
8/23/2014 1 

Factorized Sparse Learning Models  

with Interpretable High 

Order Feature Interactions 

Sanjay Purushotham*, Renqiang (Martin) Min#, C.-C. Jay Kuo*, 
Rachel Ostroff^ 

 
*University of Southern California, Los Angeles 

#NEC Labs, Princeton 
^SomaLogic Inc. 



Introduction 

 High-dimensional problems 

– Number of observations n << number of variables p 

– Bioinformatics, Vision, Financial Analysis,… 

 

 Low-dimensional Structure  

– Sparsity, Low-rank, Block Sparsity,… 

 

 This Talk: 

– Identify interpretable high-order interactions between 
input features without heredity assumptions 
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Motivation 
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Image Credit: Diane Oyen  



Regression Models 

 Linear Regression:   
 

𝒚 = 𝑿𝜷 + 𝝐 

 

 

 

 

 
 

 Logistic Regression: 

  P(𝑦(𝑖) = 1 𝐗 𝑖 =
1

1+𝑒𝑥𝑝( −𝑿(𝒊)𝜷−𝛽0)
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Regression Models 

 Linear Regression with high order interactions 

  𝒚 = 𝝐 +  𝑿𝜷 + 𝑿𝜸𝑻 2
+… 
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Previous Work 

 

 

 

 

 Lasso (Tibshirani, 1996) 

 

 

 Group Lasso (Yuan et. al, 2006) 
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Previous Work 

 Variable Selection with Strong Heredity Constraints 
(Choi et. al, 2010) 

 

 

 Hierarchical Lasso (Tibshirani et. al, 2013) 

 

 

 Our QUIRE and Shooter (Martin et. al, 2013, 2014) 
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Pairwise interaction coefficients are dependent on main terms 
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Factorized High order 
Interactions Model (FHIM) 

 Our approach – FHIM 

– Captures pairwise interactions using tensor 
product 

– Algorithm: Greedy alternating optimization 

 
 

 

8/23/2014 9 

 

 

y X β ε 

 

 

X XT W 

p 

x 

1 

1 x p p 

x 

1 

1 x p  

 

p x p 
W 



Our Approach - FHIM 

 Optimization methods 

– Sub-gradient methods 

• Orthant-wise Learning (Andrew et. al, 2007) 

• Projected Scaled Subgradient (M. Schmidt, 2010) 

– Soft-thresholding methods 
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Theoretical Properties 

Asymptotic Oracle Properties when 𝑛 → ∞  
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𝝀’s of non-zero 

coefficients → 0 

faster than 

root-n 

Noise terms 

are 

consistently 

removed with 

Prob. → 1 



Experiments 

 Datasets 

– Synthetic Data:  

• Case 1: n>p (n~100-10000, p~50-
1000) 

• Case 2: p>n (n~100-500, p~500-2000) 

– Real Datasets 

• RCC- Renal Cell Carcinoma 

• Data collected by SOMAmer technology 

• 212 samples from benign and 4 
different stages of cancer  
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Image Credit: The SOMAmer assay: Aptamer-Based Multiplexed Proteomic Technology for Biomarker 
Discovery, Gold et al., 2010 



Experiments 

 Experimental Design 

– Prediction error and Support recovery on synthetic data 

– Classification experiments on RCC dataset  

• Case 1: Benign vs. Stage 1-4 

• Case 2: Benign, Stage 1 vs. stage 2-4 

• Case 3. Benign, Stage 1,2 vs. Stage 3,4 

– Compare with state-of-art techniques 

– Interpretability of interactions in real dataset  

 Evaluation Metric 

– Prediction error (MSE & std. dev.) 

– Avg. ROC score 

– Avg. F1-score 
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Support Recovery on Synthetic 
Data (p>n) 
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Support Recovery on 
Synthetic data 
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Prediction Error on Synthetic 
data 
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Performance comparison for Synthetic data on Linear Regression model with 

high order interactions 

Performance comparison for Synthetic data on Logistic Regression model with 

high order interactions 



Classification on RCC 
Dataset 

 RCC –212 patients, 1092 proteins measured 

 Benign: 40, Stage 1: 101, Stage 2: 17, Stage 3: 24, Stage 4: 31 
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Interactions in RCC 

 

 CD97 was recently found to promote colorectal cancer[1] 

 CHEK2 is known to play a role in several cancers such as lung, 
kidney, colon, thyroid cancers [2] 
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[1] M. Wobus, O. Huber, J. Hamann, and G. Aust. Cd97 overexpression in tumor cells at the invasion front in colorectal 
cancer (cc) is independently regulated of the canonical wnt pathway. Molecular carcinogenesis, 45(11):881-886, 2006. 

[2] http://ghr.nlm.nih.gov/gene/CHEK2 



Summary 

 Conclusions 

– Proposed novel sparse learning methods for 
identify high order feature interactions 

– Promising results on synthetic and real datasets 

 Future Work 

– Estimating structure of high-order graphical 
models 

– Incorporating prior/domain knowledge into the 
model 
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Thank you for 

listening! 

Questions ? 


