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Abstract

Many real-world applications are associated with structured data, where not only
input but also output has interplay. However, typical classification and regres-
sion models often lack the ability of simultaneously exploring high-order inter-
action within input and that within output. In this paper, wepresent a deep
learning model aiming to generate a powerful nonlinear functional mapping from
structured input to structured output. More specifically, we propose to integrate
high-order hidden units, guided discriminative pretraining, and high-order auto-
encoders for this purpose. We evaluate the model with three datasets, and obtain
state-of-the-art performances among competitive methods. Our current work fo-
cuses on structured output regression, which is a less explored area, although the
model can be extended to handle structured label classification.

1 Introduction

Problems of predicting structured output span a wide range of fields, including natural lan-
guage understanding, speech processing, bioinfomatics, image processing, and computer vision,
amongst others. Structured learning or prediction has beenapproached with many different mod-
els [1, 5, 8, 9, 12], such as graphical models [7], large margin-based approaches [17], and conditional
restricted Boltzmann machines [11]. Compared with structured label classification, structured out-
put regression is a less explored topic in both the machine learning and data mining community.
Aiming at regression tasks, methods such as continuous conditional random fields [13] have also
been successfully developed. Nevertheless, a property shared by most of these previous methods
is that they often make explicit and exploit certain structures in the output spaces, which is quite
limited.

The past decade has seen the great advance of deep neural networks in modeling high-order, non-
linear interaction. Our work here aims to extend such success to construct nonlinear functional
mapping from high-order structured input to high-order structured output. To this end, we propose a
deep High-order Neural Network with Structured Output (HNNSO). The upper layer of the network
implicitly focuses on modeling interaction among output, with a high order anto-encoder that aims
to recover correlations in the predicted multiple outputs;the lower layer network contributes to
capture high-order input structures, using bilinear tensor products; and the middle layer constructs
a mapping from input to output. In particular, we introduce adiscriminative pretraining approach to
guiding the focuses of these different layers of networks.

To the best of our knowledge, our model is the first attempt to construct deep learning schemes
for structured output regression with high-order interaction. We evaluate and analyze the proposed

∗The three authors contributed equally.

1



model on multiple datasets: one from natural language understanding and two from image process-
ing. We show state-of-the-art predictive performances of our proposed strategy in comparison to
other competitive methods.

2 High-Order Neural Models with Structured Output

We regard a nonlinear mapping from structured input to structured output as consisting of three
integral and complementary components in a high-order neural network. We name it as High-
order Neural Network with Structured Output (HNNSO). Specifically, given aD ×N input matrix
[X1, . . . , XD]T and aD×M output matrix[Y1, . . . , YD]T , we aim to model the underlying mapping
f between the inputXd ∈ ℜN and the outputYd ∈ ℜM . Figure 1 presents a specific implementation
of HNNSO. Note that other variants are allowed; for example,the dot rectangle may implement
multiple layers.

Figure 1: A specific implementation of a high-order neural network with structured output.

The top layer network is a high-order de-noising auto-encoder (the green portion of Figure 1). In
general, an auto-encoder is used for denoising input data. In our model, we use it to denoise the
predicted outputy(1) resulting from the lower layers, so as to capture the interplay among output.
Similar to the strategy employed by Memisevic in [10], during training, we randomly corrupt a
portion of gold labels, and the perturbed data are then fed tothe auto-encoder. The hidden unit
activations of the auto-encoder are first calculated by combining two versions of such corrupted
gold labels, using a tensorT e to capture their multiplicative interaction. Subsequently, the hidden
layer is used to gate the top tensorT d to recover the true labels from the perturbed gold labels. As
a result, the corrupted data force the encoder to reconstruct the true labels, in which the tensors and
the hidden layer encode the covariance patterns among the output during reconstruction.

The bottom layer (red portion of Figure 1) describes a bilinear tensor-based network to multiplica-
tively relate input vectors, in which a third-order tensor accumulates evidence from a set of quadratic
functions of the input vectors. In our implementation, as in[16], each input vector is a concatena-
tion of two vectors. Unlike [16], we here concatenate twodependentvectors: the input unitX
(X ∈ ℜN ) and its non-linear, first-order projected vectorh(X). Hence, the model explores the
high-order multiplicative interplay not just amongX but also with the non-linearly projected vector
h(X).

