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Abstract

The nature of semistructured data in web collections is
evolving. Increasingly, XML web documents (or documents
exchanged via web services) are valid with regard to a
schema, yet the actual structure of such documents exhibits
significant variations across collections for several reasons:
the schema is very lax (e.g., RSS feeds), the schema is large
and different subsets are used (e.g., industry standards like
UBL), or open content models allow arbitrary schemas to
be mixed (e.g., RSS extensions like those used for podcast-
ing). Many web development tasks that incorporate XPath
queries to process XML documents require an understand-
ing of the actual structure present in the collection.

This paper introduces the unique capabilities of AxPRE
summaries for exploring the (semi-)structure of large XML
collections. AxPRE summaries are implemented in a tool,
DescribeX, that supports visualizing XML collections via
summaries that can be interactively refined using a power-
ful and descriptive axis path regular expression language.
Experimental results on gigabyte collections valig that flex-
ibility does not come at the expense of efficiency.

1 Introduction

XML continues to be widely used as a common for-
mat for web accessible data as well as for data exchanged
among web applications (using web services or a simple
REST style transfer). Compared to the earlier wild web
days of abundant (not even well-formed) HTML, there is
a clear trend toward applications that validate XML docu-
ments against schemas. However, despite schema-validity,
the actual structure present in web documents exhibits sig-
nificant variations across collections for several reasons.

First, the schemas used can be very lax (e.g., by ex-
tensive use of the <xsd:choice> construct in XML
schema1). This is the case for RSS feeds (a format used
by content distributors to deliver to subscribers frequently
∗Technical Report posted June 2007 (revised November 2007).
1 http://w3.org/TR/xmlschema-1

updated content over the Web). Second, a schema can be
very large and only subsets are actually used in a given in-
stance. This is the situation with several industry specific
standards that contain hundreds of elements (such as UBL2

or HR-XML3). Finally, a schema can be extended by incor-
porating elements from other namespaces and correspond-
ing schemas (by using the <xsd:any> XML Schema con-
struct to allow open content models). A wide variety of in-
dustry standards (like RSS, UBL and HR-XML) adopt open
content models as an extensibility mechanism, enabling dif-
ferent user communities to pick and choose how to combine
schemas.

Many web development tasks resort to XPath [23]
queries to process XML documents and require an un-
derstanding of the actual structure present in the collec-
tion. Understanding the actual structure of a web collec-
tion can be a significant barrier to write meaningful XPath
queries. Similar challenges are faced by applications issu-
ing XPath queries to process a collection of feeds that in-
corporates RSS extensions4 supporting additional elements
for describing pictures, podcasts, and videos.

This paper addresses the need to describe the actual
metadata structure of large collections of web documents
(by and large encoded and processed as XML). We propose
a novel approach for flexibly summarizing the structure of
metadata actually present in a collection [9]. The proposed
framework is implemented in DescribeX, a tool (demon-
strated in [1]) for describing and visualizing XML collec-
tions via summaries that can be tailored using a powerful
language: axis path regular expressions (AxPRE, for short).

XML structural summaries are graphs representing rela-
tionships between sets of XML elements with a common
structure (paths, subtrees, etc.). Describing metadata in
semistructured collections was a major motivation in one of
the earliest summary proposals in the literature [18]. Since
then, research on summaries has focused on query pro-
cessing, making summaries one of the most studied tech-
niques for query evaluation and indexing in XML (and other

2 http://oasis-open.org/committees/ubl/
3 http://hr-xml.org
4 http://rss-extensions.org
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Figure 1. The axis graph of two sample RSS feeds

semistructured) data models [13, 17, 15, 6, 16, 21, 4], as
well as for providing statistics useful in XML query estima-
tion and optimization [20]. Although these are all interest-
ing problems we can address (see [8] for XPath query evalu-
ation using DescribeX), in this paper we focus on metadata
exploration, which has become increasingly relevant over
the last few years and has received considerably less atten-
tion in the summary literature. AxPRE summaries have a
unique capability that makes them suitable for describing
the (semi-)structure of XML collections: they are the first
summaries capable of refining and describing the nature of
the partitions created using a powerful language.

1.1 Motivating Example

We motivate our work by describing the tasks of a devel-
oper, Sue, who has to code a web application that retrieves
RSS feeds from several content providers to produce an ag-
gregated meta feed.

