
Interpretable Sparse High-Order Boltzmann Machines for
Transcription Factor Interaction Identification

Martin Renqiang Min Xia Ning Chao Cheng Mark Gerstein
NEC Labs America NEC Labs America Dartmouth College Yale University

1 Introduction

Identifying interpretable high-order feature interac-
tions is important in both machine learning and data
visualization, specially for biomedical applications. In
this paper, we propose a new model called Sparse
High-order Boltzmann Machine (SHBM) to identify
interpretable high-order feature interactions in an un-
supervised setting. The learning for SHBM is decou-
pled into two steps: interaction neighborhood esti-
mation and interaction weight learning. In order to
identify high-order multiplicative interaction neighbor-
hood for each feature, we propose a scalable sparse
high-order logistic regression, named shooter, based
on `1-norm regularization. We also propose different
sampling methods for learning the interaction weights
in SHBM. We apply SHBM to a challenging bioinformat-
ics problem of discovering complex Transcription Fac-
tor interactions from ChIP-Seq measurements in the
ENCODE project 1. Compared to conventional Boltz-
mann Machine and directed Bayesian Network, SHBM
can identify much more biologically meaningful inter-
actions that are supported by literature and recent bi-
ological studies. To the best of our knowledge, SHBM
is the first working Boltzmann Machine with explicit
high-order feature interactions applied to a real-world
problem.

2 Sparse High-Order Boltzmann
Machines

In practice, it is typically infeasible for High-order
Boltzmann Machines (HBMs) to include all possible
energy functions of different orders. Thus, we need to
perform structure learning, which is a challenging task
for high-dimensional discrete graphical models. Fol-
lowing [7], the structure learning of HBMs could be
conducted by minimizing the following `1-regularized
negative log-likelihood

min
W

E(v) + logZ + λ‖W‖1.

1http://www.genome.gov/10005107

That is, we constrain the HBM to have only a sparse
set of all possible high-order interactions. However,
calculating the above negative log-likelihood and its
gradient is intractable. To address this, we convert
the problem of minimizing the negative log-likelihood
of observed data into that of minimizing the negative
pseudo log-likelihood as proposed in [5]. Specifically,
we solve the following optimization function

min
W

∑
i

log p(vi|v−i,W ) + λ‖W‖1,

where v−i is the set of visible units except vi. Essen-
tially, the above optimization takes the form of a set
of `1-regularized logistic regression problems that are
not independent due to the shared parameters W .

Due to the extremely large space of the parameters for
the high-order interactions, we approximate the above
pseudo log-likelihood further by utilizing a strategy
proposed by Wainwright et al [10] and propose the fol-
lowing decoupled 2-step method for learning an SHBM.

Step 1: high-order interaction neighborhood
estimation: we first estimate the high-order interac-
tion neighborhood structure of each visible unit, i.e.,
the Markov blanket of each unit. We formulate this
problem as a high-order feature selection problem and
propose a learning algorithm, denoted as shooter, as
described in Section 3. In particular, for each visible
unit (i.e., each feature), we consider a regression prob-
lem from all the other visible units and their high-order
interactions.

Step 2: SHBM weight learning: once the high-
order interaction neighborhood structure of each visi-
ble unit is identified, we add the corresponding energy
functions with respect to the high-order interaction of
that unit into the energy function of HBM as in Equa-
tion 1. Then we use Maximum-Likelihood Estimation
updates to learn the weights associated with the identi-
fied high-order energy functions, which requires draw-
ing samples from the model distribution. In Section 4,
we present Gibbs Sampling and Mean-Field updates
for obtaining samples. Instead of drawing samples ex-
actly from the equilibrium model distribution, we only
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perform sampling a few steps and use Contrastive Di-
vergence (CD) [4] to update the weights.

− E(v) =
m∑

j=1

∑
i1i2···ij

Wi1i2···ijvi1vi2 · · · vij , (1)

3 Sparse High-Order `1-Regularized
Logistic Regression

We extend the conventional `1-LR to have both single
features and multiplicative feature interactions of or-
ders up to m as predictors with `1 regularization, and
this method is denoted as sparse high-order logistic
regression (shooter). The optimization problem of
shooter with feature interactions of maximum order
m is as follows:

min
w,b

nX
i=1

log{1+

exp[−yi(

mX
k=1

X
j1<j2<···<jk

wj1j2···jkx
j1
i x

j2
i · · ·x

jk
i + b)]}

+

mX
k=1

λk

X
j1<j2<···<jk

|wj1j2···jk |,

(2)

where xj
i denotes the j-th feature of xi. Solving the

problem in Equation 2 directly is intractable even for
fair feature set size p and small interaction order m
(e.g. p = 500, m = 6). Thus, we propose a greedy
block-wise optimization method to solve Equation 2.

We decompose the above problem into several sub-
problems and solve the sub-problems greedily from the
lowest order 1 up to the maximum order m as follows.

