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ABSTRACT

In this supplementary material, we will provide proofs for
the Lemma 5.4 and Theorem 5.5 presented in section 5.2 of
our paper. Our proofs is based on the papers [1], [2].

1. PROOFS

Please refer to our main paper for the regularity conditions
(C4)-(C6) and the statements for the following Lemma 5.4
and Theorem 5.5.

PROOF OF LEMMA 5.4. Let 7, = /pan~"/? + a, and
{6}, + n.6 : ||8]] < d} be the ball around 6;,, where § =
(U1 oy Up, V11, . VKp) T = (0T, vT)T.

Define

Dn(8) = Qn(0;, + nnd) — Qn(67)
Let —L,, and nP, denote the first and second terms of Q.
For any & that satisfies ||d|| = d, we have
Dn(s) =- Ln(OZ + 77n5) + Ln(OZ)
+ 1P (05, + 10 6) — nPn(0;,)
=— Ly (05 +110) + Ln(07)
0 A7+ maugl = 1651)
JEAR1

> X (lede + mnok )| — ok
(k,l)EAn2
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where 0,, lies between (07, +1,0) and 0;,. We split the above
into four parts:

Ky = —[VLa(6)]" (1.0)

Ky — _%(nna)T[VQLn(OZ)](%(s)

Ks— ,évT{aT[vm(én)]a}éni

Ky = —nnid
Then,
|K1| = = 1V L (7)) 0]
<nnl[(VLn (7)) 11118
=0y (Mn/npn)d
:Op(mﬁl)d

Next, since we have

%vm(e:;) +1,(05)|| = 0p(1/pn) (1)




by Chebyshev’s inequality and (C5) we can show that

K = = 5 (0:8)" VL, (83))(1:9)

:%nniéT [1.(0,,)]6 — innid%p(l)

Moreover, by Cauchy-Schwarz inequality, (C6) and the con-
ditions v/na, — 0 and p5 /n — 0,

K| =| = £ V{87 (V2L (0.6}

Z Z aen]aenlaenm‘s ‘”5’”’

<nn Z Z MEL]lm

i=1 7,l,m=1
=nn) Op (03 %) (pn O (1)) /2] 8]
=nn Op (npr)d
=n;op(1)d*

677n

Vi)' 28|

Dn(6) >K1+ Ko+ Ks + Ku
= — Oy (n)8 — S 8" L, (07,5

— 3oy (1)d? — nd

2
We see that K2 dominates the rest of the terms and is
positive since I(0,) is positive definite at 6, = 0;, from

(C5). Therefore, for any given € > 0 there exists a large
enough constant d such that

P{H;ﬁf Qn(07, +100) > Qn(07)} > 1—¢

This implies that with probability at-least 1—¢, there exists a
local minimizer in the ball {0}, +7,6 : ||6|| < d}. Thus, there
exists a local minimizer of Q,(0,) such that ||, — 05| =

Op(Nny/Pn)- T

PROOF OF THEOREM 5.5. [Proof of Sparsity]
First, we prove P(f4c, = 0) — 1 as n — oo. It is suf-

ficient to show that with probability tending to 1, for any
J€An

9Qn (0, A
%j)<0for—en<ﬂnj<0 (2)
9Qn (0., -
%‘7)>0f0r6n>5nj>0 (3)

where €, = Cn~ /2 and C > 0 is any constant. To show

(2), we consider Taylor expansion of W at 6 = 6;,.
nj

9Q,(0,)  OL.(6,)
i OB

+ ”)‘ﬁj SQH(BM)

OBn; £~ 9000k "
Pn Pn 5 =
0°Ly(60,) 4 o )
) Z Z B 0010051 (O — Ork) (Ons — Or1)

k=1k=1
+ 1Ay 5gn(Bn;)

where 8 lies between 6, and 8. By (C4)-(C6), the lemma
5.4, and carefully solving the parts of above equation (4)
using Cauchy Schwarz inequality, we have

%@”) =0p(v/pn) +nX;;5g7(Bns)

:W{Op(l) + mkﬁjsgn(ﬁnj)}

Since mbn — 00, sgn(an) dominates the sign of %Ejn)

when n is large. Thus,

aQ"( ")>0f0r0<3nj<en —lasn— oo
0Bnj

(3) can be shown in the same way.
Also, P(&nac, = 0) — 1 can be proved similarly since in
our model B,, and o, are independent of each other. []

