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Abstract

K Nearest Neighbor (kNN) is one of the
most popular machine learning techniques,
but it often fails to work well with inappro-
priate choice of distance metric or due to
the presence of a lot of irrelated features.
Linear and non-linear feature transformation
methods have been applied to extract class-
relevant information to improve kNN clas-
sification. In this paper, I describe kNN
classification in a large-margin framework, in
which a non-linear feature mapping is sought
through Laplacian eigenmaps or kernel mix-
tures, and then a linear transformation ma-
trix is learned to achieve the goal of large
margin.

1 Introduction

The classification technique k-Nearest Neighbor (kNN)
is one of the most popular machine learning tech-
niques. However, the good classification performance
of kNN is highly dependent on the metric used for com-
puting the distances between pairwise data points. In
practice, we often use Euclidean distances as similar-
ity metric to calculate the k nearest neighbors of data
points of interest. In real applications with the pres-
ence of many irrelated features, we often need to learn
or choose a good distance metric. Researchers have
proposed distance metric learning to extract informa-
tive information from feature vectors to improve the
classification performance of kNN, and linear trans-
formation methods have been used to remove the re-
dundant information in the feature vectors of data
points and thereby to improve the performance of kNN
[19, 6, 4] based on different objective functions. In
many cases, it’s impossible to improve kNN by linear
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transformation. Thus we need to resort to non-linear
transformation so that each data point will stay to-
gether with all the data points in its neighborhood
in the non-linearly transformed feature space. Kernel-
based and neural-network-based non-linear dimension-
ality reduction method were used to improve kNN
[13, 18, 11, 7]. However, the kernel-based approach be-
haves almost like a template-based approach, and ker-
nel parameters are tuned using time-consuming cross
validation. If the chosen kernel cannot well reflect the
true structure of data, the resulting performance will
be very bad. Although the previous neural-network-
based approach can learn a very powerful non-linear
feature transformation, it doesn’t learn the feature
mapping directly toward the goal of improving kNN
classification.

In this paper, I propose two non-linear feature trans-
formation methods directly toward the goal of improv-
ing kNN classification performance in a large-margin
framework, which are respectively based on Laplacian
eigenmaps (LE) [2] and Kernel Mixtures.

I will organize this paper as follows: in section 2, I
will describe some related methods for distance met-
ric learning and introduce some background knowledge
for large-margin kNN classification. In section 3, I will
describe large-margin kNN classification based on the
non-linear feature mapping generated by LE and ker-
nel mixtures. In section 4, I will discuss the described
methods in this paper, show some variants of the de-
scribed methods, and propose future research direc-
tions.

2 Related methods

Previous work on metric learning in [19] and [7] learns
a global linear transformation matrix in the original
feature space of data points to make similar data
points stay closer while making dissimilar data points
stay farther apart using additional similarity or label
information. However, a global linear transformation



is incapable of making data points in the same class
stay apart from the data points in other classes. A lo-
cally adaptive distance metric learning is used in [10]
but it is based on heuristics. In [6], a global linear
transformation is applied to the original feature space
of data points to learn Mahalanobis metrics, and a
non-linear feature transformation is achieved using the
kernel trick. Although this method can handle non-
linear feature mappings, it requires all data points in
the same class collapse to one point. This is unnec-
essary for kNN classification and may produce poor
performance when data points cannot be essentially
collapsed to points especially for large datasets. An
information-theoretic based approach is used to learn
linear transformations and extends to non-linear trans-
formations by the kernel trick in [4]. In [11], a deep au-
toencoder is used to perform non-linear dimensional-
ity reduction and kNN classification can be performed
in the low-dimensional space. However, none of the
above methods propose learning transformations in a
large-margin framework which achieves the goal of im-
proving kNN classification in a more direct and less
restrictive way.

In [12], a global linear transformation is learned to di-
rectly improve kNN classification to achieve the goal
of large margin. This method has been shown to
yield significant improvement over kNN classification,
but the linear transformation often fails to give good
performance in high-dimensional space and a pre-
processing dimensionality reduction step by PCA is
often required for success. A recent paper [18] ex-
tends the work in [12] to perform linear dimension-
ality reduction to improve kNN classification in a
large-margin framework. The kernelized version of the
method in [18] handles linear dimensionality reduction
in the high-dimensional feature space Φ induced by a
kernel K by assuming each column of the linear trans-
formation matrix as a linear combination of the feature
vectors of data points in Φ. Although using kernels to
induce non-linear feature transformations is effective
and easy to implement, kernel-based methods are like
template-based methods and a bad kernel choice will
lead to very poor performance.

