

Factorized Sparse Learning Models with Interpretable High Order Feature Interactions

Sanjay Purushotham*, Renqiang (Martin) Min[#], C.-C. Jay Kuo*, Rachel Ostroff[^]

> *University of Southern California, Los Angeles #NEC Labs, Princeton ^SomaLogic Inc.

Introduction

High-dimensional problems

- Number of observations *n* << number of variables *p*
- Bioinformatics, Vision, Financial Analysis,...

Low-dimensional Structure

– Sparsity, Low-rank, Block Sparsity,...

This Talk:

 Identify interpretable high-order interactions between input features without heredity assumptions

Hey #GOP, no matter how you slam Obama, you own our credit rating downgrade. It is ALL your fault, & we'll remind you in Nov 2012

Image Credit: Diane Oyen

Regression Models

• Linear Regression:

Logistic Regression:

$$P(y^{(i)} = 1 | \mathbf{X}^{(i)}) = \frac{1}{1 + exp(-X^{(i)}\beta - \beta_0)}$$

Regression Models

Previous Work

Lasso (Tibshirani, 1996)

$$\arg\min_{\boldsymbol{\beta}} \frac{1}{2} \|\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1}$$

Group Lasso (Yuan et. al, 2006)

$$\min_{\beta} \sum_{k=1}^{r} \frac{1}{n_k} \sum_{i=1}^{n_k} \left\| y_i^{(k)} - X_i^{(k)} \beta^{(k)} \right\|_2^2 + \lambda \left\| \beta \right\|_{1,\infty}$$

Previous Work

 Variable Selection with Strong Heredity Constraints (Choi et. al, 2010)

$$\{eta^*, \gamma^*_{kk'}\} = rg\min_{\gamma_{kk'}, eta} rac{1}{2} \sum_i ||y^{(i)} - g(\boldsymbol{X}_i)||_2^2 + \lambda_eta |eta|_1 + \lambda_{\gamma_{kk'}} |\gamma_{kk'}|_1$$

Hierarchical Lasso (Tibshirani et. al, 2013)

$$\{\beta^*, \Theta\} = \arg\min_{\Theta, \beta} q(\beta, \Theta) + \lambda |\beta|_1 + \frac{\lambda}{2} |\Theta|_1$$

Our QUIRE and Shooter (Martin et. al, 2013, 2014)

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} \log\{1 + \exp[-y_i(\sum_{k=1}^{m} \sum_{j_1 < j_2 < \dots < j_k} w_{j_1 j_2 \dots j_k} x_i^{j_1} x_i^{j_2} \dots x_i^{j_k} + b)]\} + \sum_{k=1}^{m} \lambda_k \sum_{j_1 < j_2 < \dots < j_k} |w_{j_1 j_2 \dots j_k}|$$

Pairwise interaction coefficients are dependent on main terms

Factorizing Feature Interactions

Factorized High order Interactions Model (FHIM)

Our approach – FHIM

- Captures pairwise interactions using tensor product
- Algorithm: Greedy alternating optimization

$$\left\{\boldsymbol{\beta^*}, \boldsymbol{a_k^*}\right\} = \arg\min_{\boldsymbol{a_k}, \boldsymbol{\beta}} \frac{1}{2} \sum_i ||\boldsymbol{y}^{(i)} - \boldsymbol{\beta} \mathbf{X}^{(i)} - \mathbf{X}^{T(i)} \mathbf{W} \mathbf{X}^{(i)}||_2^2 + \lambda_1 |\boldsymbol{\beta}|_1 + \lambda_2 \sum_k (|\boldsymbol{a_k}|_1) \right] \quad \boxed{\mathbf{W} = \sum_k \boldsymbol{a_k} \odot \boldsymbol{a_k}}$$

Our Approach - FHIM

Optimization methods

– Sub-gradient methods

- Orthant-wise Learning (Andrew et. al, 2007)
- Projected Scaled Subgradient (M. Schmidt, 2010)

