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Abstract
Developing conditional generative models for text-
to-video synthesis is an extremely challenging yet
an important topic of research in machine learn-
ing. In this work, we address this problem by in-
troducing Text-Filter conditioning Generative Ad-
versarial Network (TFGAN), a conditional GAN
model with a novel multi-scale text-conditioning
scheme that improves text-video associations. By
combining the proposed conditioning scheme with
a deep GAN architecture, TFGAN generates high
quality videos from text on challenging real-world
video datasets. In addition, we construct a synthetic
dataset of text-conditioned moving shapes to sys-
tematically evaluate our conditioning scheme. Ex-
tensive experiments demonstrate that TFGAN sig-
nificantly outperforms existing approaches, and can
also generate videos of novel categories not seen
during training.

1 Introduction
Generative models have gained much interest in the re-
search community over the last few years for unsupervised
representation learning. Generative Adversarial Networks
(GANs) [Goodfellow et al., 2014] have been one of the most
successful generative models till date. Following its introduc-
tion in 2014, significant progress has been made towards im-
proving the stability, quality and the diversity of the generated
images [Salimans et al., 2016][Karras et al., 2017]. While
GANs have been successful in the image domain, recent ef-
forts have extended it to other modalities such as text [Wang
et al., 2018a], graphs [Wang et al., 2018b], etc.

In this work, we focus on the less studied domain of videos.
Generating videos are much harder than images because
the additional temporal dimension makes generated data ex-
tremely high dimensional, and the generated sequences must
be both photo-realistically diverse and temporally consistent.
We tackle the problem of text-conditioned video synthesis
where the input is a text description and the goal is to syn-
thesize a video corresponding to the input text. This prob-
lem has many potential applications, some of which include
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generating synthetic data for machine learning tasks, domain
adaptation, multimedia applications, etc.

Two recent works that address the problem of text-
conditioned video generation include [Li et al., 2018] and
[Pan et al., 2017]. Both these methods are variants of condi-
tional GAN applied to the video data. In spite of some suc-
cesses, they have the following limitations: (1) They employ
3D transposed convolution layers in the generator network,
which constrains them to only produce fixed-length videos.
(2) Their models are trained on low-resolution videos - re-
sults are shown only at a 64 × 64 resolution. (3) Text con-
ditioning is performed using a simple concatenation of video
and text features in the discriminator: Such a conditioning
scheme may perform well on certain datasets, but maybe in-
adequate for capturing rich video-text variations.

In this work, we aim to address all the concerns above.
First, to model videos of varying lengths, we use a recur-
rent neural network in the latent space and employ a shared
frame generator network similar to [Tulyakov et al., 2018].
Second, we present a model for generating higher-resolution
videos by using a ResNet-style architecture in the genera-
tor and the discriminator network. Third, we propose a new
multi-scale text-conditioning scheme based on discriminative
convolutional filter generation to strengthen the associations
between the conditioned text and the generated video. We
call our model Text-Filter conditioning GAN (TFGAN). Fi-
nally, we construct a synthetic moving shapes dataset to ex-
tensively evaluate the effectiveness of the proposed condi-
tioning scheme. Constructing this synthetic dataset is ex-
tremely useful as it captures rich text-video variations that are
lacking in the datasets currently used for text-to-video syn-
thesis [Li et al., 2018; Pan et al., 2017]. We demonstrate the
effectiveness of our approach on (1) real-world datasets such
as Kinetics Human Action dataset [Kay et al., 2017] that has
complex videos with high diversity but has relatively simple
text-video variations, and (2) synthetic dataset that has simple
video dynamics but models complex text-video associations.

In summary, our contributions in this work are as follows:
(i) A new conditional GAN with an effective multi-scale
text-conditioning scheme based on discriminative convolu-
tional filter generation is proposed; (ii) A synthetic dataset for
studying text conditioning in video generation is presented;
(iii) A framework for generating complex video sequences
and capturing rich text-video variations is presented.
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Figure 1: Our TFGAN framework. The box highlighted in red is where the conditioning is performed and is expanded in Fig. 2.

2 Related Work
Two popular approaches to generative modeling include
GANs [Goodfellow et al., 2014] and Variational Autoen-
coders(VAEs) [Kingma and Welling, 2014]. GANs are for-
mulated as a 2-player minimax game between a generator
and a discriminator network, while VAEs are based on varia-
tional inference where a variational lower bound of observed
data log-likelihood is optimized. Among the two approaches,
GANs have generated significant interest as they have been
shown to produce images of high sample fidelity and diver-
sity [Karras et al., 2017] [Brock et al., 2018].

A variant of GAN models is conditional GANs where the
generator network is conditioned on input variables of inter-
est. Such a conditioning input can be labels [Odena et al.,
2017], attributes [Yan et al., 2016], text [Zhang et al., 2017;
Xu et al., 2018] or even images [Zhu et al., 2017]. We fo-
cus on text conditioning since it is relevant to this work. One
of the first works to perform text-conditioned image synthe-
sis is [Reed et al., 2016]. Their method was only shown
to synthesize low-resolution images. To improve the resolu-
tion, [Zhang et al., 2017] proposed stacking multiple GAN
architectures, each producing images of increasing resolu-
tion. While the above two methods perform conditioning us-
ing the global text representation, [Xu et al., 2018] adopts
an attention mechanism to focus on fine-grained word-level
representations to enable improved conditioning.

While image generation is a well studied problem, there
has been very little progress in the domain of video genera-
tion. [Vondrick et al., 2016] proposed a GAN architecture
based on 3D convolutions to generate video sequences, but
it can only generate fixed-length videos. [Tulyakov et al.,
2018] proposed using a recurrent neural network in the latent
space to model videos of varying lengths. While these mod-
els are not designed to handle video generation from text, [Li
et al., 2018] and [Pan et al., 2017] perform text-conditioned
video synthesis by using the sentence embedding as a condi-
tional input. However, both of these conditional generative
models are based on 3D convolutions, they can only produce
fixed-length low-resolution videos. In this work, we address
this issue by developing an architecture capable of producing

higher-resolution videos of varying lengths.
A key component in our method is a novel conditioning

scheme based on discriminative convolutional filter genera-
tion. Generating the future frames guided by filters generated
from previous frames have been explored in Dynamic Filter
Networks [Jia et al., 2016]. A similar approach is taken in
[Li et al., 2018], where filters are generated conditioned on
text. Both these approaches apply the generated filters on the
intermediate responses of the generator network. This is com-
putationally expensive and technically challenging especially
for deeper generatator architectures as we need to generate a
large number of semantically meaningful filters. In contrast,
applying multi-scale text-conditioned filters in the discrimi-
nator architecture as done in our approach, is computation-
ally easier and effective as demonstrated by our experimental
results.

