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ABSTRACT
Longitudinal medical image analysis has great potential to
reveal developmental trajectories and monitor disease pro-
gression. This process relies on consistent and robust joint
4D segmentation. Traditional methods highly depend on
the similarity of images over time and either build a tem-
plate or assume the images could be co-registered. This
process may fail when image sequences present major ap-
pearance changes. Recently, deep learning (DL) approaches
have achieved state-of-the-art results for related challenges in
computer vision. These approaches make use of models such
as fully convolutional networks (FCNs) for end-to-end pixel-
wise segmentation and recurrent neural networks (RNNs)
with long short-term memory (LSTM) units for sequence-
to-sequence modeling. In this paper, we propose a new DL
framework called FCSLSTM for 4D image segmentation
with FCNs for the spatial model and LSTM for the temporal
model. This is the first DL framework with deep integration
of FCNs and LSTM for joint 4D segmentation that could be
trained end-to-end. Our approach achieves promising results
with the demonstrated application to longitudinal pediatric
magnetic resonance imaging (MRI) segmentation.

1. INTRODUCTION

Longitudinal MR image analysis plays an important role in
studying dynamic changes among individual subjects over
time. It is paramount towards research in brain development,
degeneration and follow-up disease progression, and reliable
tissue segmentation is the first step in this analysis. The
strong correlation presented in a 3D MRI series for an indi-
vidual subject over time drives the development of the joint
4D segmentation in order to improve segmentation consis-
tency. A joint 4D segmentation is essential for domains like
infant MRIs where the appearance and shape of white and
gray matter change dramatically due to tissue myelination.
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The example in the first row of the Fig. 4 illustrates that it is
not at all obvious how to predict the middle image from the
other four images – as would be necessary in a model used
for longitudinal analysis.

Previous works in the field either require an image tem-
plate [1, 2] or specifically designed registration [3, 4, 5] to
aid segmentation. In addition, these methods typically need
a complex data argument, e.g. a special intensity normaliza-
tion, for each specific dataset. In contrast, machine learn-
ing methods may only need very simple data argumentation
and a reasonable size of training data. Fully convolutional
networks [6] (FCNs) were developed for semantic segmen-
tation of natural images and have rapidly found applications
in biomedical image segmentations, such as electron micro-
scopic (EM) images [7] and MRI [8, 9], due to its powerful
end-to-end training. The 3D u-net [10] extends the network
for volumetric segmentation that learns from sparsely anno-
tated slices by setting the weights of unlabeled voxels in the
loss to zero. Recently, convolutional LSTMs were developed
to explicitly deal with 2D input. Shi et al. [11] use convolution
in the spatial dimension and LSTM in the time dimension for
precipitation nowcasting. Chen et al. [12] use LSTM over in-
dividual slices in a 3D volume and in each slice use a revised
u-net [7] for EM image segmentation to explicitly leverage
anisotropic 3D image resolution. However they have not train
the model end-to-end in practice.

In this paper, we propose a network integrating FCNs with
LSTM for joint 4D segmentation of MRIs. A bi-directional
LSTM is used to model the correlation of images over time.
At a single time point, a structured LSTM is developed as
a generalization of convolutional LSTM, which allows us to
stack complex LSTMs into a deep network with FCNs’ archi-
tecture without suffering from efficiency loss. This particular
structure allows for a significantly smaller and more efficient
network than the state-of-the-art [7] without sacrificing accu-
racy. Ultimately, we arrive at a concise and thoroughly struc-
tured architecture that is highly accurate, and by virtue of its
small number of parameters, is efficient to train the whole net-
work end-to-end from scratch, and we demonstrate feasibility
with applications on two clinical brain image datasets.



