for the gene Arid3a

(ARI3A MOUSE), all other genes were not included in our dataset as they do not

have protein abundance data compiled in this study. For Arida3a, in TarBase, it was

annotated to be regulated by miR-125b. From our predictions based on miRanda

predictions, the interactions between miR-125b and ARI3A MOUSE was ranked

among top 5% in all the 17,339 putative interactions, suggesting ARI3A MOUSE

is likely a true target. However, this interaction was not detected byTargetScan as

compiled in 3.

We also compared our prediction results to the results obtained using the

method in 10. Although most of the predictions by both models are consistent, we
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Fig. 3. Blind test of our predictions on placenta (A) and kidney (B). (C) Result from randomization
while protein labels are shuffled.

found that proteomics data can further remove a lot of false negative predictionsa,

aOur Bayesian model filters sequence-based predictions and removes a lot of false positives pre-
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and we believe that modeling proteomics data is the most reliable way of filter-

ing miRNA target predictions when large-scale proteomics data become available.

In details, the miRNA/target interactions such as mmu-mir-214/Q8R399 MOUSE,

mmu-mir-211/Q8BYX4 MOUSE, mmu-miR-292-5p/KCNN3 MOUSE, and mmu-

miR-298/RRAS2 MOUSE all ranked among top 10% in all the putative in-

teractions in both models. However, the miRNA/target interactions such as

mmu-miR-298/PLF3 MOUSE, mmu-miR-210/Q8BSZ8 MOUSE, and mmu-miR-

92/8BZZ4 MOUSE all ranked among top 1% in all the putative interactions in

our model, but they all ranked among bottom 15% in all the putative interactions

in the model by 10. We found that these miRNA/target pairs all have very good

relatively high miRNA expression vs. relatively low protein abundance patterns,

but they don’t have very clear relatively high miRNA expression vs. relatively low

mRNA expression patterns. Since miRNAs can either degrade mRNAs or repress

mRNA translation, which will be discussed later in this paper, we believe that these

interactions are very likely to be false negatives predicted by the model in 10.

3.6. Discordant correlation between mRNA expression and protein

abundance

We next investigated whether these target genes are regulated by translational re-

pression or by mRNA degradation. This can be achieved by comparing the protein

abundance and mRNA expression data of predicted target genes. If miRNAs pre-

dominantly regulate their targets by degradation, then for target genes we would

expect to see a good correlation between mRNA expression and their protein abun-

dance (low mRNA concentration leads to low protein abundance). For all the pu-

tative targets, Figure 4 plots their average mRNA expression level and their total

protein abundance across 4 tissues (brain, heart, liver and lung); the X-axis is the

predicted targets sorted with the highest confidence on the left and lowest confi-

dence on the right.

In Figure 4, interestingly, among the top ranked predicted targets, their mRNA

expression fluctuates greatly; while among the bottom ranked predicted targets

their mRNA expression is well correlated with their protein abundance. Such a

lack of correlation between protein abundance and gene expressions suggested that

degradation is unlikely to be the dominant mechanism for miRNA-mediated reg-

ulation, which is consistent with previous observations 3 and 9. Such pronounced

discordance between mRNA expression and protein abundance was also reported

in a previous study 12. In the next step, we describe another Bayesian model that

allows us to trace back to the mRNA expression data, and calculate the probability

of miRNA regulation by mRNA degradation or by transcriptional inhibition

dicted by sequence models.
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Fig. 4. mRNA expression and protein abundance for the gene targets of predicted interactions

from the highest confidence (left) to the lowest con-fidence (right). The mRNA expression was
averaged over the 5 tissue types (brain, heart, kidney, liver and lung) and protein abundance is
the total peptide counts across 5 tissues (brain, heart, kidney, liver and lung). All the experimental
data were scaled between 0 and 1.

3.7. Two possible mechanisms: mRNA degradation vs.

translational repression

For the top miRNA-protein pairs that are predicted to be true regulator and targets,

we can distinguish between these two possible regulatory mechanisms by analyzing

the correlation between the miRNA expression and the mRNA expression. For

example, if a top-ranked miRNA Cprotein pair has high miRNA expression and

high mRNA expression, then it is a strong indicator that the protein target is

regulated by translational expression. In contrast, if a predicted miRNA target has

low mRNA expression, then it is likely regulated by mRNA degradation.

There are two common concerns in modeling the mRNA expression data: (1)

the intrinsic low signal-to-noise ratio of microarray data, (2) the potential problem

of missing values since a large number of the genes have expression levels measured

as 0 27. To overcome these difficulties, we elected to discretize the mRNA expression

data by using a cutoff of 0.1 to binarize the expression level to either low or high. For

a given mRNA i in tissue t, 1 ≤ i ≤ L and 1 ≤ t ≤ T , where L is the total number

of mRNAs in the confident predictions derived from the first model, its mRNA

expression Rit can be either low (Rit = 0) or high (Rit = 1). Let the probability of
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degradation for mRNA i in tissue t be qit, we assume,

P (Rit = k) = q
(1−k)
it (1 − qit)

k, k = 0 or 1. (7)

We next used logistic regression to regress qit with the expression of miRNAs that

regulates gene i, in tissue t. Then we have the following equation,

logit(qit) = log(
qit

1 − qit

) =

H
∑

j=1

ΦjbijMjt + ct (8)

in which H is the total number of miRNAs in the miRNA-mRNA interactions,

Mjt is the expression of the j-th miRNA in tissue t, bij is a binary latent variable

indicating whether or not the gene i is degraded by miRNA j , and Φj is a scaling

parameter associated with the j-th miRNA, shared by all tissue types. The rationale

behind Equation 8 is that for a given gene i, if its expression is low in tissue t, i.e.