Figure 1 shows two RSS feed instances represented as
axis graphs [8]. An axis graph is an abstract represen-
tation of the XPath data model [23] extended with edges
that represent binary relations between elements. Selected
axes are shown in the figure: fc, ns, and c (shorthands for
firstchild, nextsibling, and child, respectively). Note
that an axis graph can include binary relations between ele-
ments and/or attributes that are not XPath axes per se, like
fc and ns , id-idrefs , or other binary relations. The two
feeds make use of the Media RSS extension5 providing sup-
port for media syndication (the elements in this extension
use the namespace prefix media), which we abbreviated
by ym). Several <ym:content> elements appear in a
<ym:group> within <item>.

Sue has access to a repository containing several months
of sample feeds published by the content providers (a col-
lection with thousands of XML files). She is planning to
prototype and then refine an application using XPath pat-
terns based on the samples. However, to write the required

5 http://search.yahoo.com/mrss

XPath expressions Sue has to understand the structure of the
feed collection. Sue could manually open a few files to get a
sense of the structure of the entire collection. At some point
Sue will have to check if the patterns she has selected are
indeed characteristic of the collection. She could use XPath
queries for this task, but she will have to come up with large
number of queries on her own.

Fortunately, Sue has access to the DescribeX tool for ex-
ploring the structure of the entire feed collection. The tool
can process a collection with thousands of files in a minute
to provide a first glimpse of the collection’s structure us-
ing a label summary descriptor (SD, for short), the simplest
of the AxPRE summaries created by DescribeX. The label
SD in Figure 2, created from the two feeds in Figure 1,
partitions the elements in the collection by label (element
name in this case). For example, SD node s6 groups all the
item elements in the two documents with the actual element
numbers listed below the node (this set is called the extent
of the SD node s6). An SD edge is labeled by the axis re-
lation it represents (i.e. edge (s6, s5) is labeled by c, which
means that there is a c axis relation between elements in the
extent of s6 and s5). Figure 2 shows three kinds of edges,
depending on properties of the partitions that participate in
the axis relation: dashed, regular, and bold (described in
Section 3).

Sue needs to characterize feed items that have different
structure in order to process them differently (and to select
them using different XPath expressions). For instance, she
will aggregate differently items that provide a publishing
date (in a pubDate element) from those that do not, and also
items that contain media in different formats (i.e., in sep-
arate content elements) from those that come with a sin-
gle media file. From the label SD of Figure 2 she only
knows that an item may contain any combination of title,
pubDate, group and description, and that a group may have
several content sub-elements. To continue exploring items,
Sue uses DescribeX to interactively refine the SD node s6
in Figure 2, creating the three nodes s61, s62, s63 in a new
SD shown in Figure 3. This creates a more refined parti-
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Figure 2. Label SD for the RSS samples

tion of the item elements in the extent associated with s6
that further describes the structure of items. The refinement
is based on bisimilarity applied to neighbourhoods of nodes
described by an AxPRE, a path regular expression on binary
relations. AxPREs can specify more complex refinements,
like ns∗ in SD nodes s93, s94 and s95 of Figure 3, which
distinguishes [ym:content] elements based on the la-
bels and number of their following siblings. Sue can ei-
ther choose a refinement from a list suggested by DescribeX
containing the most common ones (e.g. p∗ for label paths
from the root, c∗ for label paths to the leaves, fc.ns∗ for se-
quence of child labels) or she can write her own AxPRE.
(AxPREs and refinements are described in detail in Sec-
tions 2 and 3.)

Sue can distinguish three kinds of items with different
structure beyond the elements directly contained by item,
a capability not available using DTD’s (unless item ele-
ments are renamed, which is not a possibility when the
original DTD or the instances cannot be modified). In par-
ticular, proposals to infer a DTD from an instance (such as
[3, 12]) by suggesting (general, but succinct) regular expres-
sion from the strings of child elements, do not help to iden-
tify the three kinds of items as done above. For instance, the
DTD expression tile,(description|pubDate),ym:group can
be inferred for the item elements occurring in the instances
shown in Figure 1. However, a DTD can only give a rule
for the children of items, there is no mechanism for giving
rules relating items to their grandchildren (or any other el-
ements farther away). In contrast, the AxPRE summary in
Figure 3 can represent that the items with three ym:content
grandchildren (node s63) are also the items with a descrip-
tion (but not a pubDate).