The approaches to be described are mainly inspired by
the work in [12], [18] and [11], I perform non-linear fea-
ture extractions to improve large-margin kNN classifi-
cation using LE and kernel mixtures. The non-linear
mapping by LE is related to spectral clustering and
allows an effective way to learn the parameters of the
weight matrix for LE to better reflect the given neigh-
borhood information of data points. The approach
based on kernel mixtures presents us a soft way of
choosing kernels instead of choosing one kernel in a
hard way.

3 Large-margin kNN classification by
non-linear feature mappings

3.1 Large-margin kNN classification

Given a set of data points D = {�xi, yi : i = 1, . . . , n}
and additional neighborhood information η, where
�xi ∈ RD, yi ∈ {1, . . . , c} for labeled data points, and
ηil = 1 if l is one of i’s k target neighbors, we seek a
distance function d(i, j) for pairwise data points i and
j such that the given neighborhood information will
be preserved in the transformed feature space corre-
sponding to the distance function. If d(i, j) is based
on Mahanalobis distances, then it admits the following
form:

dA(i, j) = (�xi − �xj)T ATA(�xi − �xj), (1)

where A is a linear transformation matrix. Based on
the goal of margin maximization, we learn the param-
eters of the distance function, A, such that, for each
data point i, the distance between i and each data
point j from another class will be at least 1 plus the
largest distance between i and its k target neighbors.
Using a binary matrix yij = 1 to represent that i and
j are in the same class and 0 otherwise for the labeled
data points, we can formulate the above problem as
an optimization problem:

minA

∑
ij

ηijdA(i, j) + (2)

C
∑
ijl

ηil(1 − yij)h(1 + dA(i, l) − dA(i, j)),

where C is a penalty coefficient penalizing constraint
violations and h denotes hinge loss function. If A is a
D×D matrix, this problem corresponds to the work in
[12]; if A is a d×D matrix where d < D, this problem
corresponds to the work in [18]. When a non-square
matrix A is learned for dimensionality reduction, the
resulting problem is non-convex, stochastic gradient
descent and conjugate gradient descent are often used
to solve the problem. When A is constrained to be
a full-rank square matrix, we can solve AT A directly
and the resulting problem is convex. Alternating pro-
jection or simple gradient-based methods can be ap-
plied here [12].

3.2 Large-margin kNN classification using
Laplacian eigenmaps

Based on a weight matrix W for a dataset D as dis-
cussed in section 3.1, in which Wij is the connection
weight (or similarity score) between data point i and j,
the Laplacian eigenmaps (LE) [2] finds d-dimensional
embedding Y for the data points such that densely



connected data points by W will be placed together
and loosely connected data points by W will be placed
farther apart. We minimize the following objective
function:

minY

∑
ij

Wij ||Yi − Yj ||2

= tr(YT LY),
s.t. YT DY = I (3)

where tr denotes the trace of a matrix, Y is an n × d
matrix and each row corresponds to one data point, D
is a diagonal matrix with Dii =

∑
j Wij , L = D−W

is the graph Laplacian, and I is a d×d identity matrix.
The constraint of orthogonality on Y helps remove ar-
bitrary scalings of Y. The solution to the above prob-
lem is given by the bottom d eigenvector of the gen-
eralized eigenvalue problem L�y = D�y excluding the
very bottom eigenvector �e where �e is a vector with all
components being 1 [2]. The very bottom eigenvector
�e corresponds to the smallest eigenvalue 0. In the fol-
lowing discussions, we relate LE to spectral clustering
[17, 8, 20, 14, 1, 3] showing how to use the results in
spectral clustering to learn the parameters of W in
LE.