Rit = 0, then from the perspective of maximum likelihood, we need to maximize qit

so that the interactions between gene i and its regulating miRNAs that are highly

expressed in tissue t should be assigned a higher degradation score. In this sense,

the observed low expression of mRNA and high expression of miRNA together lead

to the assignment of a high degradation probability. Similarly, if in tissue t, Rit = 1,

then qit needs to be minimized, implying those highly expressed miRNAs should

be associated with a low degradation score, so the highly expressed miRNAs and

mRNAs indicate such regulation is more likely to be through translational repression

than through degradation.

Regarding the latent variable bij , we further required that:

p(bij = 1|δij = 1) = h,

p(bij = 1|δij = 0) = 0, (9)

in which, δij indicates whether or not mRNA i is targeted by miRNA j. If δij = 1,

then the miRNA j has a probability h to cause degradation to its target mRNA

i. We then used a full Bayesian approach to estimate the parameters in the model

to avoid overfitting the data and to account for all potential uncertainties. In the

Bayesian framework, we then assigned priors to other parameters in the model as

follows:

Φj ∼ exponential(Ψ),

Ψ ∼ uniform(0,+∞),

ct ∼ uniform(−50,+50),

h ∼ beta(1, 1). (10)

Having defined the likelihood and the priors, we then inferred the posterior

marginal distribution of p(bij = 1|S,W,M), conditioned on all the evidence. By

implementing Gibbs sampling in the environment of WinBugs 20, all the inferences

were based on drawing 5,000 samples after 10,000 iterations.
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Fig. 5. (A) Ranking of miRNA targets according to the probability of being regulated by the

mechanism of mRNA degradation; the targets were ranked from the highest degradation prob-
ability (top) to the lowest degradation probability (bottom). It also showed mRNA expression
of the targets across 4 tissue types. Black color denotes high expression and white color denotes
low expression. (B) The top ranked interactions have the highest degradation probability, and are

associated with the low mRNA expression. (C) The bottom ranked interactions have the lowest
degradation probability, and thus are associated with high mRNA expression.

3.8. Apply the Bayesian model to mRNA data

By implementing the model described above, we calculated the confidence scores for

mRNA degradation for each miRNA-mRNA interaction pair, which indicated the

likelihood that miRNA causes degradation to their mRNA targets. The lower degra-

dation score implies higher probability of being translationally repressed. Then, we

ranked the scores from the highest to the lowest, and grouped them into 50 bins,

each containing 100 ranked interactions. Figure 5 shows the mRNA expression level

of the ranked miRNA targets across 4 tissue types. The miRNA targets near the

top of the Figure 5(A) have the highest probability of being regulated by mRNA

degradation, as demonstrated by their low mRNA expression level (details shown in

Figure 5(B)). Conversely the targets near the bottom have the highest probability

of being regulated by translational repression (details shown in Figure 5(C)).
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4. Discussion

4.1. miRNA regulation by translational repression

In this paper we described two novel formalisms in the computational analysis of

miRNA regulation. We first introduced a Bayesian approach to identify miRNA

targets based on protein abundance data. After having selected high confidence

predictions, we then introduced a second Bayesian model to further distinguish the

two possible regulatory mechanisms, i.e. mRNA degradation versus translational

repression. We showed that our model is very effective in describing the three inter-

twining genomics data sets, i.e. miRNA expression, mRNA expression, and protein

abundance. Our results demonstrated that protein abundance is a very useful re-

source in predicting miRNA targets, especially with the emerging evidence that

translational repression is more prevalent than mRNA degradation as a regulatory

mechanism in mammals. Our work also suggested that such repression mechanism

likely contributed to the previously observed discordance between mRNA expres-

sion level and protein abundance. We would like to point out that although in this

paper our model takes as input the predictions from TargetScan and miRanda,

essentially results from any other sequence-based predictions can be used in our

formulism.

4.2. Potential limitations and future directions

Even though our framework has obtained encouraging results, it certainly has limi-

tations. We envision that it can be improved in the following area. (1) As we noted,

miRNA is not the only mechanism of gene regulation. Some of the observed vari-

ations in protein abundance across tissues are likely the result of regulation at the

transcription level by transcription factors, or at the post-transcriptional level by

mRNA degradation pathways. (2) Although it has been reported that the mecha-

nism of translational repression by miRNAs has little impact on mRNA level, the

mRNA expression might be still helpful in predicting miRNA targets, and recent

research suggested that targeted mRNA showing strong correlation (positive and

negative) with miRNAs (6 and 23). In the future, we could incorporate the mRNA

expression data with the proteomic data to build an integrated predictive model.

(3) At this stage, our model takes as input the sequence-based predictions from

another prediction programs such as TargetScan or miRANDA, therefore our algo-

rithm does not explicitly consider the sequence complementarity and evolutionary

conservation. As a future work, it would be interesting to extend our model to in-

corporate these properties into a unified probabilistic framework. (4) In our model,

similar with 10, we assumed a single baseline distribution of protein abundance for

all the genes in each tissue type. However, this is a significant simplification since

different genes could have distinct baseline expression levels. The next step in this

work is to take this into account and develop a more realistic expression baseline

model. For example it would be possible to take into account the codon usage of
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the genes to infer the possible baseline expression of a given gene 17.
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