Figure 3. A refined SD for the RSS samples

1.2 Contributions and Organization

This paper identifies the growing need for describing the
structure of web collections (encoded in XML) using mech-
anisms that go beyond providing one or more schemas. We
advocate the use of highly customizable summaries that
represent the actual structure of metadata labels as used
in a given collection. The summary labels can mix data
and metadata (e.g., an XML element with a given attribute
value).

The next section presents the background definitions for
AxPRE summaries, which are specified by a partition cre-
ated using the novel notion of bisimilarity applied to sub-
graphs described by an AxPRE (a path regular expression
on binary relations, XPath axis in particular). Section 3
presents a key contribution: a rich framework for refining
AxPRE summaries that are capable of describing the crite-
ria used to create refined partitions.

Another major contribution appears in Section 4: the im-
plementation of DescribeX, a tool for interactively creat-
ing and refining an AxPRE summaries given large collec-
tions of XML documents. Two refinement strategies are
considered; one based on materialized partitions, and the
other based on a virtual approach to compute extents us-
ing XPath expressions derived from the AxPRE summary.
Section 5 provides experimental results, using gigabyte size
XML collections, that validate the performance of the tech-
niques employed by DescribeX. Before concluding, Sec-
tion 6 provides a comprehensive description of how AxPRE
Summaries relate to (and significantly extend) the extensive
literature on summaries.
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2 AxPRE Summaries Background

This section provides an overview of the DescribeX
framework (introduced in [8]). The framework includes a
powerful language based on axis path regular expressions
(AxPREs) for describing the extents in an SD. Extents are
defined using a novel notion: bisimilarity applied to neigh-
bourhoods of nodes described by an AxPRE (a path regular
expression on binary relations). For representing an XML
instance, DescribeX uses a labeled graph model called axis
graph.

Definition 2.1 (Axis Graph) An axis graph A = (Inst ,
Axes, Label, λ) is a structure where Inst is a set of
nodes, Axes is a set of binary relations {EA1 , . . . , EAn } in
Inst × Inst and their inverses, Label is a finite set of node
names, and λ is a function that assigns labels in Label to
nodes in Inst . Edges are labeled by axis names and nodes
are labeled by element or attribute names (including names-
paces), or by new labels defined using XPath.

An axis graph is an abstract representation of the XPath
data model [23] extended with edges that represent XPath
relations between elements.

The axis graph can also include additional axes, such as
id-idrefs , fc, ns , and other binary relations between el-
ements or attibutes that can be expressed in XPath (e.g.,
fc := child :: ∗[1] and ns := following-sibling :: ∗[1]).

Example 2.1 DescribeX provides significant flexibility for
summarizing combinations of XML data and meta-
data. A new node label [ym:quicktime] can be
defined in an axis graph by the XPath expression
ym:content[type="video/quicktime"], which rep-
resents ym:content elements with different types of media
as separate nodes.

DescribeX uses AxPREs for characterizing the sets in
the partition of elements. An AxPRE gives a precise de-
scription of the elements in the extent of an SD node, some-
thing not provided by any other proposal in the literature.

Definition 2.2 (Axis Path Regular Expressions) An axis
path regular expression is an expression generated by the
grammar

E ←− axis | axis[B(l)] | (E | E) | (E)∗ | E.E | ε

where axis ∈ Axes and ε is the symbol representing the
empty expression.

Definition 2.2 describes the syntax of path regular ex-
pressions on the binary relations (labeled edges) of the axis
graph including node label tests (B(l) is a boolean func-
tion on a label l ∈ Label that supports more elaborate tests

on labels, beyond just matching it). AxPREs could also be
written using a syntax closer to XPath syntax.

AxPREs are used in DescribeX for defining neighbour-
hoods of nodes computed by intersecting the automaton of
the AxPRE and the axis graph starting from a given node.

Definition 2.3 (AxPRE Neighbourhood of v) LetA be an
axis graph, v a node in A, α an AxPRE, and NFA(α) the
Thompson construction finite automaton of α accepting all
prefixes. The AxPRE neighbourhood of v for α, denoted
Nα(v), is the subgraph of A product of the intersection be-
tween A and NFA(α) such that v intersects with the initial
state of NFA(α).

This approach for defining summaries is based on the in-
tuition that nodes that have similar neighbourhoods should
be grouped together in the same extent. DescribeX uses
the similarity notion of labeled bisimulation, which pro-
vides a way of computing a double homomorphism between
graphs.

