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Abstract

We propose a scalable knowledge based high order
sparse learning framework termed as Group Factorized
High order Interactions Model (Group FHIM) for iden-
tifying discriminative feature groups and high-order fea-
ture group interactions in classification problems. Our
factorization technique allows us to incorporate the do-
main knowledge such as grouping of features directly
into the decomposition factors. Unlike previous sparse
learning approaches, our model can recover both the
discriminative feature groups and the pairwise feature
group interactions accurately without enforcing any hi-
erarchical feature constraints. We show that our Group
FHIM estimator is asymptotically optimal. Experi-
ments on synthetic and real datasets show that our
model outperforms the state-of-the-art sparse learning
techniques, and it provides ‘interpretable’ high-order
feature group interactions for gene expression predic-
tion and peptide-MHC I binding prediction.

1 Introduction

In machine learning and data mining, reliably iden-
tifying interpretable discriminative interactions among
high-dimensional input features with limited training
data remains an unsolved problem. For example, a ma-
jor challenge in biomarker discovery and personalized
medicine is to identify gene/protein interactions and
their relations with other physical factors in medical
records to predict the health status of patients. How-
ever, we often have limited patient samples but hun-
dreds of millions of feature interactions to consider. Re-
cently, some researchers tried to solve this problem by
making sparsity and hierarchical constraint assumptions
to find discriminative features and their interactions.
Hierarchical constraints for high-order feature interac-
tions are suitable for some real-world problems but are
too stringent for some others. In real-world applica-
tions, we often have abundant prior information about
input features that can be readily obtained from a lot
of knowledge bases, especially in this big data era. To
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address the above challenging problem of identifying
high order feature interactions, we need to build scal-
able models by incorporating existing knowledge about
input features into the model construction process.

In this paper, we propose a novel knowledge-based
sparse learning framework based on weight matrix fac-
torizations and `1/`2 regularization for identifying dis-
criminative high-order feature group interactions in lo-
gistic regression and large-margin models, and we study
theoretical properties for the same. Experimental re-
sults on synthetic and real-world datasets show that our
method outperforms the state-of-the-art sparse learn-
ing techniques, and it provides ‘interpretable’ blockwise
high-order feature interactions for gene expression pre-
diction and peptide-MHC I protein binding prediction.
Our proposed sparse learning framework is quite gen-
eral, and can be used to identify any discriminative
complex system input interactions that are predictive
of system outputs given limited high-dimensional train-
ing data.

Our contributions are as follows: (1) We propose a
method capable of simultaneously identifying both in-
formative discriminative feature groups and discrimina-
tive high order feature group interactions in a sparse
learning framework by incorporating domain knowl-
edge; (2) Our method works on high-dimensional in-
put feature spaces with much more features than data
samples, which is typical for biomedical applications,
(3) Our method has interesting theoretical properties
for generalized linear regression models; (4) The feature
group interactions identified by our method leads to bet-
ter understanding of peptide-MHC I protein interaction
and gene transcriptional regulation.

2 Related Work

Feature selection is a classical problem and has been
well studied using Kernel methods such as Support Vec-
tor Machines (SVMs) [18], Multiple Kernel Learning
[11], Gaussian Processes [5] and Regularization meth-
ods such as Lasso [19], Group Lasso [21] etc. Even
though there has been extensive research in these fea-
ture selection techniques, they have mainly focused on
identifying individual discriminative features. Kernel
methods have been used to model high order feature in-



teractions, but they only help to identify which orders
are important rather than finding the relevant high or-
der feature interactions. Recently, regularization meth-
ods have become very popular for feature selection be-
cause they are suited for the high dimensional prob-
lems. Many regularization methods focus on identifying
discriminative features or groups of discriminative fea-
tures based on `1 penalty, Group penalty, Trace-norm
[6] penalty, (k, q) penalty [17] or Dirty model [8]. More
recent approaches [3], [1], [14] are aimed at recovering
not only the discriminative features but also high order
feature interactions in regression models by enforcing
strong and/or weak heredity (hierarchical) constraints.
In strong heredity, a feature interaction term is included
in the model only if the corresponding features are also
included in the model, while in weak heredity, a feature
interaction term is included when one of the features
is included in the model [1]. Even though hierarchical
constraints help model interpretability in some applica-
tions, recent studies in bioinformatics and related areas
have shown that feature interactions need not follow
heredity constraints for manifestation of the diseases;
and thus the above approaches based on heredity con-
straints have limited chance of recovering relevant in-
teractions in these areas.[15] proposed an efficient way
to identify combinatorial interactions among interactive
genes in complex diseases by using prior information
such as gene ontology. However, they also make hered-
itary assumptions which limits their model’s capacity
at capturing all the important high order interactions.
Thus, all these previous approaches are very unlikely to
recover ‘interpretable’ blockwise high order feature and
feature group interactions for prediction due to hered-
ity constraints or they do not incorporate the existing
domain knowledge. This motivates us to develop new
efficient knowledge based techniques to capture the im-
portant ‘blockwise’ high-order feature and feature group
interactions without making heredity assumptions.

