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Abstract

This report investigates and examines the greedy alternating optimization
procedures used for solving the non-convex optimization problem of our
Factorized High order Interactions Model (FHIM) model.
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1. Introduction1

A major challenge in bioinformatics and medical informatics is to iden-2

tify interpretable high-order interactions between different inputs of complex3

systems predictive of systems’ outcomes. For example, many human dis-4

eases are manifested as the dysfunction of some pathways or functional gene5

modules because genes and proteins seldom perform their functions indepen-6

dently and disrupted patterns due to diseases are often more obvious at a7

pathway or module level. However, identifying reliable discriminative high-8

order gene interactions from genome-wide case-control studies for accurate9

disease diagnosis such as early cancer diagnosis is still a challenging problem,10

because we often have very limited patient samples but hundreds of millions11

of gene interactions to consider. Moreover, many human diseases are related12

to each other, so effectively using shared information between diseases can13

significantly boost our success rate of finding informative gene interactions as14

biomarkers compared to solving these individual problems separately. Our15

proposed model to solve this problem is general, and it can be used to iden-16

tify any discriminative complex system input interactions that are predictive17

of system outputs given limited high-dimensional training data.18
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2. Problem Formulation19

Consider a regression setup with a training set of n samples and p features,20

{(X(i), y(i))}, where X(i) ∈ Rp is the ith instance (column) of the design21

matrix X (p× n), y(i) ∈ R is the ith instance of response variable y (n× 1),22

and i = 1, . . . , n. To model the response in terms of the predictors, we can23

set up a linear regression model24

y(i) = βTX(i) + ε(i), (1)

or a logistic regression model25

p(y(i) = 1|X(i)) =
1

1 + exp(−βTX(i) − β0)
, (2)

where β ∈ Rp is the weight vector associated with single features (also called26

main effects), ε ∈ Rn is a noise vector, and β0 ∈ R is the bias term. In many27

practical fields such as bioinformatics and medical informatics, the main28

terms (the terms only involving single features) are not enough to capture29

complex relationship between the response and the predictors, and thus high-30

order interactions are necessary. In this paper, we consider regression models31

with both main effects and high-order interaction terms. Equation 3 shows32

a linear regression model with all pairwise interaction terms.33

y(i) = βTX(i) + X(i)TWX(i) + ε(i), (3)

where W(p× p) is the weight matrix associated with all the pairwise feature34

interactions. The corresponding loss function (the sum of squared errors) is35

as follows (we center the data to avoid an additional bias term),36

Lsqerr(β,W) =
1

2

n∑
i=1

||y(i) − βTX(i) −XT (i)WX(i)||22. (4)

We can similarly write the logistic regression model with pairwise interactions37

as follows,38

p(y(i)|X(i)) =

1

1 + exp(−y(i)(βTX(i) + X(i)TWX(i) + β0))

(5)

2



and the corresponding loss function (the sum of the negative log-likelihood39

of the training data) is,40

Llogistic(β,W, β0) =
n∑
i=1

log(1 + exp(−y(i)(βTX(i)

+X(i)TWX(i) + β0)). (6)

2.1. Our Approach41

In this section, we propose an optimization-driven sparse learning frame-42

work to identify discriminative single features and groups of high-order inter-43

actions among input features for output prediction in the setting of limited44

training data. When the number of input features is huge (e.g. biomedical45

applications), it is practically impossible to explicitly consider quadratic or46

even higher-order interactions among all the input features based on simple47

lasso penalized linear regression or logistic regression. To solve this problem,48

we propose to factorize the weight matrix W associated with high-order49

interactions between input features to be a sum of K rank-one matrices for50

pairwise interactions or a sum of low-rank high-order tensors for higher-order51

interactions. Each rank-one matrix for pairwise feature interactions is repre-52

sented by an outer product of two identical vectors, and eachm-order (m > 2)53

tensor is represented by the outer product of m identical vectors. Besides54

minimizing the loss function of linear regression or logistic regression, we pe-55

nalize the `1 norm of both the weights associated with single input features56

and the weights associated with high-order feature interactions. Mathemati-57

cally, we solve the optimization problem to identify the discriminative single58

and pairwise interaction features as follows,59

{β̂, âk} = arg min
ak,β

Lsqerr(β,W)