Definition 2.4 (Labeled Bisimulation) Let G1 and G2 be
two subgraphs of an axis graph A, such that AxesG1 ⊆
Axes and AxesG2 ⊆ Axes. A labeled bisimulation be-
tween G1 and G2 is a symmetric relation ≈ such that for all
v ∈ G1, w ∈ G2, EG1i ∈ AxesG1 , and EG2i ∈ AxesG2 : if
v ≈ w, then λ(v) = λ(w); if v ≈ w, and 〈v, v′〉 ∈ EG1i ,
then 〈w,w′〉 ∈ EG2i and v′ ≈ w′.

Example 2.2 Consider elements 12 and 24 in the axis
graph of Figure 1. They have bisimilar [item]c.fc.ns∗

neighbourhoods and therefore belong to the same set in the
partition (the one that corresponds to s62 in Figure 3).

The widespread use of bisimulation in summaries is mo-
tivated by its relatively low computational complexity prop-
erties. The bisimulation reduction of a labelled graph can be
done in time O(m logm) (where m is the number of edges
in a labelled graph) as shown in [19], or even linearly for
acyclic graphs, as shown in [11]. Using bisimulation also
allows us to capture all the existing bisimulation-based pro-
posals in the literature (Section 6).

Definition 2.5 (AxPRE Partition) LetA be an axis graph,
N ⊆ Inst , and α an AxPRE. An AxPRE partition of N for
α, denoted Pα(N), is a partition of the nodes in N defined
as follows: two nodes v, w ∈ N belong to the same class
Pi ∈ Pα(N) iff there exists a labeled bisimulation ≈ be-
tween Nα(v) and Nα(w) such that v ≈ w.

Definition 2.6 (Summary Descriptor) A summary de-
scriptor (SD for short) of an axis graph A consists of
a partition {Ni}i of A and a set of AxPRE partitions
{Pαi

(Ni)}i, 1 ≤ i ≤ m, together with a labeled graph G,
called SD graph, representing axis relationships between
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elements in the equivalence classes of the AxPRE parti-
tions. Each node s in the SD graph has associated one set
in some Pαi

(Ni) called the extent of s and is labeled by
αi. Edges are labeled by the axis relation they represent.

When the extents of all nodes in a SDD are defined with
the same AxPRE α we have an homogeneous SD. In this
case we say that D is an α SD. In contrast, if at least two
different nodes are defined with different AxPREs we have
an heterogeneous SD.

3 Summary Refinements

The description provided by a node in the SD can be
changed by an operation that modifies its AxPRE and thus
its AxPRE neighbourhood. This operation is called a refine-
ment of an SD node.

Previous proposals perform global refinements on the
entire SD graph [15, 16] or local refinements based on
statistics and/or workload [21, 14, 20], without the ability to
refine a clearly defined neighbourhood. In contrast, we can
precisely characterize the neighbourhood considered for the
refinement with an AxPRE.

DescribeX refinements are based on the notion of sum-
mary axis stability.

Definition 3.1 (Summary Axis Stability) Let e = 〈si, sj〉
be an SD graph edge with label axis. We say that e
is either an existential edge iff ∃x ∈ extent(si),∃y ∈
extent(sj) ∧ 〈x, y〉 ∈ axis, or a forward-stable edge iff
∀x ∈ extent(si),∃y ∈ extent(sj) ∧ 〈x, y〉 ∈ axis.

Definition 3.1 captures the relationship between edges in
the SD graph and the axis graph, and generalizes to several
axis the edge stability representation in XSketch [20]. Note
that all forward-stable edges are also existential. In Figures
2 and 3, existential edges are represented by dashed lines
and forward-stable edges by solid lines. A dashed line does
not necessarily mean that an edge is not forward-stable, it
might be that stability has not been checked on that edge
(existential edges in Figures 2 and 3 have been checked and
are not forward-stable). When an edge e and its inverse are
both forward-stable, e is shown in bold lines.

The notion of refinement [19] is well-known in the XML
summary literature. The goal of our refinement operation is
to make all edges of a neighbourhood, given by an AxPRE
in the SD graph, forward-stable. For that, we need the no-
tion of an AxPRE neighbourhood defined for an SD graph
rather than an axis graph. This notion is called summary
neighbourhood.

Definition 3.2 (Summary Neighbourhood) Let D be an
SD, s a node inD, α an AxPRE, and NFA(α) the Thompson
construction finite automaton of α accepting all prefixes.