3 Method
We first provide a formal description of the problem be-
ing addressed. We are given access to N data points
{(v(n), t(n))}Nn=1 sampled from an underlying joint distribu-
tion p(v, t) in the video-sentence space. Here, each v(n) ∈
RT×C×W×H is a video clip and t(n) is a sentence descrip-
tion. We are interested in learning a model capable of sam-
pling from the unknown conditional distribution p(v|t). Sim-
ilar to conditional GANs [Mirza and Osindero, 2014], we
formulate the problem as learning a transformation function
G(z, t) from a known prior distribution PZ(z) and the con-
ditional input variable t to the unknown conditional distribu-
tion p(v|t). The function G is optimized using an adversarial
training procedure.

3.1 Model Framework
Our conditional GAN framework is shown in Fig. 1, in
which the video generator employs a RNN as in MoCo-
GAN [Tulyakov et al., 2018]. Unlike MoCoGAN, our model
does not have separate Motion and Content modeling or any
discrete motion/action vector. The novelty of our proposed
framework involves a muti-scale text-conditioning scheme,



in which the text description t is passed to a text encoder T
to get a text representation te.

te = T(t), (1)

where t is a word embedding matrix containing pre-trained
distributed representation vectors of the words in a given text
description. The text encoder T(·) is a CNN containing sev-
eral convolutional layers and a fully connected layer (RNN-
based model can also be used). The encoded text represen-
tation along with a sequence of noise vectors are passed to a
GRU recurrent neural network to produce a trajectory in the
latent space as follows,

hm = GRU([hm−1, te, zm]), (2)
zm ∼ N (0, I) (3)

where m = 1, . . . , l and l denotes the number of frames in
the video sequence. This sequence of latent vectors is then
passed to a shared frame generator model G to produce the
video sequence,

vm = G(hm), m = 1, . . . , l. (4)

The generated video is then fed to two discriminator mod-
els - D(f) and D(v). D(f) is a frame-level discrimina-
tor that classifies if the individual frames in the video are
real/fake, whereas the video discriminator D(v) is trained to
classify the entire video as real/fake. The discriminator mod-
els D(f) and D(v) also, respectively, take the text encoding
te as input to enforce text conditioning. Unlike the MoCo-
GAN model [Tulyakov et al., 2018], we employ much deeper
ResNet-style architectures in generator and discriminator net-
works for high-quality video generation. More details can be
found in the supplementary material1.

3.2 Text-Filter Conditioning
To build strong conditional models, it becomes important to
learn good video-text associations in the GAN model. A stan-
dard technique is to sample negative (v, t) pairs (wrong as-
sociations) and train it as fake class, while the correct (v, t)
pairs are trained as real class in the discriminator network.
Since the generator is updated using the gradients from the
discriminator, it becomes important to effectively fuse the
video and text representations in the discriminator so as to
make the generator condition on the text reasonably well.
Previous methods [Li et al., 2018; Pan et al., 2017] use a
simple concatenation of text and video features as the feature
fusion strategy. We found that this simple strategy produces
poor conditional models in datasets where there are rich text-
video variations (refer to Section. 4 for more details).

Our proposed Text-Filter conditioning GAN (TFGAN)
model aims at improving text conditioning for video genera-
tion models. In TFGAN, we employ a scheme based on gen-
erating discriminative convolutional filters from text features,
which are then convolved with image features in the discrim-
inator network. This scheme, which we call Text-Filter con-
ditioning, is shown in Fig. 2.

1Supplementary material can be found at
https://tinyurl.com/y3jedfxy
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Figure 2: Illustration of our Text-Filter conditioning strategy.

Let the discriminator network D(f) (equivalently for D(v))
be divided into multiple sub-networks {D(f)

i }mi=1 such that
the entire discriminator response can be represented as a cas-
cade of these sub-network responses,

D(f)(x) = D(f)
m ◦D(f)

m−1 ◦ . . .D
(f)
1 (x), (5)

where these sub-networks {D(f)
i }mi=1 can be as small as a

single layer, or can be a cascade of multiple layers. Let d(f)
i

denote the output of the ith sub-network of the frame discrim-
inator,

d
(f)
i = D

(f)
i ◦D(f)

i−1 . . .D
(f)
1 (v).

From the text features, we generate a set of convolution
filters {f (f)i }mi=1 for frame-level discrimination,

f
(f)
i = Φ

(f)
i (te), , i = 1, . . . ,m, (6)

where Φ
(f)
i (equivalently Φ

(v)
i at video-level) is a discrim-

inative convolutional filter generation network at frame level.
Similarly, let d(v)

i denote the output of the ith sub-network of
the video discriminator, and {f (v)i }mi=1 denote the discrimina-
tive convolutional filters at the video level. The frame-level
filters f (f)i ∈ Rnin×nout×w×h, whereas the video-level filters
f
(v)
i ∈ Rnin×nout×c×w×h. Here, nin, nout are the number of

input and output channels of d(i), and c, w and h are the filter
dimensions.

Each filter f
(f)
i is now convolved with the discriminator

response d
(f)
i , and this convolved output is passed through

additional convolution layers D̃
(f)
i to get a vector d̃

(f)
i as

output. These vectors {d̃(i)}mi=1 are then concatenated to ob-
tain the final frame-text representation O(f), which is used to
classify the frame-text pair as real or fake.

d̃
(f)
i = D̃

(f)
i (f

(f)
i ∗ d(f)

i ), (7)

O(f) = [d̃
(f)
1 , d̃

(f)
2 , . . . ,d(f)

m ], (8)

https://tinyurl.com/y3jedfxy


where [.] denotes vector concatenation. The video-text repre-
sentation O(v) is generated using a similar procedure. Since
the generated convolutional filters {fi} are applied to discrim-
inator sub-network outputs {di} from different layers, the re-
sulting text conditioning effectively imposes semantic con-
straints extracted from input text to the generated individual
frames and video clips at different feature abstraction levels.

3.3 Training Algorithm
The discriminator models D(f) and D(v), and the generator
model G are trained using an adversarial game as done in
the standard conditional GANs [Mirza and Osindero, 2014].
However, since we employ deep Resnet-style architectures
for generator and discriminator networks, it was important to
stabilize the GAN training. We use the regularizer as pro-
posed in [Mescheder et al., 2018] where the norm of the
discriminator gradients is penalized. The equations for opti-
mization updates are provided in the Supplementary material.