Step 1: first, we denote the set of all the single
features as F (1)

0 , that is,

F
(1)
0 = {xj

· |∀j}

We use PSSG to solve the optimization problem as in
Equation 3.

min
w(1),b(1)

nX
i=1

log{1 + exp[−yi(
X

x
j
i∈F

(1)
0

w
(1)
j xj

i + b(1))]}

+ λ1

X
x

j
i∈F

(1)
0

|w(1)
j |.

(3)

The discriminative single features are identified as the
ones which have non-zero weights w(1)

j across all the
data points. We denote this set of identified single
features by F (1), that is,

F (1) = {xj
· |xj

· ∈ F
(1)
0 , w

(1)
j 6= 0},

where j = 1, ..., p1, p1 = |F (1)|.

Step 2: then we multiply each discriminative feature
in F (1) with all the rest p−1 single features in F (1)

0 to
construct the set of all possible second-order feature
interactions F (2)

0 , that is

F
(2)
0 = {xj1

· x
j2
· |xj1

· ∈ F (1), xj2
· ∈ F

(1)
0 , j1 6= j2}

We solve the optimization problem as in Equation 4

min
w(2),b(2)

nX
i=1

log{1+

exp[−yi(
X

x
j1
i ∈F (1)

w
(2)
j1
xj1

i

+
X

x
j1
i x

j2
i ∈F

(2)
0

w
(2)
j1j2

xj1
i x

j2
i + b(2))]}

+ λ1

X
x

j1
i ∈F (1)

|w(2)
j1
|+ λ2

X
x

j1
i x

j2
i ∈F

(2)
0

|w(2)
j1j2
|.

(4)

so as to identify discriminative second-order feature
interaction set F (2), that is,

F (2) = {xj1
· x

j2
· |xj1

· x
j2
· ∈ F

(2)
0 , w

(2)
j1j2
6= 0}.

Step 3: similarly, we multiply each discriminative
(k− 1)-th order feature interaction in set F (k−1) with
p− k+ 1 other single features in F (1)

0 to construct the
set of all possible k-th order interactions F (k)

0 , that is,

F
(k)
0 ={xj1

· x
j2
· · · ·xjk

· |xj1
· x

j2
· · · ·x

jk−1
· ∈ F (k−1),

xjk
· ∈ F

(1)
0 ,

jk 6= jk−q,∀q = 1, · · · , k − 1}

Then from F
(k)
0 we identify discriminative feature in-

teraction set F (k) by solving the optimization problem
as in Equation 5.

min
w(k),b(k)

nX
i=1

log{1+

exp[−yi(

k−1X
q=1

X
x

j1
i x

j2
i ···x

jq
i ∈F (q)

w
(k)
j1j2···jq

xj1
i x

j2
i · · ·x

jq

i

+
X

x
j1
i x

j2
i ···x

jk
i ∈F

(k)
0

w
(k)
j1j2···jq

xj1
i x

j2
i · · ·x

jk
i

+ b(k))]}

+

k−1X
q=1

λq

X
x

j1
i x

j2
i ···x

jq
i ∈F (q)

|w(k)
j1j2···jq

|

+ λk

X
x

j1
i x

j2
i ···x

jk
i ∈F

(k)
0

|w(k)
j1j2···jk

|.

(5)
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and the order-k discriminative feature interaction set
F (k) is identified as

F (k) = {xj1
· x

j2
· · · ·xjk

· |xj1
· x

j2
· · · ·xjk

· ∈ F
(k)
0 , w

(k)
j1j2···jk

6= 0}.

Note that in Equation 5 we include discriminative sin-
gle features and discriminative lower-order interactions
F (1), · · · , F (k−1) into the `1-regularized optimization
problem for order k so as to optimally remove less im-
portant lower-order interactions when high-order in-
teractions present. To speed up the optimization, we
divide each identified discriminative feature interac-
tion set F into equal-sized blocks, and we expand each
block and solve the `1-regularized optimization prob-
lem for the particular block.

The above greedy optimization approach sequentially
identifies discriminative feature interactions of differ-
ent orders that essentially form a tree structure, be-
cause each k-th order discriminative feature interac-
tions must have at least one of its (k−1)-th order con-
stituents belonging to F (k−1), where k > 1. Although
this greedy approach can only identify a sub-optimal
solution to the original intractable optimization prob-
lem in Equation 2, it performs very well in practice as
demonstrated by our experimental results.

4 Sampling Methods for SHBM

In this section, we present Contrastive Divergence (CD)
learning [4] based on Gibbs Sampling (GS) and damped
Mean-Field updates (MF). The weight updates in SHBM
based on CD are as follows,

∆Wi1i2···ij
= ε(〈vi1vi2 · · · vij

〉data − 〈vi1vi2 ...vij
〉T ),

(6)
where 〈vi1vi2 ...vij

〉T is calculated using the samples ob-
tained from different sampling methods after T steps.
Although CD updates do not exactly follow the gradi-
ent of data log-likelihood, it works well in practice.