Recently, in our previous work [16] we proposed
Factoriz-ed High order Interactions Model (FHIM)
to identify high order feature interactions in regression
models in a greedy way based on `1 penalty on fea-
tures and without assuming heredity constraints. This
paper generalizes the sparse learning framework intro-
duced in [16] with the following new and significant con-
tributions: 1) In this paper, we show how to incorpo-
rate domain knowledge into the sparse learning frame-
work using knowledge-based factorization technique and
regularization penalties, 2) We show state-of-the-art re-
sults on 3 real world datasets to showcase the advantage
of capturing prior information in our sparse learning
framework, 3) We show that our Group FHIM still has
the nice theoretical properties as FHIM.

The remainder of the paper is organized as follows:
in section 3 we discuss our problem formulation and
relevant notations used in the paper. In section 4, we
discuss the main idea of this paper and present the opti-
mization method used in our sparse learning framework.
We give an overview of theoretical properties in section
5. In section 6, we discuss our experimental setup and
present our results on synthetic and real datasets. Fi-
nally, in section 7 we conclude the paper with discussion
and future research directions.

3 Notations and Problem Formulation

For any vector w, let ||w||2 denote the Euclidean norm
of w, and supp(w) ⊂ [1, p], denote the support of w,
i.e. the set of features i ∈ [1, p] with wi 6= 0. A group
of features is a subset g ⊂ [1, p]. The set of all possible
groups is the power set of [1, p] and let us donate it as
P. Let G ⊂ P denote a set of groups of features. In
our paper, the domain knowledge is presented in terms
of G. For any vector w ∈ Rp, and any group g ∈ G,
let wg denote a vector whose entries are the same as w
for the features in g and 0 for other features. Let W g

denote a matrix of size p × p for some g ∈ G and the
entries of W g are non-zero for corresponding column
entries in g (i.e. W ij

g 6= 0 for g ∈ G and 0 otherwise).

Let VG ∈ Rp×G denote a set of NG tuples of vector
v = (vg)g∈G , where each vg is a separate vector in Rp,
with supp(vg) ⊂ g,∀g ∈ G. If two groups overlap then
they share at least one feature in common.

Let {(X(i), y(i))}, i ∈ [1, n] represent a training
set of n samples and p features (predictors), where
X(i) ∈ Rp is the ith instance (column) of the design
matrix X and y(i) ∈ {−1, 1} is the ith instance of
response variable (output) y. Let {β,βg} ∈ Rp be
the weight vector associated with single features (also
called main effects) and feature groups respectively, and
β0 ∈ R be the bias term. Note, β =

∑
g∈G βg. Let

W be the weight matrix associated with the pairwise
feature group interactions and let WOD be the weight
matrix associated with only the pairwise feature group
interactions without self interactions. WOD is an off-
diagonal matrix and is given by equation (4.7).

In this paper, we study the problem of identify-
ing the discriminative feature groups βg and the pair-
wise feature group interactions WOD in classification
settings, when domain knowledge such as grouping of
features (G) is given, and without making any hered-
ity assumptions. For the classification settings, we can
model the output in terms of features and their high or-
der interactions using logistic regression model or large-
margin models. Here we consider both these popular
classifiers. A logistic regression model with pairwise in-
teractions can be written as follows.



p(y(i)|X(i)) =

1

1 + exp(−y(i)(βTX(i) + X(i)TWODX(i) + β0))

(3.1)

The corresponding loss function (the sum of the
negative log-likelihood of the training data) is given by

LLogReg(β,WOD, β0) =

n∑
i=1

log(1 + exp(−y(i)(βTX(i)

+X(i)TWODX(i) + β0)).(3.2)

Similarly, we can solve the classification problem
with high order interactions using large margin formu-
lation with Hinge Loss as follows

LHinge(β,WOD, β0) =

n∑
i=1

max(0, 1− (y(i)(βTX(i)

+X(i)TWODX(i) + β0)).(3.3)

4 Group FHIM

Here, we present our optimization-driven knowledge
based sparse learning framework to identify discrimina-
tive feature groups and pairwise feature-group interac-
tions (blockwise interactions) for the classification prob-
lems of previous section. For simplicity, here we con-
sider that the groups do not overlap. A natural way to
recover the feature groups and their interactions is by
regularization as shown below.