– Soft-thresholding methods

$$\tilde{\beta}_{j}^{t}(\lambda_{\beta}) \leftarrow S\left(\tilde{\beta}_{j}^{t-1}(\lambda_{\beta}) + \sum_{i=1}^{n} X_{ij}(y_{i} - \sum_{k \neq j} X_{jk}\tilde{\beta}_{k} - \sum_{k} X_{ik}\mathbf{W}X_{ki}), \lambda_{\beta}\right)$$
$$\tilde{a}_{kj}^{t}(\lambda_{a_{k}}) \leftarrow S\left(\tilde{a}_{kj}^{t-1}(\lambda_{a_{k}}) + \sum_{i=1}^{n} X_{ij}(\sum_{r=1}^{p} a_{kr}X_{ir})[y_{i} - \sum_{k \neq j} X_{jk}\tilde{\beta}_{k} - \sum_{k} X_{ik}\mathbf{W}_{\sim j}X_{ki}], \lambda_{a_{k}}\right)$$

Theoretical Properties

Asymptotic Oracle Properties when $n \rightarrow \infty$

Lemma (5.1)				
Assume that $a_n = o(1)$ as (C1)-(C3), there exists a lo $ \hat{\theta}_n - \theta^* = O_P(n^{-1/2} + q)$	s	λ 's of non-zero coefficients \rightarrow 0 faster than root-n		
Theorem (Sparsity)				
Assume that $\sqrt{n}b_n \to \infty$ a				
satisfies $ \theta_n - \theta^* = O_P(1)$ (C1)-(C3), we have		Noise terms		
() (),	$P(\hat{eta}_{\mathcal{A}_1^C}=0) ightarrow 1$	(7)	are consistently removed with Prob. → 1
	$P(\hat{lpha}_{\mathcal{A}^C_2}=0) ightarrow 1$	(8)	

Experiments

Datasets

- Synthetic Data:
 - Case 1: n>p (n~100-10000, p~50-1000)
 - Case 2: p>n (n~100-500, p~500-2000)
- Real Datasets
 - RCC- Renal Cell Carcinoma
 - Data collected by SOMAmer technology
 - 212 samples from benign and 4 different stages of cancer

-2000) nology

Image Credit: The SOMAmer assay: Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery, Gold et al., 2010

Experiments

Experimental Design

- Prediction error and Support recovery on synthetic data
- Classification experiments on RCC dataset
 - Case 1: Benign vs. Stage 1-4
 - Case 2: Benign, Stage 1 vs. stage 2-4
 - Case 3. Benign, Stage 1,2 vs. Stage 3,4
- Compare with state-of-art techniques
- Interpretability of interactions in real dataset
- Evaluation Metric
 - Prediction error (MSE & std. dev.)
 - Avg. ROC score
 - Avg. F1-score

Support Recovery on Synthetic NEC Laboratories America Data (n>p) **Relentless** passion for innovation

60

40

50

Support Recovery on Synthetic NEC Laboratories America Data (p>n)

Original W

					• •
100					
200					÷
300	:: : :	:: ': ':			1:1:
400					
500	1	00 2	00 30	0 400	500

Estimated W

		··· : ·: :	• • • • • • • • • • • • • • • • • • • •		
100					
200					111
300					· · · · ·
400					
500	10	0 20	0 300	400	500

8/23/2014

Support Recovery on Synthetic data

n, p	Sparsity	Κ	Support recovery
	eta, a_k		$\beta, W(F1 \text{ score})$
1000, 50	5, 5	1	1.0, 1.0
1000, 50	5, 5	3	1.0, 0.95
1000, 50	5, 5	5	1.0, 0.82
10000, 500	10, 20	1	0.95, 0.72
10000, 500	10, 20	3	0.80, 0.64
10000, 500	10, 20	5	0.72, 0.55

Table 4: Support recovery of β , W

n, p	true K	estimated K	W support recovery F1 score
1000, 50	1	1	1.0
1000, 50	3	3	1.0
1000, 50	5	5	0.8
100, 100	1	2	0.75
100, 500	3	2	0.6
100, 1000	5	4	0.5