Suppose we have a graph G for n data points, each
node in G represents a data point, and we also have
a weight matrix W with Wij being the connection
weight (or similarity score) between data point i and
j. For a d-way clustering, let an n × d binary ma-
trix E represent the clustering result of the n data
points, and Eir = 1 if data point i belongs to the r-
th cluster and Eir = 0 otherwise. Spectral clustering
minimizing normalized cut partitions the data points
into d clusters by minimizing the following objective
function (there are also spectral clustering minimizing
ratio cut [9] and minmaxcut [5, 8]):

NCut(G,E) =
d∑

r=1

∑
i∈cluster(r),j /∈cluster(r)Wij∑

i∈cluster(r),j∈{1...n}Wij

=
d∑

r=1

ET
r (D − W)Er

ET
r DEr

= d −
d∑

r=1

(D
1
2 Er)T D− 1

2 WD− 1
2 (D

1
2 Er)

(D
1
2 Er)T (D

1
2 Er)

= d −
d∑

r=1

( D
1
2 Er

||D 1
2 Er||2

)T D− 1
2 WD− 1

2 ( D
1
2 Er

||D 1
2 Er ||2

)

( D
1
2 Er

||D 1
2 Er ||2

)T ( D
1
2 Er

||D 1
2 Er||2

)

= d −
d∑

r=1

�yr
TD− 1

2 WD− 1
2 �yr

�yr
T �yr

= d − tr(YT D− 1
2 WD− 1

2 Y) (4)

where Er is the r-th column of the cluster indicator
matrix E, �yr = D

1
2 Er

||D 1
2 Er||2

, Y = [�y1, �y2, . . . , �yd], and we

can easily verify that YT Y = I. Minimizing the objec-
tive in Equation 4 with respect to the indicator matrix
E with an exact solution is an NP-hard problem. We
can relax Y to be continuous and the solutions Y will
be given by the top d eigenvectors of the normalized
weight matrix W̃ = D− 1

2 WD− 1
2 excluding the very

top eigenvector having an eigenvalue 1 by Ky Fan’s
theorem. And D− 1

2 Y will be approximately piecewise
constant with respect to the cluster indicator matrix
E.

Now I relate d-dimensional embedding by LE to d-way
spectral clustering.

Theorem 1 If λ′ is an eigenvalue and �y′ is the cor-
responding eigenvector of the generalized eigenvalue
problem L�y = D�y for LE, then 1 − λ′ and D

1
2 �y′ will

be, respectively, the eigenvalue and the corresponding
unnormalized eigenvector of W̃ = D− 1

2 WD− 1
2 .

By the problem definition, L�y′ = D�y′, then we have,
W�y′ = D�y′ − λ′D�y′. Let λ′′ and �y′′ be the eigenvalue
and eigenvector of the normalized weight matrix and
let �y′′ = D

1
2 �y′, we have,

W̃�y′′ = D− 1
2 W�y′ = (1 − λ′)D

1
2 �y′ = λ′′�y′′,

which proves our statement in Theorem 1.

Theorem 2 The d-dimensional embedding found by
Laplacian eigenmaps in Equation 3 is equivalent to a
relaxed solution to the spectral clustering minimizing
normalized cut in Equation 4 up to a fixed scaling.

Proof. We can easily prove it using Theorem 1.

Since we have prior neighborhood or class information
for a set of data points, we can find a d-dimensional
embedding produced by LE that is consistent with the
partition of the dataset according to the given neigh-
borhood or class information. Because calculating the
d-dimensional embedding is equivalent to finding a d-
way clustering, we learn the parameters of the weight
matrix such that the consistency between the relaxed
solution to the problem in Equation 4 and the given
partition of the dataset (target clustering/embedding)
is as large as possible as in [1]. We optimize the weight
matrix by maximizing the following objective function
as in [1]:

maxW

d∑
r=1

Er
T D

1
2 UUT D

1
2 Er

Er
TDEr

,

s.t. U ∈ Rn×d,U is any orthogonal basis of



the d-th principal subspace of W̃.

(5)

After obtaining a d-dimensional embedding Y by LE
for a dataset D, we can calculate a d×� linear transfor-
mation matrix using Y as feature vectors to improve
large-margin kNN classification in a brute-force way
by solving the optimization problem in Equation 2. In
the following, we will prove that we do not need to cal-
culate the embedding Y explicitly and learning a linear
transformation matrix for Y is equivalent to working
with a special kernel matrix directly if the normalized
weight matrix is positive definite.

Theorem 3 If the normalized weight matrix W̃ for n
data points is positive definite and Y′ is the relaxed
solution to the d-way spectral clustering, the solution
to learning a linear transformation matrix A for d-
dimensional LE embedding Y = D− 1

2 Y′ to improve
large-margin kNN classification in Equation 2 can be
readily obtained by working on a kernel matrix K =
D−1WD−1 − �e�eT

�eT D�e directly.