+ λβ‖β‖1 +
K∑
k=1

λak‖ak‖1
(7)

where W =
∑K

k=1 ak � ak, � represents the tensor product/outer product,60

and β̂, âk represent the estimated parameters of our model and let Q repre-61

sent objective function of (7) . For logistic regression, we replace Lsqerr(β,W)62

in (7) by Llogistic(β, W, β0). We call our model Factorization-based High-63

order Interaction Model (FHIM).64
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Proposition 2.1. The optimization problem in Equation 7 is convex in β65

and non-convex in ak.66

Because of the non-convexity property of our optimization problem, it is67

difficult to propose optimization algorithms which guarantee convergence to68

global optima. Here, we adopt a greedy alternating optimization methods to69

find the local optima for our problem. In the case of pairwise interactions,70

fixing other weights, we solve each rank-one weight matrix each time. Please71

note that our symmetric positive definite factorization of W makes this sub-72

optimization problem very easy. Moreover, for a particular rank-one weight73

matrix ak � ak, the nonzero entries of the corresponding vector ak can be74

interpreted as the block-wise interaction feature indices of a densely interact-75

ing feature group. In the case of higher-order interactions, the optimization76

procedure is similar to the one for the pairwise interactions except that we77

have more rounds of alternating optimization. The parameter K of W is78

generally unknown in real datasets, thus, we greedily estimate K during the79

alternating optimization algorithm. In fact, the combination of our factor-80

ization formulation and the greedy algorithm is effective for estimating the81

interaction weight matrix W. β is re-estimated when K is greedily added82

during the alternating optimization as shown in algorithm 1.

Algorithm 1 Greedy Alternating Optimization

1: Initialize β to 0, K = 1 and aK = 1
2: While (K==1) OR (aK−1 6= 0 for K > 1)
3: Repeat until convergence
4: βtj = arg minj Q(βt1, ..., β

t
j−1, β

t−1
j+1, β

t−1
p ),ak

t−1)

5: atk,j = arg minj Q((atk,1, ..., a
t
k,j−1, a

t−1
k,j+1, a

t−1
k,p ),βt)

6: End Repeat
7: K = K + 1; aK = 1
8: End While
9: Remove aK and aK−1 from a.

83

3. Optimization Procedures84

In this section, we explore different optimization procedures for improving85

our Greedy Alternating Optimization algorithm mentioned in Algorithm 1.86
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3.1. Initialization and Warm Start87

Initialization: Initialization of β and ak plays a key role in finding a good88

local optima for our optimization problem. A poor initialization leads to89

solution getting stuck in a bad local optima. Thus, we cleverly initialize our90

parameters as follows: Set β as βLASSO or βL1LogReg and ak as 1. We could91

also initialize ak with aOLS, however since we don’t know the true low rank92

K of W, we initialize ak as 1 and estimate K greedily. Table 1 shows how93

different initializations of β affects the support recovery of West and βest.94

This table shows that initializing β with βLasso gives better results that ini-95

tializing β with 0.96

97

Warm-Start : Finding the optimal tuning parameters λβ and λak is chal-98

lenging and generally many researchers find the optimal parameters by grid99

search and cross-validation. We can use ‘warm-start’ strategy to improve100

the search performance. We can use the solution of optimization problem101

using one λ as the initialization for the optimization problem using a differ-102

ent λ. In our experiments, we found that the warm-start strategy reduces103

the iterations needed for convergence.104

n p K βinit βest West Time βsparsity ak,sparsity
1000 50 1 Lasso 1 0.7246 75.9 5 5
1000 50 1 0 1 0.6956 81.98 5 5
1000 50 3 Lasso 1 0.4719 52.27 5 5
1000 50 3 0 1 0.48 71.1 5 5
1000 50 5 Lasso 1 0.3576 91.82 5 5
1000 50 5 0 1 0.347 112.97 5 5
100 500 1 Lasso 0.632 0.013 270.00 25 25
100 500 1 0 0.616 0.008 540.63 25 25

Table 1: Performance of High order linear regression Off-Diagonal FHIM with different
initialization of βinit