We also leverage discriminative pretraining to help construct our functional mapping from structured
input to structured output, in which we guide HNNSO to model the interdependency among output,
among input, as well as that between input and output, where different layers of the network focus
on different types of structures. Specifically, we pretrainthe networks layer-by-layer in a bottom-up
fashion, using the gold output labels. The input to the second layer and above are the output of the
layer right below it, except for the top layer where the corrupted gold output labels are used as input.
Doing so, the bottom layer is able to focus on capturing the input structures, and the top layer can
concentrate on encoding complex interaction patterns among output. Importantly, the pretraining
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also makes sure that when fine-tuning the whole networks (will be discussed later), the input to the
auto-encoder has closer distributions and structured patterns as that of the true labels (as will be seen
in the experimental section). Consequently, the pretraining helps the auto-encoder to have input with
similar structures in both learning and prediction. Finally, we perform fine-tuning to simultaneously
optimize all the parameters of the three layers. Unlike in the pretraining, we use the uncorrupted
output resulting from the second layer as the input to the auto-encoder.

Model Formulation and Learning As illustrated in thered portion of Figure 1, HNNSO first
calculates quadratic interaction among the input and its nonlinear transformation. In detail, it first
computes the hidden vector from the provided inputX. For simplicity, we apply a standard linear
neural network layer (with weightW x and bias termbx) followed by thetanh transformation:
hx = tanh(W xX + bx),wheretanh(z) = e

z−e
−z

ez+e−z
. Next, the first layer output is calculated as:

Y (0) = tanh(

[

X
hx

]T

T x

[

X
hx

]

+W (0)

[

X
hx

]

+ b(0)) (1)

The term(W (0)

[

X
hx

]

+b(0)) here is similar to the standard linear neural network layer.The addition

term is a bilinear tensor product with a third-order tensorT x. The tensor relates two vectors, each
concatenating the input unitX with the learned hidden vectorhx. The computation for the second
hidden layerY (1) is similar to that of the first hidden layerY (0). When learning the de-nosing auto-
encoder layer (greenportion of Figure 1), the encoder takes two copies of the input, namelyY (1),
and feeds their pair-wise products into the hidden tensor, i.e., the encoding tensorT e:

he = tanh([Y (1)]TT e[Y (1)]) (2)

Next, a hidden decoding tensorT d is used to multiplicatively combinehe with the input vectorY (1)

to reconstruct the final outputY (2). Through minimizing the reconstruction error, the hidden tensors
are forced to learn the covariance patterns within the final outputY (2):

Y (2) = tanh([Y (1)]TT d[he]) (3)

In our study, we use an auto-encoder with tied parameters forconvenience. That is, the same tensor
for T e andT d. Also, de-noising is applied to prevent an overcomplete hidden layer from learning
the trivial identity mapping between the input and output. In the de-noising process, the two copies
of input are corrupted independently. In our implementation, all model parameters can be learned
by gradient-based optimization. We minimize over all inputinstances (Xi, Yi) the sum-squared loss
error (note: cross-entropy will be used for classification tasks) between the output vector on the top
layer and the true label vector:

l(θ) =

N
∑

i=1

Ei(Xi, Yi; θ) + λ ‖θ‖
2
2 (4)

Also, we employ standardL2 regularization for all the parameters, weighted byλ. For our non-
convex objective function here, we deploy the AdaGrad [3] tosearch for the optimal model param-
eters.

3 Experiments

Baselines
We compared HNNSO’s predictive performance, in terms of Root Mean Square Error (RMSE), with
six regression models: (1) the Multi-Objective Decision Trees (MODTs) [2, 6]; (2) a collection of
Support Vector Regression (denoted as SVM-Reg) [15] with RBF kernel, each for one target at-
tribute; (3) a traditional neural network, i.e., the Multiple Layer Perceptron (MLP) with one hidden
layer and multiple output nodes; (4) the so-called multivariate multiple regression (denoted as Mul-
tivariateReg), which takes into account the correlations among the multiple targets using a matrix
computation; (5) an approach that stacks the MultivariateReg on top of the MLP (denoted MLP-
MultivariateReg); and (6) the Gaussian Conditional Randomfields (GaussianCRF) [4, 13, 14], in
which the output from a MLP was used as the CRF’s node features, and the square of the distance
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SSTB MNIST USPS
Methods RMSE relative error RMSE relative error RMSE relative error

reduction reduction reduction
MODTs 0.0567 34.2% 0.0739 33.1% 0.6487 13.8%
SVM-Reg 0.0452 17.4% 0.0602 17.9% 0.5977 6.4%
MLP 0.0721 48.2% 0.0800 38.2% 0.6683 16.3%
MultivariateReg 0.0614 39.2% 0.1097 54.9% 0.6169 9.3%
MLP-MultivariateReg 0.0705 47.0% 0.0791 37.5% 0.6059 7.7%
Gaussian-CRF 0.0706 47.1% 0.0800 38.2% 0.6047 7.5%
HNNSO 0.0373 - 0.0494 - 0.5591 -

Table 1: Ten-fold averaged RMSE scores of models on the SSTB,MNIST, and USPS data. The
differences of HNNSO from other models are statistically significant at the 95% significance level.
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Figure 2: Effect of pretraining: the distributions of the predictedY (1)s with pretraining (middle)
were closer to the true labels (right), compared to the non pretrained version (left).

between two target variables was modeled by an edge feature.In our experiments, all the parameters
of these baselines have been carefully tuned.