4 Experiments
This section discusses the experimental validation of our TF-
GAN model. We first describe a benchmark synthetic dataset
we created for the task of text-to-video generation that cap-
tures rich video-text associations. The performance of our
system is studied exhaustively using this dataset. Then,
results are presented on two challenging real-world video
dataset - Kinetics human action video dataset [Kay et al.,
2017] and Epic-Kitchens dataset [Damen et al., 2018]. Fur-
ther experiments and ablation studies are shown in the supple-
mentary material. Our code is publicly available at https:
//github.com/minrq/CGAN_Text2Video.

4.1 Moving Shapes Dataset
Dataset Creation
To better understand the task of text-to-video synthesis, we
created a dataset of moving shapes where a shape moves
along a trajectory as described by the corresponding text de-
scription. Two versions of the dataset were created – one with
static background which we call Shapes-v1 dataset and one
with dynamic background which we call Shapes-v2 dataset.
Some samples from these datasets are shown in Fig. 3. More
details about the dataset creation are provided in the Supple-
mentary material.

Quantitative Evaluation
One important benefit of creating the synthetic dataset is
that it provides a framework for quantitative evaluation of
the text-conditioning. First, five attribute classifiers (shape,
size, color, motion and direction classifiers) are trained on
the real data using the ground truth attributes (we have ac-
cess to ground-truth attributes as they were stored while cre-
ating the dataset). These trained attribute classifiers are then
used to verify if the attributes of a generated video match
the attributes corresponding to the input text. This attribute
classification accuracy is used as a metric to compare GAN
models. To evaluate a GAN model, videos are generated for
each text desciption in the test set, and the average attribute
classification accuracy for these generated videos is reported.
Higher the score, better is the model.

We compare TFGAN with the following models:
• Simple concat (SC): a conditional GAN model trained

using simple text-video feature concatenation in the dis-
criminator network
• Simple concat + Multiscale D (SC+MD): a conditional

GAN model with discriminator network employing a
multi-scale architecture. More specifically, outputs at
the intermediate layers of the discriminator network are
extracted and pooled together to get a multi-scale fea-
ture representation. This feature is then used to classify
if the video-text pair is real or fake. Similar to the pre-
vious model, a simple feature concatenation is used to
perform text conditioning.
• Text-filters on generator (TF on G): Instead of apply-

ing the text-filters on the discriminator network as done
in TFGAN, filters extracted from the text are convolved
with the intermediate responses of the generator net-
work. In the discriminator network, simple feature con-
catenation is used to perform the conditioning. Note that
this model is similar to the approach in [Li et al., 2018]
where the filters extracted from text are applied to the
gist image (which is a part of the generator network).

More details about the architecture and hyper-parameters are
given in the supplementary material. Some sample genera-
tions of TFGAN model are shown in Fig. 3.

Table 1a reports the quantitative evaluation on the Shapes
dataset. We observe that TFGAN with text-filter condition-
ing achieves the best performance compared to other models.
Only marginal performance gain is obtained by using filters
in the generator network. We argue that this is because gen-
erating discriminative filters are much easier than generative
filters. Also, the use of multi-scale architecture in discrimina-
tor alone does not improve text conditioning. This shows that
performance improvement of TFGAN does not come from
multi-scale architecture in itself, but in how the text condi-
tioning is applied.

Exploratory Experiments
Sentence Interpolation: In this experiment, we depict con-
ditional interpolation whereby frames in a video transition
corresponding to the interpolation between two sentence de-
scriptions. Let S1 and S2 denote the two sentences that are
interpolated, and (t

(f)
S1
, t

(v)
S1

) and (t
(f)
S2
, t

(v)
S2

) denote their cor-
responding feature representation obtained from the text en-
coder T. For each frame to be generated, the corresponding
conditioning feature is obtained by a linear interpolation be-
tween these two representations:

(t
(f)
i , t

(v)
i ) = (1− α)(t

(f)
S1
, t

(v)
S1

) + α(t
(f)
S2
, t

(v)
S2

)

Instead of using a fixed text representation (t(f), t(v)) to con-
dition all frames in the generator, we use (t

(f)
i , t

(v)
i ) as in-

put to the frame i. Some sample interpolations are shown in
Fig. 4. We observe smooth interpolations corresponding to
the input sentence transitions. When interpolating between
blue square and red square, some intermediate frames are
generated with pink shade. Interestingly, none of the sam-
ples in the dataset contain pink color. In the second figure,

https://github.com/minrq/CGAN_Text2Video
https://github.com/minrq/CGAN_Text2Video
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Figure 3: Samples from the Moving Shapes Dataset: In each set of images, the top row corresponds to the original video and the bottom two
rows correspond to the video generated by our TFGAN model (Better viewed in color).

Method Shape Color Size Motion Direction
Shapes-v1 dataset

SC 70.18 99.23 83.69 96.83 99.00
SC + MD 65.25 99.91 74.31 99.12 99.11
TF on G 72.91 99.41 82.98 99.51 99.81
TFGAN 97.66 99.99 98.60 99.40 100.00

Shapes-v2 dataset
SC 55.88 96.04 73.71 83.30 93.51

SC + MD 56.12 97.71 69.15 87.20 92.00
TF on G 59.76 95.75 82.16 85.00 95.40
TFGAN 81.10 99.99 89.82 99.80 100.00

(a) Attribute classification accuracy (in %) on Shapes dataset

Attribute Accuracy (in %)
Shape 96.21
Color 99.78
Size 98.77

Motion 96.23
Direction 99.42

(b) Attribute classification accuracy on
novel categories on Shapes-v1 dataset

Table 1: Quantitative analysis: Shapes dataset

A large blue square is moving in a 
diagonal path in the southwest direction

A large red square is moving in a 
diagonal path in the southwest direction

A large white circle is moving 
in a straight line towards east

A small white circle is moving 
in a straight line towards east

A large blue square is moving in a zigzag path towards east

Figure 4: Exploratory experiments on Shapes-v1 dataset. The image
on the top shows the long sequence experiment where we generate
32-length sequence from a model trained for 16 frames. The top row
of this video are the first 16 frames and the bottom row corresponds
to the next 16. The images on the bottom illustrate the interpolation
experiments where we generate a video corresponding to a smooth
transition between two input sentences.

a smooth decrease in object size is observed as the object
moves in the specified trajectory.
Generating Novel Categories: To determine if the model
has learned to generalize and not naively memorize the
dataset, this experiment aims to study the ability of TFGAN
to produce videos not seen during training. Of the 360 unique
parameter configurations in the Shapes dataset, n = 20 con-
figurations are held-out from the training set. After the model
is trained on this dataset, the attribute classification accuracy
in measured on the held-out configurations. The results are
reported in Table 1b. Good accuracy on held-out categories
are achieved and this illustrates the ability of TFGAN to gen-
eralize.
Long Sequence Generation: One of the benefits of using
a RNN-based GAN model is that it helps generate video se-
quences of varying length. To demonstrate this, we perform
an experiment where TFGAN model is trained on 16-length
video sequences, and made to generate 32-length sequences
at test time. Fig. 4 shows the output of one such generated
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32-length sequence. We observe that the model is able to
clearly perform the zig-zag motion beyond 16 frames, the
frame length for which it was trained for.