Gibbs sampling (GS) can be used within CD for drawing
samples. To perform Gibbs Sampling, we initialize r(0)

to be a random data vector, and we sample each visible
unit vj sequentially using the conditional probability

p(t)(vj |r(t)1 , · · · , r(t)j−1, r
(t−1)
j+1 , · · · , r(t−1)

p )

to get the sample for unit vj in step t, where j =
1, . . . , p, t = 1, . . . , T , and p is the total number of
visible units. Then we use the statistics in the T -step
samples to calculate the second term in Equation 6 for
weight updates.

However, GS is very slow due to the sequential sam-
pling procedure over all the visible units. Instead, we
use mean-field approximations (MF) [11] to calculate

Figure 1: Interaction network from SHBM

the sampled values for all the visible units in each step
in parallel given the sample values in the previous step.
In specific, we use the damped version of mean-field
updates [8] to draw samples to increase sampling sta-
bility. Starting from a random data vector r(0), we
calculate the t-step sample for each visible unit vj as
follows,

r
(t)
j = λr

(t−1)
j + (1− λ)p(vj = 1|v−j ,W),

where t = 1, . . . , T , and p(vi = 1|v−i,W) is the con-
ditional probability of vi = 1 given its neighborhood
interactions. Please note that, unlike in GS, we can cal-
culate r(t) for all the visible units in parallel to speed
up our computation because the calculation for r(t) is
only dependent on r(t−1).

5 Experiments

5.1 Datasets

We evaluate SHBM and shooter for interaction identi-
fication and feature reconstruction on the TF dataset.
The dataset TF is downloaded from Gerstein et al [3].
Against a set of regulatory targets which have
promoter-proximal binding sites, 116 human TFs were
tested through ChIP-seq experiments. On those confi-
dent gene-TF interactions shown by the experiments,
interaction scores were calculated based on a proba-
bilistic model and weighed by the characteristic profile
of the corresponding TF [2]. Then the most confident
interactions were selected based on the refined inter-
action scores so as to construct the TF dataset. In TF,
each gene is considered as a data point, each TF is con-
sidered as a feature dimension, and each data point is
represented by the interaction profile (i.e., 1 for inter-
action and 0 for non-interaction) of the corresponding
gene with respect to the TFs. The dataset TF has in
total 9,322 data points and 116 features with density
2.58%.
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Figure 2: Reconstruction on testing set

5.2 Interaction Identification

Figure 1 shows the interactions identified by SHBM on
dataset TF, where only the interactions with weights
higher than 2.5 are presented.

As an example, three important interactions: MYC
vs MAX, STAT1 vs STAT2 and FOXA1 vs GATA3,
are successfully identified (and also highlighted) in
the interaction network. MYC and MAX form a
MAX/MYC heterodimer, which has been discovered
and studied recently in literature [1]. The interac-
tion between MYC and MAX is ranked second by
shooter among all the identified interactions. STAT1
and STAT2 also form an heterodimer and the interac-
tion has been studied in literature [6]. The interaction
between FOXA1 and GATA3 is also highly ranked by
shooter, which also has support from several recent
studies [9].

5.3 Data Reconstruction

We compare SHBM and BM on how good the interaction
networks that they learn are and how well they can ac-
cordingly generate new interactions that are true with
high probabilities. We do the comparison by looking
at how they can recover missing data. This set of ex-
periments is conducted on TF dataset, which has no
labels but its interaction network has important bio-
logical significance. 80% of the entire TF dataset is
used for SHBM and BM training, whereas the rest 20%
is held out for testing.

Figure 2 shows the performance of SHBM and BM on re-
covering/reconstructing missing data for training set
and testing set, respectively. The performance is mea-
sured by the average sum of squared errors on each
feature per data point, i.e., the total sum of squared
errors divided by the product of the number of data
points and the number of features. Note that given
the density of TF dataset 2.58%, a guess of all 0 values

will give a reconstruction sum of squared errors about
0.0258 (the blue baseline in Figure 2).

For the data reconstruction, first a random set of fea-
tures is selected and masked off from the data, that is,
all the corresponding binding between TFs and pro-
teins are reset as none, and it is to utilize the informa-
tion of the rest features in the data and the interaction
relations among features to recover the masked-off part
of the original interactions. 20, 30, 40 and 50 features
out of 116 are randomly selected and masked off, and
then reconstructed by BM and SHBM. Such procedure
is repeated 50 times and the average sum of squared
errors over the 50 times from BM and SHBM are pre-
sented in Figure 2 for testing data. On both training
set and testing set, SHBM is constantly superior to BM
in terms of its average sum of squared errors on the
reconstruction, both of which are better than baseline.
In particular, on the testing set, even when 50 features
are masked off, which is 43% of the all the features,
SHBM reaches a sum of squared errors 0.0227, which is
11.9% better than baseline and 10.7% better than BM.
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