PROOF OF THEOREM 5.5. [Proof of Asymptotic normal-
ity]
We want to show that with probability tending to 1,

VAL (054,)Ona, — Oha,) = VAL (05 4,)

(VLA 070, + 0, (n 7))
(5)

Also, we need to show that probability tending to 1,

VAL (054,) (004, — Ona,)

n

— LA 1120 (0"
_\/ﬁAnIn (gnAn);[VLm(gnAn)]

+ Op(AnIr_zl/Q (G:LA,I )1s, x1)
1 —1/2/p* - * (6)
:%Anln (074,) Y _[VLni(074,)] + 0p(1)

i=1
= Z Yoni + 0p(1)
=1

—d N(O, G)
where Yoi = = AnL,/%(054,)[VLni(054,)]. We will

now prove (5) and (6) in (I) and (II) respectively.

(I) We want to show

In(e;kLAn)(énAn - O:LA") = %VLn(An (G:LA-,L) +o0p (n_l/Q).

We know that with probability tending to 1,

VanQu(Ona,) =—Va,Ln(0na,)+nVa,Ps,(0na,)

=0

By Taylor’s expansion of V 4, Ln(GAnAn) at @ = 6}, 4, , and



substituting it in (5), we get
L.(07.4,)(0na, — 054,)

1 * *
== Vi, Ln(074,)(Ona, — 01a,)

{1 O50) + 2V L0 } Ok, — 0ia,)
= V4, La(0a,)
o (Bun, — 074,) IV, (Vo La(800,)]
(Ona, —054,) = Va, Pr,(074,)
+{1a(050,) + VA La(004,) }Bun, — 60,

Therefore, it is sufficient to show that

1 .

= 5 (Ona, — 0ra,)" [V, (Va,Ln(054,))]

(0na, —054,) — Vi, Pr,(054,)

* 1 * *
+ {In(enAn) + gvitn Ln(enAn)}(enAn —0n4,)
=A;+ A> + A3
= Op(”_l/Q)

Now, using Cauchy-Schwartz inequality and (C6), we can
show that

1 41]]* = 0p(1/n)
Since an, = o(1/,/nprn) from the condition in the theorem,
2

[142][* =|[(An1597(Br ), ooy Al sgm(ei ip)) "

Ssn[max{)\ﬁﬁ)\g”; 1§ € A, (k1) € Ana})?
:snaf1 = sn0(1/npn)
=o(1/n)

Now, from equation (1), we can show that
* 1 *
14s][* <I[Tn(67,) + —~ Vi, La(07.4,)I

1(Bna, — 05,

:Op(l/pi)op(pn/") = 0p(1/npn)

—op(1/m)
Therefore, we get,

A1+ Ax+ Az = Op(n_l/Q)
(IT) Now, we show >_7 | Yni + 0p(1) =4 N(0, G) where

1
Yni = —
Vn

Now, we need to show that Y,; satifies the conditions for
Lindeberg-Feller central limit theorem. For any € > 0, by
Cauchy-Schwartz inequality, we get

AL (054,) [V A, Lai(054,)]

ZE[HYmHQI{IIYmII > e}] = nB(|[Yonr | I{|[Yni | > }]

1

<n[B([Y [ EQ{[ Yl > )]
=nA;/*A}?

Now, solving for A4 we get,

1 — * *
v =L B AT 00V Lo (05, )

< IAT AP (050, )1
E[Va,Ln1(054,)V 4, Ln1(07.4,))
X (AT AN (1 (074, 0)O(52)
=0(p, /n?)
Now, by Markov inequality,
As =P(|[Yn1[ > )
_B(IYm?)

=O(pn/n)

Therefore, we get

ZE[lllelzf{HYniH > ¢}] =nO0(pn /n)O(/pn/n)
=o(1)

Moreover, we have
Z Cov(Yni) =nCov(Yn1)
i=1

= A AT 5@

Since Y ,;,7 = 1, ..., n satisfies the conditions for Lindeberg-
Feller central limit theorem, we have

> Vit 0p(1) —a N(0,G)
1=1
O
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Figure 1: Support Recovery of 8 (90 % sparse) and W (99 % sparse) for synthetic data Case 1: n > p and
q > n where n = 1000, p = 50, ¢ = 1275.
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