4.2 Kinetics Dataset
To illustrate the practical relevance of our approach, we per-
form experiments on real-world video datasets. We use the
dataset proposed in [Li et al., 2018] for this purpose. This
dataset contains videos of human actions, and was curated
from YouTube and Kinetics human action video dataset [Kay
et al., 2017]. The following action classes are represented in
the dataset - ‘biking in snow’, ‘playing hockey’, ‘jogging’,
‘playing soccer ball’, ‘playing football’, ‘kite surfing’, ‘play-
ing golf’, ‘swimming’, ‘sailing’ and ‘water skiing’. This is
an extremely challenging dataset for the task of video gener-
ation due to the following reasons: (1) videos are extremely
diverse with large variations within each video, and (2) many
videos have low-resolution and poor-quality video frames.

Method Acc. (%) FID-img FID-vid
In-set 78.1 - -

T2V( [Li et al., 2018]) 42.6 82.13 14.65
Ours-SC 74.7 33.51 7.34

Ours-TFGAN 76.2 31.76 7.19

Table 2: Quantitative evaluation on Kinetics dataset

Some qualitative results on the Kinetics dataset are shown
in Fig. 5. We observe that TFGAN is able to produce videos
of much higher quality than the comparison method [Li et
al., 2018]. Fine-grained motions such as golf swing is gen-
erated by TFGAN while [Li et al., 2018] produces a blobby
region. One reason for improved generation quality is that
TFGAN was successfully trained on 128 × 128 image reso-
lution, while [Li et al., 2018] was trained on 64 × 64. More
qualitative results and generated videos are provided in the
supplementary material.

The following metrics are used for quantitative evaluation:
(1) Classification accuracy: As done in [Li et al., 2018], a
modified version of inception score is computed, in which a
video classification model is trained on real data, and the ac-
curacy on generated data is reported. The performance is re-
ported on the following categories as done in [Li et al., 2018]:
’kite surfing’, ’playing golf’, ’biking in snow’, ’sailing’, and
’swimming’. (2) Frame-level FID: Frames are extracted from
the videos and the Fréchet Inception Distance between the
real data frames and the generated frames are compute. As
originally proposed [Heusel et al., 2017], pre-trained Incep-
tion network is used extract the features for computing the
score (3) Video-level FID: Features of the penultimate layer
are extracted from 3D Resnet-50 model trained on the en-
tire Kinetics dataset [Kay et al., 2017], and the FID score is
computed between the real and generated videos. Note that
lower the FID scores, better are the models. Quantitative re-
sults computed using these metrics are reported in Table. ??.
In-set refers to the performance obtained on the test set of
real videos. We observe that TFGAN achieves significantly
higher scores than [Li et al., 2018] over all three metrics. In
this dataset, the performance gain primarily comes from using
stronger generative models as the text descriptions are rela-
tively simple and the degree of text-video variation is limited.

5 Conclusion
In this work, we address the problem of generating videos
conditioned on text. A novel conditioning scheme is proposed
in which text conditioning is performed using convolution op-
erations acting on discriminator feature maps with filters gen-
erated from text. To better understand the text conditioning,
we construct a synthetic dataset and show that our condition-
ing scheme achieves superior performance compared to other
techniques. Finally, by using deeper architectures in the dis-
criminator and generator networks, we generate high-quality
videos on the challenging Kinetics dataset.
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1 Training Algorithm
The equations for the optimization updates of TFGAN model
are written below. For brevity, we write the equations only for
the frame-level discriminator D(f). Similar equations have to
be repeated for D(v).

min
G

max
D(f)

Lreal + Lfake, (1)

Lreal =E(v,t)∼preal

[
log(D(f)(v,T(t)))

+
γ

2
‖∇D(f)(v,T(t))‖2

]
, (2)

Lfake =
1

2

[
E(v,t)∼pfake

log(1−D(f)(v,T(t)))+

Ez∼pz log(1−D(f)(G(z,T(t)),T(t)))
]
. (3)

The text encoder T is optimized as follows

max
T

LT = E(v,t)∼preal
log(D(f)(v,T(t)))

+ E(v,t)∼pfake
log(1−D(f)(v,T(t))). (4)

In the above set of equations, preal denotes the real data
distribution with correct video-text correspondences, whereas
pfake refers to the distribution with incorrect video-text cor-
respondences. The incorrect correspondences are generated
by randomly shuffling the video-text associations. Eq (1)
through (3) are optimized by alternating between the mini-
mization and maximization steps as done in standard GAN
training.

From the above set of equations, we observe that the ob-
jective function is written in terms of the following three loss
terms: Lreal - loss for real samples, Lfake - loss for gen-
erated samples, and LT - loss for text encoder. Denoting
L
(f)
real, L

(f)
fake, L

(f)
T as the losses for frame-level discrimina-

tor D(f) and Lv
real, L

v
fake, L

v
T as the losses for video-level

discriminator D(v), the training algorithm of TFGAN is men-
tioned in Alg. 1

2 Dataset generation - Shapes Dataset
In this section, we describe in detail how Shapes dataset was
created. Each sample in the Shapes dataset has five control
parameters: shape type, size, color, motion type and motion

Algorithm 1 Training algorithm

Require: θ: Parameters of G, φ(f): Parameters ofDF , φ(v):
Parameters of DV , φ(t): Parameters of T

Require: Niter: number of training iterations
Require: α: Learning rate, Nb: batch size

1: for t in 1 : Niter do
2: Sample Nb real samples with correct video-text cor-

respondence {(vreal
i , treali )}Nb

i=1
3: Sample Nb real samples with incorrect video-text

correspondence {(vfake
i , tfakei )}Nb

i=1

4: Update D(f): φ(f) = φ(f) + α∇
[
L
(f)
real + L

(f)
fake

]
5: Update D(v): φ(v) = φ(v) + α∇

[
L
(v)
real + L

(v)
fake

]
6: Update G: θ = θ − α∇

[
L
(f)
real + L

(f)
fake + L

(v)
real +

L
(v)
fake

]
7: Update T: φ(t) = φ(t) + α∇

[
L
(f)
T + L

(f)
T + L

(v)
T +

L
(v)
T

]
8: end for

direction. Table 1 lists the possible values each parameter
can take. The (shape type, color, size) tuple describes the
structure of the shape, while (motion type, direction) tuple
dictates how the shape moves in the video. For straight line
and zig-zag motion, the shape could move in north, south,
west and east direction, while for diagonal motion, the possi-
ble directions include north-west, north-east, south-west and
south-east. The zig-zag motion was generated using a sinu-
soidal function. To generate a video, we randomly sample the
control parameters, generate a random trajectory for the shape
according to the control parameters, and overlay the shape ac-
cording to the generated trajectory. The text description cor-
responding to the parameter configuration is then generated.
We use a fixed template for generating the text.