2. METHOD

2.1. A Concise Fully Convolutional Network
Convolutional Neural Networks (CNNs) have recently pro-
duced excellent performance in image classification. Al-
though many variants of CNNs have been developed, basic
components of CNNs stay the same; i.e. they have four types
of layers: the convolutional, non-linearity, pooling and fully-
connected layers. The same holds for fully convolutional
networks (FCNs). Various FCNs have been used for pixel-
level image segmentation where besides those four layers,
they employ two additional layer types. One is usually called
the deconvolutional layer used for up-sampling the smaller
feature maps back to the origin image size. The other is called
crop layer, which is used to crop the feature maps to a desired
dimension. Typically the design of FCNs starts from a tra-
ditional CNNs and then transfers the fully-connected layers
to the convolutional layers with kernels of size 1 × 1 (we
see the above layers as the front-end, i.e. the down-sampling
part), and then add deconvolutional, convolutional, and crop
layers (we see these layers as the back-end, i.e. up-sampling
part). Within the back-end, the authors in [6] discuss using
feature maps from the front-end convolutional layers to feed
back into the back-end. We refer this design choice as the
fuse level. A larger fuse level indicates that more feature
maps originating from different convolutional layers in the
front-end are used. Because VGGs [13] networks are very
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Fig. 1. Our proposed FCN architecture. Each small rectangle corre-
sponds to a feature map. The arrows denote the different operations.
Dashed boxes with the names represent layers in the FCN.

Table 1. The parameters in each layers of our concise FCN. The
nInput and nOutput show the number of input and output channels
in the convolutional layer. The n represents the channel number of
input image, and the c represents the number of classes in prediction.

Network Layers The parameters of the convolutional layers

layers sub-layers nInput nOutput kernel stride pad

conv1 conv1 1 + relu1 1 n 16 3 1 100
conv1 2 + relu1 2 + pool1 16 16 3 1 1

conv2 conv2 1 + relu2 1 16 32 3 1 1
conv2 2 + relu2 2 + pool2 32 32 3 1 1

conv3
conv3 1 + relu3 1 32 64 3 1 1
conv3 2 + relu3 2 64 64 3 1 1
conv3 3 + relu3 3 + pool3 64 64 3 1 1

conv4
conv4 1 + relu4 1 64 128 3 1 1
conv4 2 + relu4 2 128 128 3 1 1
conv4 3 + relu4 3 + pool4 128 128 3 1 1

conv5

conv5 1 + relu5 1 128 128 3 1 1
conv5 2 + relu5 2 128 128 3 1 1
conv5 3 + relu5 3 + pool5 128 128 3 1 1
conv5 4 128 c 1 1 0

deconv6 deconv6 1 c c 4 2 1
conv6 1 + crop6 + sum6 128 c 1 1 0

deconv7 deconv7 1 c c 4 2 1
conv7 1 + crop7 + sum7 64 c 1 1 0

deconv8 deconv8 1 c c 4 2 1
conv8 1 + crop8 + sum8 32 c 1 1 0

deconv9 deconv9 1 c c 4 2 1
conv9 1 + crop9 + sum9 16 c 1 1 0

deconv10 deconv10 1 + crop10 c c 4 2 0
total number of parameters 9.2 × 105

regular in design (i.e. in each VGG layer, the convolutional
layer does not change the dimension of feature map, only the
pooling layer would do), they are commonly chosen as the
base architecture for FCNs. One known concern about VGGs
is the huge number of the modeling parameters which lead to
a huge memory consumption. This would be even worse if
we add more layers to FCNs. To solve this problem, starting
with a standard VGG-16-layers as the front-end, we make
extended empirical tests with different FCN architectures on
volumetric MRIs datasets of which typical dimension is 2563.
We have some observations from these empirical tests about
the back-end: 1) Without sacrificing accuracy, the number
of convolutions can be fixed as 1 and the number of output
channels in the convolutional layers could be fixed as the
number of classes in the segmentation; 2) Instead of transfer-
ring the fully-connected layers to 1 × 1 convolutional layers,
the fully-connected layers could be avoided; 3) High fuse
level leads to more detailed and refined segmentation results.
Besides the back-end, in the front-end, the number of input
and output channels in each convolutional layer is another
factor to impact the number of parameters. We test shrinking
the number of channels used in VGG by factors of 2 and 4 and
we find a slight accuracy decrease while resulting in a huge
reduction of model’s parameters, which is probably accept-
able. Ultimately, with all these considerations, we propose a
more concise yet powerful FCN architecture shown in Fig. 1
and Table 1, which is 20 time smaller than u-net [7] and 130
times smaller than the original FCNs proposed in [6].