3.2. Stopping Criterion for greedy optimization105

In our experiments, we found that the stopping criterion of the alter-106

nating optimization algorithm directly affects the convergence rate and the107

converged solution. Due to the non-convexity of our greedy optimization108

problem, the decrease in objective function’s value may not correspond to109

5



the decrease in loss function’s value. Thus, we introduce a new stopping cri-110

terion where our optimization algorithm keeps track of the decrease in both111

the loss function’s value and the objective function’s value along with the112

best loss function during the iterations. During the greedy estimate of K, we113

stop the addition of new ak, if and only if the loss function of the ak is larger114

than the loss function of ak−1 for k > 1. When the stopping criterion is met,115

the parameters related to the best loss function is chosen as the parameters116

for the local optima.117

3.3. Normalization118

We observed in our experiments that the normalization of the loss func-119

tion and the sub-gradient has a significant impact on the tuning parameters120

λβ and λak . In particular, for the high order logistic regression, unnormal-121

ized loss function and unnormalized sub-gradient are helpful for choosing the122

tuning parameter better.123

3.4. Fast Greedy Alternating Optimization124

In algorithm 1, we optimized each ak (∀k ∈ (1, K)) during all the iter-125

ations of greedy alternating optimization. Below, we provide a new faster126

greedy algorithm where instead of optimizing each ak, we only optimize aK .127

We use the optimization procedures described in this section in our new fast128

greedy alternating optimization. Table 2 shows that only optimizing aK is129

faster that optimizing each ak in all iterations.130

Algorithm 2 Fast Greedy Alternating Optimization

1: Initialize β to βLASSO, K = 1 and aK = 1
2: While (K==1) OR (aK−1 6= 0 for K > 1)
3: Repeat until convergence
4: atK,j = arg minj Q((atK,1, ..., a

t
K,j−1, a

t−1
K,j+1, a

t−1
K,p),β

t−1)

5: βtj = arg minj Q(βt1, ..., β
t
j−1, β

t−1
j+1, β

t−1
p ),aK

t)
6: End Repeat
7: K = K + 1; aK = 1
8: End While
9: Return aK and β which has the least loss function.
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n p K βinit Updating ak βest West Time βsparsity ak,sparsity
1000 50 1 Lasso update all ak 1 0.6956 88.38 5 5
1000 50 1 Lasso update only aK 1 0.7826 80.57 5 5
1000 50 3 Lasso update all ak 1 0.4340 120.87 5 5
1000 50 3 Lasso update only aK 1 0.4265 107.77 5 5
1000 50 5 Lasso update all ak 1 0.3893 154.12 5 5
1000 50 5 Lasso update only aK 1 0.3932 126.98 5 5

Table 2: Performance of High order linear regression Off-Diagonal FHIM with different
ways to update ak

4. Off-Diagonal FHIM131

In section 2, high order regression problem formulations (eqn. (3) and132

(eqn. 5) were considered with W as a (p×p) matrix with all possible pairwise133

interactions including the self-interactions of variables. Below we define new134

problem formulations for high order regression problems with only pairwise135

interactions between the variables (i.e. no self interactions are included in136

the model). Thus, W becomes an off-diagonal (p × p) matrix (all diagonal137

elements are zeros) and is denoted by WOD.138

y(i) = βTX(i) + X(i)TWODX(i) + ε(i), (8)

where WOD(p × p) is the weight matrix associated with only the pairwise139

feature interactions. The corresponding loss function (the sum of squared140

errors) is as follows (we center the data to avoid an additional bias term),141

Lsqerr(β,WOD) =
1

2

n∑
i=1

||y(i) − βTX(i) −XT (i)WODX(i)||22. (9)

We can similarly write the logistic regression model with pairwise interactions142

as follows,143

p(y(i)|X(i)) =

1

1 + exp(−y(i)(βTX(i) + X(i)TWODX(i) + β0))

(10)
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and the corresponding loss function (the sum of the negative log-likelihood144

of the training data) is,145

Llogistic(β,WOD, β0) =
n∑
i=1

log(1 + exp(−y(i)(βTX(i)

+X(i)TWODX(i) + β0)). (11)

Our FHIM for the high order regression formulations with WOD is termed146

as Off-Diagonal FHIM.147
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