{β̂, Ŵ } = arg min
β,W
L(β,W) + λβ

∑
g∈G

||βg||2

+ λW
∑
g∈G

||vec(W g)||2
(4.4)

where vec(W g) is the vectorization of the group
block matrix W g. When the number of input features
is huge (e.g. biomedical applications), it is practically
impossible to explicitly consider pairwise or even higher-
order interactions among all the input feature groups
based on simple `1-penalty or Group Lasso penalty. To
solve this problem, we propose a novel way to factorize
the block-wise interaction weight matrix W as sum of K
rank-one matrices. Each rank-one matrix is represented
by an outer product of two identical vectors (termed as
rank-one factors) with the grouping structure imposed
on these vectors. The feature group interactions of W
can be effectively captured by the grouping on the rank-
one factors. A feasible decomposition of blockwise W
is shown below

W =
K∑
k=1

(
∑
g∈G

akg)⊗ (
∑
g∈G

akg)

where ⊗ represents the tensor product/outer prod-
uct and ak is a rank-one factor of W and is given by
ak =

∑
g∈G akg. The above decomposition is feasible

since each rank-one matrix decomposition of W can be
represented as weighted combinations of the group block
matrices Wg.

Now, we can rewrite the optimization problem
(4.4) to identify the discriminative feature groups and
pairwise feature group interactions by using the grouped
rank-one factors as follows,

(4.5) {β̂, âk} = arg min
ak,β
L(β,WOD) + Pλ(β,ak)

where,

(4.6) Pλ(β,ak) = λβ
∑
g∈G

||βg||2 +
∑
k

λak
∑
g∈G

||akg||2

and

WOD =
K∑
k=1

(
∑
g∈G

akg)⊗ (
∑
g∈G

akg)

−D(

K∑
k=1

(ã2k,i)i∈[1,p])

(4.7)

where β̂, âk represent the estimated parameters of our
model, D is a diagonalizing matrix operator which
returns a p × p diagonal matrix, and ãk,i is the ith

component of ak.
Let Q represent the objective function (loss func-

tion with the regularization penalties) i.e. the right
hand side of the equation (4.5). We replace L in (4.5)
by LLogReg(β,WOD, β0) for logistic regression, and by
LHinge(β,WOD, β0) for large-margin classification. We
call our model Group Factorization based High-order
Interaction Model (Group FHIM). In section 4.1 we
present a greedy alternating optimization algorithm to
solve our optimization problem. Note that we use WOD

in equation (4.5) instead of W. Although the original
W is a sum of K rank-one matrix with the maximum
rank K, the actual rank of WOD is often much larger
than K. However, W and the off-diagonal WOD define
the same interaction block-wise patterns between differ-
ent input features. In practice, we often focus on iden-
tifying interpretable discriminative high-order interac-
tions between different features instead of uninteresting
self-interactions. Moreover, removing diagonal elements
of W has the advantage of eliminating the interference
between optimizing β and optimizing ak’s for binary in-
put feature vectors, which greatly helps our alternating
optimization procedure and often results in much better
local optimum in practice. Our empirical studies also
show that, even for continuous input features, WOD of-
ten result in faster parameter learning and better local
optima. Therefore, we used WOD instead of W in the
objective functions of both FHIM and Group FHIM for
all the experiments in this paper.



Remark: Overlapping Group FHIM - The non
overlapping group structure used in Group FHIM limits
its applicability in practice. Hence, we propose an
extension of Group FHIM to overlapping groups case
and call our method Overlapping Group FHIM (denoted
by OvGroup FHIM). In OvGroup FHIM, we consider
the overlapping group penalty [7] instead of the `1/`2
penalty used in Group FHIM. The overlapping group
penalty for ak is given below.

ΩGoverlap(ak) = inf
v∈VG ,

∑
g∈G vg=ak

∑
g∈G
||vg||(4.8)

4.1 Greedy Alternating Optimization The opti-
mization problem in Equation 4.5 is convex in β but
non-convex in ak. The non-convexity property of our
optimization problem makes it is difficult to propose an
optimization strategy which guarantees convergence to
global optima. Here, we propose a greedy alternating
optimization approach (Algorithm 1) to find a local op-
tima for our problem. We use the Spectral Projected
Gradient method for solving our optimization problems
(Line 4 and 5) since we found through experiments that
it is much faster than other popular approaches such as
Quasi-Newton methods.