In Shapes-v1 dataset, a moving shape described by the pa-
rameter configuration is generated and is overlaid in a black
background. While this assumption of static background
helps study the problem of text-to-video generation, it is
hardly true in practice as many videos have dynamic back-
grounds. So, we create a second dataset called Shapes-v2
dataset which is a version of Moving Shapes dataset with dy-
namic backgrounds. To generate the background, we choose



texture images from Colored Broadatz [Abdelmounaime and
Dong-Chen, 2013] dataset and sample a sequence of patches
corresponding to a random trajectory. Each patch in this se-
quence forms the background of an individual frame in the
video. These background textures are blended with the mov-
ing shape resulting in videos as shown in Fig. 2. This dataset
is much more challenging than the Shapes-v1 dataset as the
generative models should learn to ground the text descrip-
tion to the moving object but not to the randomly moving
background. We would like to point out that using synthetic
datasets have been explored in the previous works [Pan et
al., 2017], however, we create a much more comprehensive
dataset with fine-grained text-video variation for the task of
text-to-video generation.

From Table 1, we observe that there are 360 different pa-
rameter combinations for Shapes-v1 and Shapes-v2 dataset.
Samples from the dataset are shown in Fig. 2. All Shapes
datasets were created with videos containing 16 frames at
64× 64 frame resolution.

3 Multiple shapes dataset

The task of text-to-video synthesis becomes much more chal-
lenging when there are multiple shapes in the scene. So,
we created a third dataset called Shapes-v3 dataset with two
moving shapes. The text annotation in this dataset con-
tains the description of the two moving shapes, and so, the
model should learn correct associations between the individ-
ual shapes and their respective description. This makes this
dataset extremely challenging. From Table 1, we observe that
there are 360 × 360 = 129600 parameter configurations in
this dataset. Some samples from this dataset are visualized in
Fig 2

It is hard to perform quantitative evaluation in this dataset
due to the presence of two shapes in each video. Attribute
classification accuracy fails as it does not associate the in-
dividual shapes with their respective attributes. For an input
text containing blue square and red circle in its description,
checking for the existence of (square, circle) and (blue, red)
attributes in the generated video is insufficient as the video
might contain blue circle and red square. So, we show quali-
tative results on this dataset.

Samples generated from TFGAN and the simple concate-
nation scheme on this dataset are shown in Fig 5. We ob-
serve that the simple concatenation baseline model fails to
generate two shapes. Since the text description is complex,
just performing simple concatenation of video and text fea-
tures fails to condition well in this dataset. This leads to ex-
tremely poor quality generations. TFGAN, on the other hand,
produces two shapes, each generated according to the given
text description. This dataset clearly illustrates how our pro-
posed scheme can effectively model text-video associations
in datasets where there are rich and complex text-video vari-
ations.

4 Ablation studies
4.1 Effect of filtering at different levels of

abstraction
As shown in Figure (2) of main paper, filters extracted from
text are convolved at different levels of abstraction in the dis-
criminator network in TFGAN model. In all our experiments,
text-filters are applied at two stages – the output of Resnet-1
block (which we call as Stage 1) and the output of Resnet-3
block (which we call as Stage 2). Please refer to Section 5
for more details. The effect of removing one stage of filtering
is shown in this experiment. The following settings are con-
sidered – applying no text-filters (this corresponds to Simple
Concat (SC) scheme discussed in the main paper), applying
text-filters only at Stage 1, applying text-filters only at stage
2, and applying text-filters at both stages (this corresponds
to TFGAN model). Experiments are performed on Shapes-v2
dataset, and the results are shown in Table. 2. We observe that
applying filters only at single stage gives sub-optimal perfor-
mance than applying at both the stages. Among S1 and S2,
applying filters at S2 is more effective than S1. However, us-
ing the combination of S1 +S2 (which is the TFGAN model)
gives the best performance.

4.2 Effectiveness of text-filter conditioning in
different architectures

In the previous experiments, effectiveness of text-filter con-
ditioning on Resnet-based architectures are demonstrated.
However, the proposed conditioning scheme is general and
can be applied to any generator-discriminator architecture. A
natural question to ask is if the text-filter conditioning is ef-
fective for other architectures. To investigate this, we use DC-
GAN architectures for the generator and discriminator mod-
els as used in MoCoGAN [Tulyakov et al., 2018]. The text-
filters are applied at the outputs of conv1 and conv3 layers
in the discriminator network. The results of this experiment
on Shapes-v1 dataset are reported in Table 3. We observe
that simple concatenation scheme results in poor condition-
ing performance. Text-filter conditioning, on the other hand,
significantly improves the conditioning. Due to the limita-
tion of the architecture, the performance is not as high as that
using Resnet architectures reported in main paper. Neverthe-
less, even with such poor models, using text-filter condition-
ing helps improve the performance.

4.3 On different conditioning choices
Some recenly explored choices for class-conditioning in gen-
erative models include class-conditional batch normaliza-
tion [Dumoulin et al., 2017][de Vries et al., 2017] and Pro-
jection discriminator [Miyato and Koyama, 2018]. While
these schemes are originally used for class-conditioning[Miy-
ato et al., 2018], they can easily be extended to perform text-
conditioning by replacing the one-hot encoding of class la-
bels with the output of the text encoder. For experiments
using conditional Batchnorm, all batch normalization layers
in the generator and the discriminator models are replaced
with text-conditional Batchnorm. Comparison of these con-
ditioning schemes with text-filter conditioning on Shapes-v1
dataset using DCGAN architecture is reported in Table 4. We



Table 1: Simulation parameters

Atribute Set of values
Shape { Square, Circle, Triangle }
Color { Red, Blue, Green, White, Yellow }
Size { Small, Large }

Motion type { Straight Line, Diagonal, Zig-zag }
Direction { North, South, East, West } for st.line and zig-zag motion

{ North-east, North-west, South-east, South-west } for diagonal motion

Table 2: Filtering at different levels of abstraction – Attribute classification accuracy (in %) on Shapes-v2 dataset

Method Shape Color Size Motion Direction Average
No text-filters (SC) 55.88 96.04 73.71 83.30 93.51 80.49

Text-filters on stage 1 61.21 99.97 75.41 99.90 100.00 87.29
Text-filters on stage 2 67.25 99.98 78.55 100.00 100.00 89.15

Text-filters on stage 1 + stage 2 (TFGAN) 81.10 99.99 89.82 99.80 100.00 94.14

observe that both projection discriminator and conditional
batch-normalization performs poorly compared to text-filter
conditioning. This demonstrates the effectiveness of the pro-
posed conditioning scheme for improving text conditioning
in videos.