2.2. The structured LSTM
The recurrent neural networks (RNNs) have the capacity of
repeatedly learning based on previously remembered infor-
mation, and then storing this learned new information. The
RNNs are networks with loops of recurrent units in them,
allowing information to persist. The long short-term mem-
ory [14] (LSTM) is one of the recurrent units invented to ease
the “gradients vanishing” issue [15]. Recently, the convolu-
tional LSTM was developed [16, 17, 11] to explicitly deal
with spatial 2D input. In this paper, we generalize the LSTM
further and consider any operators that could be applied to the
input of LSTM. Given the input data xt at current time point
t, the hidden state input ht−1 and the cell state input ct−1 at
previous time point t−1, the structured LSTM update formula
is shown in Eq (1) and Fig. 2,
it = σ(Ψxi(xt) + Ψhi(ht−1) + bi) (1)
ft = σ(Ψxf (xt) + Ψhf (ht−1) + bf )

ot = σ(Ψxo(xt) + Ψho(ht−1) + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Ψxc(xt) + Ψhc(ht−1) + bc)

ht = ot ◦ tanh(ct)
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Fig. 2. One structured LSTM block. The
green, red and purple boxes represent the
structured LSTM block, the arbitrary op-
erator and the update path respectively.

where
it, ft and ot are in-
put, forget, output
gates, ct and ht
are the new cell
and hidden states
at time t, σ(x) =

1
1+e−x , tanh(x) =
ex−e−x

ex+e−x , and ◦ are
element-wise ma-
trix multiplication

(i.e. Hadamard product). Notice that Ψ denotes any oper-
ators and the operators could be different for the input data
x and the hidden state h. For example, if Ψ is the linear
operator, the update Eq (1) becomes the classic LSTM [14];
if Ψ is the convolution operator, the update Eq. (1) represents
the convolutional LSTM [11]. There are some advantages
with this generalization including: 1) This adds flexibility to
use complex operators, for example a differential operator if
meaningful, on the input of LSTM, which made LSTM can
handle any dimension of data, or even other complex data
structure; 2) Combination of a few functions as an operator
Ψ makes LSTM only accumulate the useful and meaningful
information over time. One application in VGG could be
that we could apply all conv1 1+relu1 1+conv1 2+relu1 2
as one operator Ψ. Therefore, only the features from conv1
of VGG save into LSTM memory rather than the features
from every internal convolutional sub-layer, such as conv1 1
and conv1 2. This could save a lot of memory during train-
ing since training by back propagation through time (BPTT)
[18, 19] needs to keep every status of the LSTM block over
time in memory. 3) If we stack LSTM layers together to build
a deep stacked LSTM network, we could use any meaning-

ful and different operators in each LSTM layers. We name
this new generalization the structured LSTM because of the
capacity of building a structured network inside LSTM block
or through stacking layers.

2.3. Fully Convolutional Structured LSTM Networks
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Fig. 3. The architecture of the fully convolutional structured LSTM
network. Notice the color scheme is similar to Fig. 2.

The fully convolutional structured LSTM networks (FC-
SLSTM) is the combination of FCN and LSTM, and is a
stacked structured LSTM. Based on our test, only the fea-
tures from the 5 convolutional layers in the front-end may
take part in the segmentation. Therefore, the architec-
ture of the FCSLSTM contains 5 layers stacked structured
LSTM followed by all back-end layers from deconv6 to
deconv10 and finally a softmax layer to generate the seg-
mentation probability map. The conv1, which includes
conv1 1+relu1 1+conv1 2+relu1 2, is used as the operator
Ψ of the input x in the first stacked structured LSTM layer,
the conv2 is used as the operator Ψ of the input x in the
second stacked structured LSTM layer, and etc. In all LSTM
layers, the convolution operator is used for the hidden state
h. The Fig. 3 shows the FCSLSTM in details. The weighted
cross-entropy loss is used, and the weights are inverted pro-
portionally to the number of pixels in each class in the training
dataset. In the case of longitudinal MRI data, both past and
future contexts are helpful to improve current estimates. So
we also use bidirectional RNNs (BRNNs) [20]. The basic



idea of BRNNs is to present each training sequence forwards
and backwards to two separate recurrent hidden layers with
the same inputs, both of which are connected to the same
output layer. For training, the forward pass for the BRNN
hidden layers is the same as for a RNN, except that the input
sequence is presented in opposite directions to the two hidden
layers and the output layer is not updated until both hidden
layers have processed the entire input sequence. Similarly,
the backward pass proceeds as for a standard RNN trained
with BPTT [18, 19], except that all the output layer gradient
terms are calculated first, then fed back to the two hidden
layers in opposite directions.