Algorithm 1 Greedy Alternating Optimization

1: Initialize β to βLASSO, K = 1 and aK = 1
2: While (K==1) OR (aK−1 6= 0 for K > 1)
3: Repeat until convergence
4: atK,j = arg minj Q((atK,1, ..., a

t
K,j−1, a

t−1
K,j+1, ...

at−1
K,p),β

t−1)

5: βtj = arg minj Q(βt1, ..., β
t
j−1, β

t−1
j+1, β

t−1
p ),aK

t)
6: End Repeat
7: K = K + 1; aK = 1
8: End While
9: Return aK and β which has the least loss function.

5 Theoretical Properties

In this section, we study the asymptotic behavior of our
proposed Group FHIM for the likelihood based gener-
alized linear regression models (eg. logistic regression
model). The theorems shown here are similar to the
ones in our previous work [16]. However, in this paper,
we show that the asymptotic properties still holds even
with the regularization penalty on rank-one factors used
in our Group FHIM estimator.

Problem Setup: Assume that the data Vi =
(Xi, yi), i = 1, ...n are collected independently and
Yi has a density of f(Z(Xi), yi) conditioned on Xi,
where Z is a known regression function with grouped
main effects and all possible pairwise group interac-
tions. Let β∗h and a∗k,h denote the underlying true

parameters satisfying block-wise properties implied by
our factorization. Let θ∗ = (β∗T ,α∗T )T , where β∗ =
(β∗h),α∗ = (a∗k,h), k = 1, ...,K;h = 1, ..., |G| (Note: θ∗

is p(K + 1) × 1). We consider the estimates for Group

FHIM as θ̂n:

θ̂n = arg min
θ
Qn(θ)

= arg min
θ
− 1

n

n∑
i=1

(L(Z(Xi), yi) + λβ
∑
h

||βh||2

+
∑
k

λαk

∑
h

||αk,h||2

(5.9)

where L(Z(Xi), yi) is the loss function of generalized
linear regression models with pairwise feature group
interactions. In the case of logistic regression, Z(·) takes
the form of Equation (3.1) and L(·) takes the form of
Equation (3.2). Now, let us define

A1 = {h : β∗h 6= 0}
A2 = {(k, h′) : α∗k,h′ 6= 0},
A = A1 ∪ A2

(5.10)

where A1 contains the indices of the groups of main
terms which correspond to the non-zero true group
coefficients, and similarly A2 contains the indices of
the factorized group interaction terms whose true group
coefficients are non-zero. Let us define

an = max{λhβ , λh
′
αk

: h ∈ A1, (k, h
′) ∈ A2}

bn = min{λhβ , λh
′
αk

: h ∈ Ac1, (k, h′) ∈ Ac2}
(5.11)

where Ac1 is the complement of set A1. Now, we
show that our model possesses the oracle properties for
n → ∞ with fixed p under some regularity conditions.
Note, the asymptotic properties for pn →∞ as n→∞
will be addressed in our future work.

5.1 Asymptotic Oracle Properties when n→∞
The asymptotic properties when sample size increases
and the number of predictors is fixed are described in
the following theorems. We will show that Group FHIM
possesses oracle properties under certain regularity con-
ditions (R1)-(R3) shown below. Let Ω denote the pa-
rameter space for θ.

(R1) The observations Vi : i = 1, ..., n are indepen-
dent and identically distributed with a probability den-
sity f(V,θ), which has a common support. We assume
the density f satisfies the following equations:

Eθ
[∂ log f(V,θ)

∂θj

]
= 0 for j = 1, ..., p(K + 1),

and

Ijk(θ) =Eθ
[∂ log f(V,θ)

∂θj

∂ log f(V,θ)

∂θk

]
=Eθ

[
− ∂2 log f(V,θ)

∂θj∂θk

]



(R2) The Fisher Information Matrix

I(θ) = E
[(∂ log f(V,θ)

∂θ

)(∂ log f(V,θ)

∂θ

)T ]
is finite and positive definite at θ = θ∗.

(R3) There exists an open set ω of Ω that contains
the true parameter point θ∗ such that for almost all
V the density f(V,θ) admits all third derivatives
(∂3f(V,θ))/(∂θj ∂θk∂θl) for all θ ∈ ω and any j, k, l =
1, ..., p(K + 1). Furthermore, there exist functions Mjkl

such that∣∣∣∣∣ ∂3

∂θj∂θk∂θl
log f(V,θ)

∣∣∣∣∣ ≤Mjkl(V) for all θ ∈ ω

where mjkl = Eθ∗ [Mjkl(V)] < ∞. These regularity
conditions are the existence of common support and
first, second derivatives for f(V,θ); Fisher Information
matrix being finite and positive definite; and existence
of bounded third derivative for f(V,θ). These regu-
larity conditions guarantee asymptotic normality of the
ordinary maximum likelihood estimates [12].