Proof. Let K̃ = D−1/2WD−1/2 − D1/2�e
||D1/2�e||

�eT D1/2

||D1/2�e|| , we

have K = D−1/2K̃D−1/2, and let V contain all the
eigenvectors of W̃ excluding the very top eigenvector
having eigenvalue 1 as columns, YT = D− 1

2 V (note
that each row of Y represents one data point), and
K̃ = VΛVT , where Λ is diagonal and contains the
corresponding eigenvalues of W̃ excluding 1. Because
the normalized weight matrix is positive definite, V
must span all the subspaces with dimensionality less
than or equal to n−1. (I) Case d = n−1. Suppose A∗

is a local (global) minimum found by explicitly using
Y, A∗ must be able to be expressed in the form A∗ =
ΛṼT Q∗ because the dimensionality of A∗ is at most
n− 1, where Q is a linear transformation matrix, and
Ṽ can be V or only contains a subset of the columns
of V. Since Q is free to change and can be a low-
rank matrix (with rank d), Ṽ = V will result in the
same solution for A. In fact, since the rank of W̃
is n, we can always use Q to parameterize the linear
transformation matrix for a d-dimensional embedding
where d ≤ n − 1. Note that the objective function in
Equation 2 is linear with respect to the dot product
between the feature vectors of pairwise data points.

YA∗(A∗)T YT = D− 1
2 VΛVT Q∗Q∗T VΛVT D− 1

2

= D− 1
2 K̃D− 1

2 D
1
2 Q∗Q∗T D

1
2 D− 1

2 K̃D− 1
2

= KT∗K,

where T∗ = D
1
2 Q∗Q∗T D

1
2 . From the above deriva-

tion, we can see that, if A∗ is a local or global mini-
mum minimizing the objective in Equation 2 using the

feature vectors Y for d = n− 1, T∗ must be a local or
global minimum of the same problem using the kernel
matrix K as feature vectors. (II) Case d < n − 1. We
can embed the data based on LE to n− 1 dimensional
space first, then we learn an n−1 by d linear transfor-
mation matrix B, if the n−1−d extra dimensions don’t
help further reduce the objective in Eq. 2, B will have
some zero rows and be degenerated into a dxd matrix.
Therefore, the solution B will be as at least equally
good as the solution obtained using d-dimensional LE
embedding.

Theorem 4 To improve large-margin kNN classifica-
tion, learning a linear transformation matrix A in the
high-dimensional feature space induced by a kernel ma-
trix K = ΦT Φ through minimizing the objective func-
tion in Equation 2, is equivalent to learning a linear
transformation matrix A′ by using columns of K as
new feature vectors,if we constrain that A = A′ΦT ,
that is, each row of A is constrained to be the linear
combination of the feature vectors of data points in the
high-dimensional space.

Proof. Since the objective function in Eq. 2 is linear
with respect to the dot products between the feature
vectors of pairwise data points,

ΦTAT AΦ = ΦT ΦA′TA′ΦT Φ
= KA′TA′K

The above derivation obviously shows that constrain-
ing the learned linear transformation matrix in the
high-dimensional feature space is exactly equivalent to
using K as feature vectors to learn a linear transfor-
mation matrix.

3.3 Large-margin kNN classification using
kernel mixtures

As discussed in section 3.2, learning a linear transfor-
mation matrix based on the feature vectors produced
by LE is equivalent to working with a special kernel
matrix that is easily derived from the weight matrix
for LE, if the normalized weight matrix W̃ is positive
semi-definite. The work in [18, 4, 6] used one kernel
to kernelize distance metric learning by constraining
the learned linear transformation matrix following the
idea from [15, 16]. Theorem 4 shows that it is equiv-
alent to using the rows of the based kernel as feature
vectors to learn a linear transformation matrix.

Since kernel-based methods are almost like template-
based methods, choosing a good kernel best suitable
for the problem at hand is often difficult. An undesir-
able choice often leads to poor performance. Instead
of selecting kernels in a hard way, we propose using



kernel mixtures, a convex combination of a set of can-
didate kernels, to select kernel in a soft and flexible
way.