3. EXPERIMENTS

To evaluate our model, we use 2 datasets: 1) The BRIC clin-
ical dataset (UNC Chapel Hill Biomedical Research Imaging
Center), which contains multimodal (T1w and T2w) pediatric
longitudinal MRI scans of 10 subjects at 5 time points within
the first year after birth. Only 1 slice per 3D volume is man-
ually labeled by an expert, so that there are only 50 labeled
2D images. 2) The Autism Center of Excellence IBIS clinical
study of subjects at high-risk for autism, which also includes
multimodal pediatric longitudinal MRI scans at 3 time points
within the firtst two years of life. We only use a sample (10
subjects) from the large IBIS dataset. There is no manual ex-
pert labeling, but the MRIs of the 2nd and 3rd could be seg-
mented via conventional template-moderated EM segmenta-
tion to act as pseudo ground truth for training our model. Our
code is written in torch and running on NVIDIA Titan X video
card with 12G vram, except the bi-directional LSTM model
which does not fit into the GPU memory. We use Kaiming ini-
tialization [21] and RMSprop optimization with smooth con-
stant α = 0.95, initial learning rate 0.001. The learning rate
gradually decays after 20 epochs with factor 0.97. For quan-
titative evaluation, the mean pixel accuracy (mPA) metric is
used, which computes a ratio between the amount of properly
classified pixels and the total number of them in a per-class
basis and then averaged over the total number of classes.

The BRIC dataset is used to compare different models.
The dataset is split to use the 1st, 2nd, 4th and 5th time points
as training sets and the 3rd time points as test set. From
Fig. 4, we observe that FCSLSTM improves the segmenta-
tion results over FCN only, and the bi-directional FCSLSTM
achieves the best result. One interesting observation is that by
using LSTM to find correlations over time, the segmentations
of the training sets are also improved. Ultimately, the mPA of
FCN only, FCSLSTM and bi-directional FCSLSTM achieve
92%, 93.5% and 94.8% for training sets and 85%, 85.3% and
86.3% for the test set. These results are promising consider-
ing very limited training data (only 40 2D images).

The IBIS dataset contains sufficient training data. We use
the 1st time point as test set, and the 2nd and 3rd time point as
training sets. Although lack of ground truth, visual inspection
of Fig. 5 indicates a good segmentation result visually. Please

Fig. 4. The BRIC dataset with very limited training data. The
columns from left to right are at the 0, 3rd, 6th, 9th and 11th month.
The rows from top to bottom show the input, the ground truth, the
segmentation by FCN only, the segmentation by FCSLSTM, and the
segmentation by bi-directional FCSLSTM.

Fig. 5. The IBIS dataset. The columns from left to right are at the
6th, 12th and 24th month. The rows from top to bottom show the
input and segmentation by FCSLSTM.

notice that for all 3 datasets, we choose the most challeng-
ing time points as test sets (MRI between 3 and 9 months for
pediatric studies, e.g.).

4. CONCLUSION
We have presented a novel DL approach for joint 4D seg-
mentation of longitudinal MRI. Unlike temporal image series
showing similar contrast appearance over time, we addition-
ally approach the challenging issue of considerable appear-
ance changes due to brain maturation as observed in early
infant brain imaging. To our knowledge, this is the first pro-
posal of deep integration of FCNs and a gneralized structured
LSTMs, called FCSLSTM, for spatial and temporal model-
ing of image shape and appearance changes, to be trained
end-to-end. A concise FCN is introduced for efficient end-
to-end training on GPUs with constrained memory. We ob-
tain promising results on real clinic datasets, with the limita-
tion that only incomplete expert segmentations of brain tissue
are available for training and validation. Future work will fo-
cus on additional testing of the methodology itself but also
extended validation of tissue segmentation results based on
newly available expert labeling.
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