Theorem 5.1. Assume an = o(1) as n → ∞. Then
under regularity conditions (R1)-(R3), there exists a
local minimizer θ̂n of Qn(θ) such that ||θ̂n − θ∗|| =
OP (n−1/2 + an)

Remark. Theorem 5.1 implies that when the tuning
parameters associated with the non-zero coefficients of
grouped main effects and grouped pairwise interactions
tend to 0 at a rate faster than n−1/2, then there exists a
local minimizer of Qn(θ), which is

√
n−consistent (the

sampling error is Op(n
−1/2)).

Theorem 5.2. Assume
√
nan → 0,

√
nbn → ∞ and

P (θ̂Ac = 0) → 1. Then under the regularity conditions
(R1)-(R3), the component θ̂A of the local minimizer θ̂n
(given in theorem 5.1) satisfies

√
n(θ̂A − θ∗A)→d N(0, I−1(θ∗A)),

where I(θ∗A) is the Fisher information matrix of θA at
θA = θ∗A assuming that θ∗Ac = 0 is known in advance.

Remark. Theorem 5.2 shows that our model estimates
the non-zero coefficients of the true model with the
same asymptotic distribution as if the zero coefficients
were known in advance. Based on theorems 5.1 and
5.2, we can say that our group FHIM estimator has the
oracle property, i.e. it is asymptotically optimal, namely
unbiased and efficient, when the tuning parameters
satisfy the conditions

√
nan → 0 and

√
nbn → ∞. To

satisfy these conditions, we have to consider adaptive
weights wβj , w

αk

l [23] for our tuning parameters λβ , λαk
.

Thus, our tuning parameters are:

λβj =
log n

n
λβw

β
j , λαk

l =
log n

n
λαk

wαk

l

Note. Please see Supplementary materials for proofs.

5.2 Properties of Overlapping Group FHIM

Lemma 5.1. β 7→ ΩGoverlap(β) is a norm.

Proof. : Lemma 1 [7]

Overlapping Group FHIM (OvGroup FHIM) can
be realized using a non-overlapped Group FHIM. Let
us form X̃ ∈ Rn×

∑
|g| by the concatenation of copies

of the design matrix X ∈ Rn×p restricted to a certain
group g, i.e. X̃ = [Xg1, ..,Xg|G|] and G = g1, .., gG ; ṽ =

(ṽTg1, .., ṽ
T
g|G|), i.e. ṽ ∈ R

∑
|g| and with ṽg = (vgi)i∈g.

Let the empirical risk for OvGroup FHIM and equiv-
alent Group FHIM be represented by R(.) and R̃(.)
respectively. Therefore, R(ak) = R̃(XTaka

T
kX) and

R(β) = R̃(Xβ) respectively.

Theorem 5.3. (i) R(ak) = R̃(X̃
T
ṽg ṽg

T X̃) and (ii)

R(β) = R̃(X̃ ṽg)

Proof. : We prove (i) here. Proof for (ii) is similar.

R(ak) =R̃(XTWX)

=R̃(XTaka
T
kX)

=R̃(XT (
∑
g

akg)(
∑
g

akg)
TX)

=R̃(X̃
T
ṽg ṽg

T X̃)

Remark. Theorem 5.3 shows that empirical risk
minimization of Overlapping Group FHIM is same as
an expanded non-overlapped Group GHIM, i.e. the Ov-
Group FHIM optimization can be solved by an equiva-
lent expanded Group FHIM optimization problem. This
result is used in the implementation of OvGroup FHIM
for our experiments.

6 Experiments

We use synthetic and real datasets to demonstrate the
performance of our Group FHIM and OvGroup FHIM
models, and compare it with LASSO [19], Hierarchi-
cal LASSO [1], Group Lasso [21], Trace-norm [9], Dirty
model [8], QUIRE [15] and FHIM [16]. We use 80%
of dataset for training and 20% for test, and 20% of
training data as validation set to find optimal tuning
parameters. We search tuning parameters for all meth-
ods using grid search, and for our model the parameters
λβ and λak are searched in the range of [0.01, 100]. In
this paper, report our results on 5 simulations. Initial-
ization, warm start, and stopping criterion play an im-
portant role for our Greedy Alternating Optimization



algorithm mentioned in Algorithm 1. Below, we dis-
cuss how we choose them for our optimization. From
our extensive experimental studies, we found that ini-
tializing ak with 1 and β with βLASSO works well for
convergence.