Datasets
There recently have been a surge of interests in using real-valued, low-dimentional vector to rep-
resent a word or a sentence in the natural language processing (NLP). Our first experiment was
set up in such a circumstance. Specifically, we used the Stanford Sentiment Tree Bank (SSTB)
dataset [16] that contains 11,855 movie review sentences. In the best embeddings reported in
[16], each sentence is represented by a 25-dimensional vector. We obtained these vectors from
http://nlp.stanford.edu/sentiment/, and used the first 15elements to predict the last 10 dimensions.
Our second experiment used 10,000 examples from the test setof MNIST digit database1. On pur-
pose, we employed PCA to reduce the dimension of the data to 30, resulting in 30 PCA components
that are pair-wise, linearly independent to each other. In our experiment, we used the first 15 di-
mensions to predict the last 15 dimensions. Our last experiment used the USPS handwritten digit
database2. We randomly sampled 1100 images from the original data set,and used the first half of
the image (128 pixels) to predict the second half (128 pixels) of the image.

General Performance
Table 1 presents the performance of different regression models on the SSTB, MNIST, and USPS
datasets. The results show that the HNNSO achieves significantly lower RMSE scores in comparison
to other models. On all three datasets, the relative error reduction achieved by HNNSO over other
methods was at least 6.4% (ranging between 6.4% and 54.9%).

Detailed Anaylsis
We use the SSTB dataset to gain some insights into the HNNSO’smodeling behavior. Performance-
wise, we have shown above that the HNNSO model achieved a RMSEscore of 0.0373 on the
SSTB data. Without pretraining, the error increases relatively by 9.4%. Figure 2 further depicts
the distribution of the first output variable of the data. Thefigure indicates that the distribution
of the input with pretraining (middle), compared to that without pretraining (left), is closer to the

1http://yann.lecun.com/exdb/mnist/
2http://www.cs.nyu.edu/ roweis/data/uspsall.mat
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Figure 3: Effect of the auto-encoder: transform-
ing input (gray) to output (light blue); the true
labels are highlighted in purple.
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Figure 4: Errors made by the SVM-Reg ap-
proach (green) and HNNSO method (red) for
each target.
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Figure 5: Predicting the right half of a digit using the left half in the USPS data

distribution of the true labels (right). Such structured patterns are important for the encoder as
discussed earlier.

In Figure 3, we also show the input (gray boxes) and output (light-blue) of the auto-decoder in
HNNSO as well as the true labels (dark-blue) on the SSTB data.Each box in each color group
represents one of the ten output variables in the same order.Figure 3 shows that the patterns of the
light-blue boxes are similar to that of the dark-blue boxes.This suggests that the encoder is able to
guide the output predictions to follow similar structured patterns as that of the true labels.

In Figure 4, we further depict the errors made by the HNNSO andSVM-Reg (the second best
approach). Each box in each color group represents the error, calculated as predicted value minus
its true value, achieved on each of the ten output variables in the same order. Figure 4 suggests that
the errors on each output target made by HNNSO has narrow and consistent variances across the ten
output targets. On the contrary, the variances of errors among the ten output targets obtained by the
SVM-Reg are obviously larger, suggesting that SVM-Reg makes good prediction on some output
targets without considering the interaction with other targets.

Visualization
Figure 5 plots three digits from the USPS data, including thetrue images (right) and their predictions
made by HNNSO (left) and MLP (middle). The figure shows that HNNSO was able to recover the
images well. In contrast, MLP yielded some missing pixels onthe right halves of the images.

4 Conclusion

We propose a deep high-order neural network to construct nonlinear functional mappings from struc-
tured input to structured output for regression. We aim to jointly achieve the goal with complemen-
tary components that focus on capturing different types of interdependency. Experimental results on
three benchmarking datasets show the advantage of our modelover several competing approaches.
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[1] G. H. Bakir, T. Hofmann, B. Scḧolkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan.
Predicting Structured Data (Neural Information Processing). The MIT Press, 2007.

[2] H. Blockeel, L. D. Raedt, and J. Ramon. Top-down induction of clustering trees. InProceed-
ings of the Fifteenth International Conference on Machine Learning, ICML ’98, pages 55–63,
1998.

[3] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization.Journal of Machine Learning Research, 12:2121–2159, 2011.

[4] H. Guo. Modeling short-term energy load with continuousconditional random fields. In
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML-
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, pages 433–448, 2013.
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