Table 5: Recovering K using greedy strategy

Prediction Error on Synthetic data

	n, p, K	FHIM	Fused Lasso	Lasso	HLasso	Trace norm	Dirty Model
q > n	$\begin{array}{c} 1000, 50, 1 \\ 1000, 50, 5 \\ 10000, 500, 1 \\ 10000, 500, 5 \end{array}$	338.4(14.5) 343.7(12.9) 1093.1(19.5) 1090.76(12.21)	$\begin{array}{r} 425.9(20.7)\\ 1888.3(121.1)\\ 2739.57(155.1)\\ 22720(597.8)\end{array}$	$\begin{array}{r} 474.7(15.3)\\ 1922.9(143.9)\\ 3896.3(129.5)\\ 23279.6(231.3)\end{array}$	354.32 (24.82) 889.1 (112.5) -	$\begin{array}{r} 464.4(36.3)\\ 1822.6(99.8)\\ 3887.9(101.1)\\ 22916.5(321.4)\end{array}$	$\begin{array}{c} 613.5(0.76)\\ 2453.8(0.76)\\ 4674.7(0.8)\\ 29214(0.8)\end{array}$
p > n	$\begin{array}{c} 100,500,1\\ 100,1000,1\\ 100,2000,1\end{array}$	$\begin{array}{c} 230.49 \\ 340.1 \\ 907.8 \\ (100.1) \end{array}$	$\begin{array}{c} 1157.2(355.0) \\ 770.9(127.6) \\ 1022.3(406.2) \end{array}$	$\begin{array}{c} 1335.0(159.2) \\ 879.1(180.3) \\ 919.2(132.1) \end{array}$	- - -	$1160.3(299.7) \\699.9(208.7) \\880.42(471.6)$	$1651.9(62.6) \\808.1(5.1) \\1916.7(63.4)$

Performance comparison for Synthetic data on Linear Regression model with high order interactions

	$\mathbf{n}, \mathbf{p}, \mathbf{K}$	\mathbf{FHIM}	Fused Lasso	Lasso	HLasso	Trace norm
q > n	1000, 50, 1	$0.127 \ (0.009)$	0.128(0.017)	0.156 (0.017)	0.136(0.02)	0.128(0.016)
	1000, 50, 5	0.189(0.03)	0.227 (0.024)	$0.292 \ (0.042)$	0.257(0.022)	$0.503 \ (0.027)$
	10000, 500, 1	$0.135 \ (0.002)$	0.265 (0.007)	0.161 (0.012)	-	0.225(0.077)
	10000, 500, 5	0.390(0.05)	0.514(0.006)	0.507(0.108)	-	0.514(0.006)
p > n	100, 500, 1	$0.325\ (0.04)$	0.352(0.086)	0.4323(0.054)	-	0.40(0.079)
	100, 1000, 1	$0.390 \ (0.056)$	0.409(0.086)	0.458(0.083)	-	0.438(0.011)

Performance comparison for Synthetic data on Logistic Regression model with high order interactions

Classification on RCC Dataset

- RCC –212 patients, 1092 proteins measured
- Benign: 40, Stage 1: 101, Stage 2: 17, Stage 3: 24, Stage 4: 31

Interactions in RCC

- CD97 was recently found to promote colorectal cancer^[1]
- CHEK2 is known to play a role in several cancers such as lung, kidney, colon, thyroid cancers ^[2]

[1] M. Wobus, O. Huber, J. Hamann, and G. Aust. Cd97 overexpression in tumor cells at the invasion front in colorectal cancer (cc) is independently regulated of the canonical wnt pathway. **Molecular carcinogenesis**, 45(11):881-886, 2006.
 [2] http://ghr.nlm.nih.gov/gene/CHEK2

8/23/2014

Conclusions

- Proposed novel sparse learning methods for identify high order feature interactions
- Promising results on synthetic and real datasets
- Future Work
 - Estimating structure of high-order graphical models
 - Incorporating prior/domain knowledge into the model

Acknowledgements

- Dr. Hans Peter Graf
- Dept. of Machine Learning, NEC Labs

Thank you for listening!