6.1 Datasets We use synthetic datasets and 3 real
datasets for classification and support recovery experi-
ments.

6.1.1 Synthetic Dataset We generate the features
of design matrix X using a normal distribution with
mean zero and variance one (N (0, 1)). β,ak were
generated as s-sparse vector from N (0, 1), s is chosen as
5-10% of p and the number of groups |G| ∈ [10, 50]. The
group interaction weight matrix WOD was generated
using equation (4.7) for a K ∈ [1, 5]. The response
vectors y was generated for logistic and large-margin
formulation with a noise factor of 0.01. We generated
several synthetic datasets by varying n, p,K, |G| and s.
Note, we denote the combined total features (that is
main effects + pairwise interaction) by q, here q =
p(p+ 1)/2. In this paper, we show results for synthetic
data in these settings: Case 1) n > p and q > n
(high-dimensional setting w.r.t interaction features) and
Case 2) p > n (high-dimensional setting w.r.t original
features).

6.1.2 Real Datasets To assess the performance of
our model, we tested our methods on three prediction
tasks:

1. Classification on RCC sample: This dataset con-
tains 213 RCC samples from Benign and 4 different
stages of tumor. Expression levels of 1092 proteins
are collected in this dataset and these 1092 proteins
belong to the 341 groups (overlapping groups). The
number of Benign, Stage 1, Stage 2, Stage 3 and
Stage 4 tumor samples are 40, 101, 17, 24 and 31
respectively.

2. Gene Expression Prediction: This dataset [2] has
157 ChIP-Seq signals for transcription factor bind-
ings and chromatin modifications and 1000 samples
for gene transcripts. The features were grouped
into 101 non-overlapping groups based on prior
knowledge about ChIP-Seq experimental setup.
For example, different ChIP-Seq experiments un-
der different conditions or treatments for the same
transcription factor are grouped into the same
group.

3. Peptide-MHC I Binding Prediction: This dataset
[10] is listed in Table 1. There are 9 positional
groups (non-overlapping) in this dataset. Each
positional group contains 20 features which are

substitution log-odds from BLOSUM62 for the
amino acid at this position.

Remark. RCC dataset was requested from
the authors of [15]. ChIP-Seq data is publicly
available at http://genome.ucsc.edu/ENCODE/down-
loads.html. Peptide-MHC I Binding dataset consists of
publicly available data from Immune Epitope Database
and Analysis Resource (IEDB) [20] which was used for
training and privately collected data by our research
collaborators which was used for testing.

6.2 Experimental Design and Evaluation met-
rics For synthetic data, we evaluate performance of our
methods using prediction error and support recovery ex-
periments. For real dataset, we perform the following
evaluations:

1. RCC Classification: We perform 3 stage-wise bi-
nary classification experiments using RCC samples:
(a) Case 1: Benign samples vs. Stage 1− 4.
(b) Case 2: Benign and Stage 1 vs. Stage 2− 4.
(c) Case 3: Benign, Stage 1, 2 vs. Stage 3, 4.

2. ChIP-Seq Gene Expression Classification: We per-
form two binary classification experiments: Case 1)
predict gene expression levels as low or high, Case
2) predict whether genes are expressed or not.

3. Peptide-MHC I Binding Prediction: We predict
binding peptides from non-binding peptides for
three alleles, HLA-A*0201, HLA-A*0206 and
HLA-A*2402.

For evaluation metrics, we use 1) F1-measure for
support recovery of WOD (synthetic) and 2) Area under
ROC curve (ROC) for the classification (synthetic and
real data).

Dataset #Peptides #Binders #Non-
binders

A0201-IEDB 8471 3939 8532
A0201-Japanese 114 59 55
A0206-IEDB 1820 951 869
A0206-Japanese 81 33 48
A2402-IEDB 2011 890 1121
A2402-Japanese 167 125 42

Table 1: Peptide-MHC I binding datasets

6.3 Performance on Synthetic dataset Tables 2
and 3 show that our Group FHIM and OvGroup FHIM
outperforms the state-of-the-art approaches such as
`1 Logistic Regression, Group Lasso [21], Hierarchical
Lasso [1] and FHIM [16]. These models (except `1 Lo-
gistic Regression) were chosen for comparison because
they are the state-of-the-art approaches which can re-
cover grouping structure or high order feature interac-
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Figure 1: Support Recovery of WOD (95 % sparse) for
synthetic data q = 5100, n = 1000.

tions. Figure 1 shows an example for the support recov-
ery of WOD for the q > n setting. From this figure, we
see that our model performs very well (i.e. F1 score is
close to 1). For p > n settings, our model also performs
fairly well in the support recovery of WOD.