4.4 On different design choices
To train ResNet-style architectures, we use R1 regular-
ization that penalizes the norm of discriminator gradients
(‖∇D(v,T(t))‖2 term in Eq 2) as proposed in [Mescheder
et al., 2018]. Spectral normalization [Miyato et al., 2018]
is another class of stabilizing technique commonly used in
GAN models. With respect to the loss function, [Miyato et
al., 2018] used Hinge loss in their objective, whereas a stan-
dard log-likelihood based GAN loss is used in our formula-
tion. We investigate a combination of these design choices in
this experiment. Table 5 reports the performance of these de-
sign choices using Resnet achitecture on Shapes-v2 dataset.
We noticed that the spectral normalization by itself did not
stabilize our training. After 70000 iterations, generator loss
diverged and models collapsed to produce plain black images.
However, using R1 regularization stabilized the models bet-
ter. Using spectral normalization in addition toR1 regulariza-
tion did not improve over using R1 regularization alone. So,
we used R1 regularization in all our experiments. Also, us-
ing hinge loss gave similar performance as the standard GAN
loss.

4.5 Importance of regularization
In this experiment, we study the importance of using reg-
ularization to stabilize the training. Fig 1 shows the plots
of generator and discriminator losses for (1) TFGAN model
with Resnet architecture trained on Shapes-v1 dataset with-
out using any regularization, (2) TFGAN model with Resnet
architecture trained on Shapes-v1 dataset using R1 regular-
ization. We observe that without regularization, the generator
loss keeps increasing over iterations, and generated images
collapse beyond a certain point. However, models trained
with R1 regulazation exhibit much more stable behaviour in

losses. In our experiments, we obtained higher values of at-
tribute classification accuracy when the models were trained
longer. Models on Shapes-v1 dataset were trained for 150k it-
erations, and Shapes-v2 and v3 dataset were trained for 300k
iterations. So, it was crucial to use R1 regularization to sta-
bilize these models. Using R1 regularizer was much more
crucial in Kinetics and Cooking datasets as models did not
produce any meaningful generations without the regulaizer.

5 Architecture and Hyper-parameters
The basic resnet block on which generator and discriminator
architectures are built upon are shown in Figure. 6.

ReLU

Conv2D (x->y)
Kernel 3x3, 
str 2, pad 1

Shortcut
Conv2D

Kernel 1x1

+

ReLU

Conv3D (x->y)
Kernel 3x3, 
str 2, pad 1

Shortcut
Conv3D

Kernel 1x1

+

Input

Output

Input

Output

ResnetBlock (x, y) ResnetBlock3D (x, y)

Figure 6: Basic resnet blocks. Shortcut is a shortcut connec-
tion with 1×1 convolution used to adjust the number of filters
when there is a mismatch between the number of input filters
x and output filters y. When x = y, Shortcut is an identity
map

5.1 Text-Filter conditioning
Discriminator network architectures for Shapes and Kinetics
experiments are given in Tables 7, 8, 10, 11. In all our ex-



Table 3: Attribute classification accuracy (in %) on Shapes-v1 dataset using DCGAN models

Method Shape Color Size Motion Direction Average
SC (MoCoGAN) 70.45 92.84 82.06 41.70 26.40 62.69

Text-filter conditioning 90.60 96.93 96.55 78.10 71.30 86.70

Table 4: Different conditioning schemes – Attribute classification accuracy (in %) on Shapes-v1 dataset

Method Shape Color Size Motion Direction Average
Simple concat (SC) 70.45 92.84 82.06 41.70 26.40 62.69

Projection Discriminator 82.53 93.50 83.45 70.10 44.51 74.82
Class-conditional Batchnorm + SC 80.65 80.55 84.76 60.90 39.40 69.25

Text-filter conditioning 90.60 96.93 96.55 78.10 71.30 86.70

periments, the discriminator networks (both D(v) and D(f))
were divided into three sub-networks (m = 3). In Shapes
experiments, the sub-network D

(f)
1 is the section of the net-

work D(f) till the end of Resnet-1 block, D(f)
2 is the sub-

network from Resnet-2 block till the end of Resnet-3 block
and D

(f)
3 forms the rest of the network. For the Kinetics ex-

periment, the D
(f)
1 contains the section of the network D(f)

till Renset-11 block,D(f)
2 spans from Renset-20 to Resnet-31

block, and D
(f)
3 forms the rest of the network. For DCGAN

based experiments, D(f)
1 block is the first conv layer, D(f)

2

block spans the next two conv layers, and D
(f)
3 block contains

the last conv layer. The same partitioning scheme is used for
the video discriminator network D(v) as well.

Based on the partioning scheme discussed above, the dis-
criminator network is divided into three sub-networks. We
apply text-filter conditioning only on the responses of the
first two sub-networks. Let us call the response of the first
sub-network D

(f)
1 and D

(v)
1 as stage-1, and the response of

the second sub-network D
(f)
2 and D

(v)
2 as stage-2. An abla-

tion study for the effect of removing conditioning on each of
these stages is discussed in Section 4.1. Since the responses
of stage-1 and stage-2 contain a large number of channels,
the text-filters fi to be convolved on them will have to contain
the same number of input channels which is computationally
expensive. So, the responses of stage-1 and stage-2 are first
passed to a bottleneck connection (with 1× 1 conv layers) to
bring down the number of channels to 32. So, if the output of
D

(f)
1 was a b×n×k×w map, this transformation will bring

it down to b× 32× k × w.
The response of the text encoder T (architecture is given

in Section 5.2) are two vectors t(f) and t(v), which are
256 dimensional each. To form the filters f (f) for frame-
discriminator D(f), we use the text encoding t(f), and to
form the filters f (v) for frame-discriminator D(v), we use the
text encoding t(v). The filter generator networks Φ