Given m candidate kernels {K(1), . . . ,K(m)}, let K =∑m
k=1 θkK(k), we will use the columns of the combined

kernel K as feature vectors to learn a linear transfor-
mation matrix d × n A, following Theorem 4, this is
equivalent to learning a constrained linear transfor-
mation matrix in the high-dimensional feature space
induced by the kernel K. Thus, we will have the fol-
lowing optimization problem:

minA,�θ

∑
ij

ηijdA(i, j) +

C
∑
ijl

ηil(1 − yij)h(1 + dA(i, l) − dA(i, j)),

s.t. K =
m∑

k=1

θkK(k),

dA(i, j) = (Ki − Kj)TAT A(Ki − Kj)∑
k

θk = 1

θk ≥ 0, k = 1, . . . , m, (6)

where Ki is the i-th column of kernel matrix K. The
above problem is not convex, we can optimize A and �θ
using simple stochastic gradient descent in an iterative
and alternating fashion until convergence.

Instead of making kernel K be a convex combination of
a pre-defined set of template kernels, we can also make
the distance D(i, j) be the convex combination of a set
of distances computed from an ensemble of kernels.
In details, D(i, j) =

∑
k θkDk(i, j), where Dk(i, j) =

(K(k)
i − K

(k)
j )T A(k)T

A(k)(K(k)
i − K

(k)
j ), K

(k)
i is the i-

th column of the k-th kernel K(k). Then we have the
following optimization problem:

minA(1),...,A(k),�θ

∑
ij

ηijD(i, j) +

C
∑
ijl

ηil(1 − yij)

h(1 + D(i, l) − D(i, j)),

s.t. D(i, j) =
m∑

k=1

θkDk(i, j),

Dk(i, j) = (K(k)
i − K

(k)
j )T

A(k)T
A(k)(K(k)

i − K
(k)
j ),∑

k

θk = 1,

θk ≥ 0, k = 1, . . . , m. (7)

In the above optimization problem, A(1), . . . , A(k) and

�θ are parameters to be learned, or we can learn
{Q(k) = A(k)T

A(k)} directly. These parameters can be
optimized using an EM-like algorithm, which is anal-
ogous to estimating the covariance matrices and the
prior probabilies in a Gaussian Mixture Model (GMM)
although there are some subtle differences here. Un-
like the objective function in GMM, we have a mini-
mization function here, consisting of the sum of hinge
losses. We compute �θ in a way similar to estimating
the prior probability in GMM. Given {A(k)} computed
in the previous step, we can assign each data point i
to only one of the m kernels, say kernel k, which has
the smallest distance margin violation �

(k)
i among the

m kernels defined as follows:

�
(k)
i =

∑
jl

ηil(1 − yij)h(1 + Dk(i, l) − Dk(i, j)),

k = 1, . . . , m. (8)

After �θ is computed, we then turn to estimate {A(k)}
as estimating covariance matrices in GMM. This EM-
like procedure iterates until convergence criteria is sat-
isfied.

4 Discussions

In this paper, I proposed using non-linear feature map-
pings found by Laplacian Eigenmaps and kernel mix-
tures to embed a set of data points into a new feature
space, and then I learn a linear transformation matrix
to improve kNN classification in a max-margin way.
I show that, to achieve the large-margin goal, learn-
ing a linear transformation for the feature vectors pro-
duced by Laplacian Eigenmaps is equivalent to directly
working with a kernel that is easily derived from the
weight matrix for Laplacian Eigenmaps. This result
enables us to learn a linear transformation matrix for
LE on a special kernel directly. I also relate Lapla-
cian Eigenmaps to Spectral Clustering for the purpose
of defining similarity measure for kNN classification
(also discussed in previous research work for other pur-
poses), and this allows us to use the given partition
information of labeled data to learn the weight matrix
for Laplacian Eigenmaps.

In the future, I plan to use a deep auto-encoder as in
[11] to learn a low-dimensional embedding and at the
same time I will use the label information to gently
tune part of the embedding vector to improve large-
margin kNN classification. To favour classification, I
will try to make part of the components of the em-
bedding vector focus on reconstructing the original in-
put feature vector. Besides, in the RBF kernel used
in LE, I only used one free parameter σ. I believe
that the performance of large-margin kNN classifica-
tion based on LE can be further improved if a diagonal



covariance matrix is learned. I will investigate efficient
approaches for approximating the subspace of a large
parametric matrix which is used in LE (see section 3.2)
instead of using expensive power method [1].
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