`1 Lo-
gistic
Reg.

Group
Lasso

Hier.
Lasso

FHIM Group
FHIM
(Log.
Loss)

q > n 0.52 0.74 0.58 0.89 0.97

p > n 0.51 0.52 - 0.54 0.62

Table 2: ROC scores on synthetic data with non-
overlapping groups: case 1) q = 5100, n = 1000; case 2)
p = 250, n = 100. Note: Hier. Lasso has heavy computa-
tion burden for p > n.

`1 Lo-
gistic
Reg.

Overlap
Group
Lasso

Hier.
Lasso

FHIM OvGroup
FHIM
(Hinge
Loss)

q > n 0.54 0.67 0.56 0.69 0.81

p > n 0.53 0.58 - 0.57 0.64

Table 3: ROC scores on synthetic data with overlapping
groups: case 1) q = 5,100, n = 1,000; case 2) p = 250, n =
100.

6.4 Classification Performance on RCC sam-
ples In this section, we report systematic experimen-
tal results on classification of samples from different
stages of RCC. This dataset does not have grouping
information for proteins. In order to group the pro-
teins, we use the web based tool Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID,
http://david.abcc.ncifcrf.gov/). There are a set of pa-
rameters that can be adjusted in DAVID based on which
the functional classification is done. This whole set
of parameters is controlled by a higher level parame-
ter -“Classification Stringency”, which determines how
tight the resulting groups are in terms of association of
the genes in each group. We set the stringency level
to Medium which results in balanced functional groups
where the association of the genes are moderately tight.
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Figure 2: Comparison of the classification performance
of different feature selection approaches with our model
(OvGroup FHIM) in identifying the different stages of RCC.

The total number of groups based on cellular component
annotations for RCC is 56. Each ungrouped gene forms
a separate group, and in total we have 341 overlapping
groups.

The predictive performance of the bio-markers and
pairwise group interactions selected by our OvGroup
FHIM model (Hinge Loss) is compared against the
markers selected by Lasso, All-Pairs Lasso [1], Group
Lasso, Dirty model [8], QUIRE and FHIM. We use
SLEP [13], MALSAR [22] packages for the implementa-
tion of most of these models. QUIRE and FHIM codes
were obtained from the authors. The overall perfor-
mance of the algorithms are shown in Figure 2. In this
figure, we report average AUC score for five runs of
5-fold cross validation experiments for cancer stage pre-
diction in RCC. The average ROC scores achieved by
feature groups selected with our model are 0.72, 0.93
and 0.95 respectively for the three cases discussed in
section 6.2. We performed pairwise t-tests for the com-
parisons of our method vs. the other methods, and all
p-values were below 0.0075 which shows that our re-
sults are statistically significant. From Figure 2, we
see that our model outperforms all the other algorithms
for the three classification cases of RCC prediction and
performs similarly to the well-known biomarker STC1.
Interestingly, our OvGroup FHIM did not find any fea-
ture group interactions, i.e ak = 0 for the RCC dataset,
and the feature groups (of βg) found by our model cor-
responds to the two groups containing STC1.

6.5 Gene Expression Prediction from ChIP-
Seq Signals For case 1, the gene expression measured
by Cap Analysis (CAGE) from the ENCODE project [2]
above 3.0 (the median of nonzero gene expression levels)
is considered as high, while the gene expression between
0 and 3.0 is considered as low for the classification ex-
periments; for case 2, the genes with nonzero expression
levels are considered as expressed and the others as non-
expressed. Table 4 shows the gene expression prediction
results on these two classification experiments. We ob-
served that our Group FHIM outperforms all the state-
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Figure 3: Interpretable interactions identified by OvGroup
FHIM for predicting gene expression from ChIP-Seq signals.

`1 Logistic Group `1 FHIM Group
Reg. Log. Reg. FHIM

Case 1 0.74 0.90 0.82 0.92

Case 2 0.72 0.89 0.80 0.91

Table 4: Gene Expression Prediction from ChIP-Seq signals

of-the-art models such as Group `1 logistic regression
and FHIM. Moreover, our model discovers biologically
meaningful ChIP-Seq signal interactions which are dis-
cussed in the section 6.5.1.