(f)
i is a

fully connected layer FC(256 → 32.32.5.5), whereas Φ
(v)
i

is a fully connected layer FC(256 → 32.32.3.5.5). Hence,
the dimensions of f

(f)
i are 32 × 32 × 5 × 5, and f

(v)
i are

32× 32× 3× 5× 5
The outputs of stage-1 and stage-2 can be convolved with

f
(f)
i and f

(v)
i as the number of channels match with the fil-

ter dimension. A stride of 1 and padding 2 is used in this
convolution so that the output size match the input size. The
response of this convolution are then passed onto D̃

(f)
i and

D̃
(v)
i as mentioned in Figure 2 of the main paper. The follow-

ing architectures are used for D̃ networks

• D̃
(f)
1 : AvgPool(4× 4)→ Conv2D(32→ 32, kernel 3×

3)+ReLU → AvgPool(4 × 4) → Conv2D(32 → 128,
kernel 2× 2)

• D̃
(f)
2 : AvgPool(2× 2)→ Conv2D(32→ 32, kernel 3×

3)+ReLU → AvgPool(2 × 2) → Conv2D(32 → 128,
kernel 2× 2)

• D̃
(v)
1 : AvgPool(2× 4× 4)→ Conv3D(32→ 32, kernel

3×3×3)+ReLU→AvgPool(4×4×4)→Conv3D(32→
128, kernel 1× 2× 2)

• D̃
(v)
2 : AvgPool(2× 2× 2)→ Conv3D(32→ 32, kernel

3×3×3)+ReLU→AvgPool(2×2×4)→Conv3D(32→
128, kernel 1× 2× 2)

The outputs of D̃(f)
1 and D̃

(f)
2 are 128 dimensional vectors.

Similarly, the output of the third stage of the discriminator ne-
towork D

(f)
3 (on which text-conditioning was not applied) is

also n dimensional vector. This vector is passed to a FC layer
to make it 128 dimensional and is concatenated with the re-
sponses of D̃(f)

1 and D̃
(f)
2 . This concatenated representation

then classifies if the input frames are real/fake. Similar com-
putation is performed for video-level representation as well.

5.2 Text encoder
For the text encoder, we first obtained the GloVE [Pennington
et al., 2014] embeddings of individual words (which are 300-
dimensional vectors each), then applied a 1D-CNN based net-
work with the following network architecture:

Conv1D(300 → 512, kernel=3) → ReLU → MaxPool(2)
→ Conv1D(512 → 512, kernel=3)→ ReLU→ MaxPool(2)
→ Conv1D(512→ 256)

There are two-copies of the above architecture - one giv-
ing frame-level representation t(f), and other giving video
level representation t(v). Both these vectors are 256 dimen-
sional. 1D-CNN was sufficient in all our experiments, and



Table 5: Different design choices – Attribute classification accuracy (in %) on Shapes-v2 dataset

Method Shape Color Size Motion Direction Average
Spectral normalization + hinge loss Did not converge

Spectral normalization + standard loss Did not converge
R1 regularization + hinge loss 75.50 99.90 86.31 100.00 100.00 92.34

R1 regularization + standard loss (TFGAN) 81.10 99.99 89.92 99.80 100.00 94.16
Spectral normalization + hinge loss + R1 regularization 78.32 99.61 88.90 99.61 100.00 93.29

Spectral normalization + standard loss + R1 regularization 82.10 99.81 89.98 99.60 99.71 94.24

Unregularized model Model trained with R
1
 regularization

Figure 1: Plots of generator and discriminator losses for unreglarized and regularized models

using RNN-based models did not give any improvement over
1D-CNN network.

5.3 GAN architectures
The architectures used for the discriminator and generator
networks for Shapes experiments are mentioned in in Ta-
bles. 6, 7 and 8. The architectures used for Kinetics and
Cooking experiments are given in Tables 9, 11 and 10. Hy-
perparameter details used in all our experiments are given in
Table. 12.

6 Additional results
6.1 Kinetics dataset
Some additional results on the Kinetics dataset are shown in
Fig 7. We observe that we are able to generate videos of
high quality. To illustrate the variations that occur within
a class, we generate multiple videos of the same text de-
scription. Figure 8 shows one such example for swimming
class. We find that out model is capable of generating di-
verse predictions. To better visualize the temporal motion, we
also provide ”.gif” files accompanying the generated videos.
However, the quality of videos are affected due to gif arti-
facts, and we suggest the reader to use the images provided in
this paper to assess the quality of the generations.

6.2 Epic-Kitchens Dataset
In this experiment, we consider Epic-Kitchens dataset [Kay et
al., 2017] which is a ego-centric dataset containing videos of
people cooking in a kitchen. The videos were recorded using
a high-definition head mounted camera. The dataset is an-
notated with text descriptions of step-by-step instructions of
a cooking recipe with the corresponding timestamp as peo-
ple perform the action. This dataset is extremely challenging
for the following reasons: (1) Since this is a head-mounted
dataset, there are large variations in the background, and rapid
motion can occur between frames. (2) There is high object
clutter as the dataset is collected in indoor kitchen environ-
ment. From this dataset, we extracted clips of 16-lenght video
sequences containing the following action classes: ’take’,
’cut’, ’dicing’, ’pour’, ’stir’, ’wash’, ’grate’, ’rinse’, ’put’.
This resulted in 4793 (video, text) pairs. The qualitative re-
sults of training TFGAN on this dataset are shown in Fig. 9.
Despite the inherent challenges of this dataset and small size
of the training set, TFGAN generates good videos.

6.3 Text to Image Generation
Text-to-image generation is a relatively easier problem than
text-to-video generation due to the absence of temporal con-
straints. Although the focus of this paper is on text-to-video



Figure 2: Real samples from Shapes datasets



Figure 3: Samples generated by TFGAN and Simple concatenation scheme on Shapes-v1 dataset



Figure 4: Samples generated by TFGAN and Simple concatenation scheme on Shapes-v2 dataset



Figure 5: Samples generated by TFGAN and Simple concatenation scheme on Shapes-v3 dataset
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Figure 7: Samples generated by TFGAN model on Kinetics dataset



Figure 8: Variations wihin a category - Swimming class produced by TFGAN model
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Figure 9: Samples generated by TFGAN model on Epic-Kitchens dataset