6.5.1 Feature Group Interactions discovered by
Group FHIM An investigation of the interactions
identified by our Group FHIM on the ChIP-Seq dataset
reveals that many of these interactions are indeed rel-
evant for gene expression. Figure 3 shows 6 out of the
top 7 group interactions for the Case 1 classification,
i.e., predicting whether a gene transcript is highly ex-
pressed or not. Among these group interactions, POL2
catalyzes DNA transcription and synthesizes mRNAs
and most of small non-coding RNAs, and many tran-
scription factors require its binding to gene promoters
to begin gene transcription; MYC is known to recruit
histone modifications to activate gene expression; YY1
is known to interact with histone modifications to acti-
vate or repress gene expression; SETDB1 regulates hi-
stone modifications to repress gene expression; CTCF
is an insulator, its binding to MYC locus prevents the
expression of MYC to be altered by DNA methylation,
and it regulates chromatin structure for which its group
also appeared in the dicriminative ones identified by our
model. Further investigations of the interactions iden-
tified by our Group FHIM model might reveal novel
insights that will help us to better understand gene reg-
ulation.

6.6 Peptide-MHC I Binding Prediction Table 5
shows the comparison of peptide-MHC I binding pre-
diction of our model with respect to the state-of-the-art
`1 and Group `1 logistic regression and FHIM. Figure
5 shows the ROC curves of Group FHIM and Group `1
logistic regression for Allele 0206. As evident from the

Alleles `1 Logistic Group `1 FHIM Group
Reg. Log. Reg. FHIM

A0201 0.74 0.72 0.72 0.80
A0206 0.76 0.75 0.68 0.79
A2402 0.83 0.77 0.75 0.82

Table 5: Peptide-MHC I binding prediction AUC scores

AUC scores and ROC curve plots, our method achieves
significant improvement over Group `1 logistic regres-
sion in separating the ‘binders’ from ‘non-binders’. We
found that `1 logistic regression gave slightly better per-
formance on A2402, but our model identified meaningful
group interactions as discussed below. Group `1 logistic
regression produces worse performance than `1 logistic
regression, which shows that only using grouping infor-
mation does not help to identify discriminative individ-
ual features. However, our model Group FHIM signif-
icantly outperforms FHIM, which demonstrates the ef-
fectiveness of modeling both grouping information and
high-order feature interactions.

Figure 4 shows the factorized rank-1 interaction
weight vector with absolute values greater than 0.1.
This feature shows that the positions 2,5,6,9 interact;
and moreover the interaction between the middle posi-
tion and the position 9 is very important for predicting
9-mer peptide binding, which has experimental support
from the crystal structure of the interaction complex
[4]. We also found positions 2 and 9 interact for Alleles
A0201 and A0206.
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Figure 4: Interaction feature factor coefficients for A2402
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6.7 Computational Time Analysis Group FHIM
takes more time for convergence than the state-of-the-
art approaches (LASSO and `1 logistic regression) since
we do multiple rounds of greedy alternating optimiza-
tion for β and ak. For q > n setting with n = 1000, p =
100, q = 5100, |G| = 25, our optimization method on
Matlab takes around ∼ 5 minutes to converge for fixed
parameter, while for p > n with p = 250, n = 100, our
Group FHIM model takes around ∼ 10 mins to con-
verge. Our experiments were run on intel i3 dual-core
2.9GHz CPU with 8 GB RAM.

7 Conclusions

In this paper, we proposed a knowledge-based sparse
learning framework called Group FHIM for identify-
ing discriminative high-order feature group interactions
in logistic regression and large-margin models, and
studied interesting theoretical properties of our model.
Empirical experiments on synthetic and real datasets
showed that our model outperforms several well-known
and state-of-the-art sparse learning techniques such as
Lasso, `1 Logistic Regression, Group Lasso, Hierar-
chical Lasso, and FHIM, and it achieves comparable
or better performance compared to the state-of-the-art
knowledge based approaches such as QUIRE. Our model
identifies high-order positional group interactions for
peptide-MHC I binding prediction, and it discovers the
important group interactions such as POL2-MYC, YY1-
histone modifications, MYC-histone modifications, and
CTCF-MYC which are valuable for understanding gene
transcriptional regulation.
For future work, we will consider the following direc-
tions: (i) We will consider factorization of the weight
matrix W as W =

∑
k akb

T
k since it is more general

and can capture non-symmetric W, (ii) For theoreti-
cal analysis, we will prove the Sparsistency assumption
(P (θ̂Ac = 0) → 1) of theorem 5.2, and also study the
asymptotic oracle properties for pn →∞ as n→∞.
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