Table 6: Generator architecture - Shapes dataset

Layer Output size Filter
Input 768 -

Fully connected 1024 768→ 1024
Reshape 256× 2× 2 -

ResnetBlock-0 256× 2× 2 256→ 256
Upsample 256× 4× 4 -

ResnetBlock-1 128× 4× 4 256→ 128
Upsample 128× 8× 8 -

ResnetBlock-2 128× 8× 8 128→ 128
Upsample 128× 16× 16 -

ResnetBlock-3 128× 16× 16 128→ 128
Upsample 128× 32× 32 -

ResnetBlock-4 64× 32× 32 128→ 64
Upsample 64× 64× 64 -

ResnetBlock-5 32× 64× 64 64→ 32
Conv2D 3× 64× 64 32→ 3

Tanh 3× 64× 64 -

Table 7: Frame Discriminator architecture - Shapes dataset

Layer Output size Filter
Input 3× 64× 64 -

Conv2D 32× 64× 64 3→ 32
ResnetBlock-0 64× 64× 64 32→ 64

AvgPool 64× 32× 32 -
ResnetBlock-1 128× 32× 32 64→ 128

AvgPool 128× 16× 16 -
ResnetBlock-2 128× 16× 16 128→ 128

AvgPool 128× 8× 8 -
ResnetBlock-3 128× 8× 8 128→ 128

AvgPool 128× 4× 4 -
ResnetBlock-4 256× 4× 4 128→ 256

AvgPool 256× 2× 2 -
ResnetBlock-5 256× 2× 2 256→ 256

Reshape 256.2.2 -
Text-Img feat concat nfused -

Fully connected nfused → 1 nfused → 1

synthesis, our framework is flexible and can be trivially ex-
tended to the problem of text-to-image synthesis. This can
be accomplished by removing the video-level discriminator
D(v) and the RNN network in the latent space. We train our
GAN model with Text-Filter conditioning on the CUB-Birds
dataset [Welinder et al., 2010], a benchmark dataset for text-
to-image generation. Some of the samples from the generated
images are shown in Figure 10 and 11. We observe that our
model is able to produce photo-realistic images. We also re-
port Inception score as a quantitative metric. As can be seen
from Table. 13, our method achieves higher inception scores
than the comparison methods.
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Figure 10: Sample generations from TFGAN model trained on CUB-Birds dataset
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Figure 11: Sample generations of Text2img synthesis from TFGAN model trained on CUB-birds dataset



Table 9: Generator architecture - Kinetics dataset

Layer Output size Filter
Input 768 -

Fully connected 8192 768→ 8192
Reshape 512× 4× 4 -

ResnetBlock-00 512× 4× 4 512→ 512
ResnetBlock-01 512× 4× 4 512→ 512

Upsample 512× 8× 8 -
ResnetBlock-10 512× 8× 8 512→ 512
ResnetBlock-11 512× 8× 8 512→ 512

Upsample 512× 16× 16 -
ResnetBlock-20 256× 16× 16 512→ 256
ResnetBlock-21 256× 16× 16 256→ 256

Upsample 256× 32× 32 -
ResnetBlock-30 128× 32× 32 256→ 128
ResnetBlock-31 128× 32× 32 128→ 128

Upsample 128× 64× 64 -
ResnetBlock-40 64× 64× 64 128→ 64
ResnetBlock-41 64× 64× 64 64→ 64

Upsample 64× 128× 128 -
ResnetBlock-50 32× 128× 128 64→ 32
ResnetBlock-51 32× 128× 128 32→ 32

Conv2D 3× 128× 128 32→ 3
Tanh 3× 128× 128 -
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Table 10: Frame Discriminator architecture - Kinetics dataset

Layer Output size Filter
Input 3× 128× 128 -

Conv2D 32× 128× 128 3→ 32
ResnetBlock-00 32× 128× 128 32→ 32
ResnetBlock-01 64× 128× 128 32→ 64

AvgPool 64× 64× 64 -
ResnetBlock-10 64× 64× 64 64→ 64
ResnetBlock-11 128× 64× 64 64→ 128

AvgPool 128× 32× 32 -
ResnetBlock-20 128× 32× 32 128→ 128
ResnetBlock-21 256× 32× 32 128→ 256

AvgPool 256× 16× 16 -
ResnetBlock-30 256× 16× 16 256→ 256
ResnetBlock-31 512× 16× 16 256→ 512

AvgPool 512× 8× 8 -
ResnetBlock-40 512× 8× 8 512→ 512
ResnetBlock-41 512× 8× 8 512→ 512

AvgPool 512× 4× 4 -
ResnetBlock-50 512× 4× 4 512→ 512
ResnetBlock-51 512× 4× 4 512→ 512

Reshape 512.4.4 -
Text-Img feat concat nfused -

Fully connected nfused → 1 nfused → 1

Table 11: Video Discriminator architecture - Kinetics dataset

Layer Output size Filter
Input 3× 16× 128× 128 -

Conv3D 32× 16× 128× 128 3→ 32
ResnetBlock3D-00 32× 16× 128× 128 32→ 32
ResnetBlock3D-01 64× 16× 128× 128 32→ 64

AvgPool3D 64× 8× 64× 64 -
ResnetBlock3D-10 64× 8× 64× 64 64→ 64
ResnetBlock3D-11 128× 8× 64× 64 64→ 128

AvgPool3D 128× 4× 32× 32 -
ResnetBlock3D-20 128× 4× 32× 32 128→ 128
ResnetBlock3D-21 256× 4× 32× 32 128→ 256

AvgPool3D 256× 2× 16× 16 -
ResnetBlock3D-30 256× 2× 16× 16 256→ 256
ResnetBlock3D-31 512× 2× 16× 16 256→ 512
AvgPool3D-spatial 512× 2× 8× 8 -
ResnetBlock3D-40 512× 2× 8× 8 512→ 512
ResnetBlock3D-41 512× 2× 8× 8 512→ 512

AvgPool3D 512× 1× 4× 4 -
ResnetBlock3D-50 512× 1× 4× 4 512→ 512
ResnetBlock3D-51 512× 1× 4× 4 512→ 512

Reshape 512.4.4 -
Text-Img feat concat nfused -

Fully connected nfused → 1 nfused → 1



Table 12: Hyper-parameter details for Shapes and Kinetics
experiments

Parameter Config
Batch Size 8 videos

Optimizer G Adam
Learning rate G 0.0001

Adam params G: (β1, β2) (0.0, 0.99)
Optimizer DF Adam

Learning rate DF 0.0001
Adam params DF : (β1, β2) (0.0, 0.99)

Regularization γ for DF 10.0
Optimizer DV Adam

Learning rate DV 0.0001
Adam params DV : (β1, β2) (0.0, 0.99)

Regularization γ for DV 10.0

Table 13: Inception Score on CUB-Birds dataset

Method Inception Score
StackGAN [Zhang et al., 2017a] 3.7 ± 0.04

StackGAN v-2 [Zhang et al., 2017b] 3.82 ± 0.06
Ours 4.12 ± 0.18
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