The summary neighbourhood of s for α, denoted Nα(s), is
the subgraph of D product of the intersection between D
and NFA(α) such that s intersects with the initial state of
NFA(α).

If all edges in the α neighbourhood of SD node s are
forward-stable, then α describes in fact the extent of s. Sim-
ilarly, by following forward-stable edges we can construct
an AxPRE that provides a more detailed description of the
extent of s.

Example 3.1 Consider node s6 in Figure 2. Although
its current AxPRE is [item], which means that its ex-
tent contains only item elements, it is possible to infer
from the SD graph a more “detailed” AxPRE. Since edges
〈s6, s3〉, 〈s6, s8〉, and 〈s8, s9〉 are forward-stable, we could
write an AxPRE that expresses those relations, which is
[item].(c[title]|c[ym : group].c[ym : content ]). Such an
AxPRE tells us that not only the extent of s6 contains
item elements, but more precisely they also have title and
ym:group elements with nested ym:content elements.

Given an SD node s and an AxPRE α, Algorithm 3.3
computes an AxPRE partition of the extent of s for α that is
a refinement of the extent of s. This is achieved by stabiliz-
ing the α neighbourhood of s.

In order to stabilize a single edge, Algorithm 3.3 invokes
Algorithm 3.1, for different nodes, and Algorithm 3.2, for
the same node (loop).

Algorithm 3.1 (Edge Stabilization)
stabilizeEdge(sd, si, sj)

Input: An SD sd containing a non forward-stable edge e =
〈si, sj〉 with label axis
Output: An SD sd where e has been replaced by forward-
stable e′ = 〈s′i, sj〉.

1: create new nodes s′i and s′′i
2: extent(s′i) := {x ∈ extent(si) | ∃y ∈ extent(sj) ∧
〈x, y〉 ∈ axis}

3: extent(s′′i ) := extent(si)− extent(s′i)
4: axpre(s′i) := axpre(si)|axis[λ(sj)].axpre(sj)
5: axpre(s′′i ) := axpre(si)|axis[¬λ(sj)].
6: create an edge e′ = 〈s′i, sj〉
7: addEdges(si, {s′i, s′′i })
8: delete node si, and all its incoming and outgoing edges

While the definitions of the extents of s′i and s′′i are sim-
ilar to split [19] and B Stabilize [20], the main novelty here
is the ability to maintain an AxPRE characterizing the ex-
tents (lines 4 and 5).

Function addEdge(si, S) in Algorithm 3.1 simply
checks whether there are axis relations between nodes in
S and all SD nodes related to si by an edge, adding edges
when they are either existential or forward-stable.
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Figure 4. The c neighbourhood of s6 from Fig-
ure 2 after stabilizing edge 〈s6, s5〉

Example 3.2 Consider edge 〈s6, s5〉 from Figure 2. This
edge is not forward-stable because elements 12 and 24
are not related to any node in extent(s5) via the c axis
(i.e. there is no c edge from either 12 or 24 to a descrip-
tion element in Figure 1). Edge stabilization will create
two nodes, s61 and s62, such that extent(s61) = {6, 30}
and extent(s62) = {12, 24}. The new AxPRE of s61 is
[item]|c[description] and of s62 [item]|c[¬description].
The new edge 〈s61, s5〉 is forward-stable. The result of sta-
bilizing edge 〈s6, s5〉 is shown in Figure 4.

Algorithm 3.2 (Edge Unfolding)
unfoldEdge(sd, s, axis)

Input: An SD sd, a node s such that there exists e = 〈s, s〉
with label axis and e is not forward-stable
Output: The SD sd where there is no edge e = 〈s, s〉 with
label axis

1: k = 1
2: while there is an axis relationship in extent(s) - i.e., e =
〈s, s〉 with label axis is valid do

3: create a new node sk

4: extent(sk) := {x ∈ extent(s) | @y ∈ extent(s) :
〈x, y〉 ∈ axis}

5: extent(s) := extent(s)− extent(sk)
6: create an edge ek = 〈s, sk〉 with label axis
7: if k = 1 then
8: axpre(sk) := ε
9: else

10: axpre(sk) := axpre(s).axpre(sk−1)
11: create an edge e′k = 〈sk, sk−1〉 with label axis
12: delete the edge 〈s, sk−1〉
13: k := k + 1
14: rename s as sk

15: addEdges(s, {s1, . . . , sn})

Proposition 3.1 All edges ek and e′k produced by Algo-
rithm 3.2 are forward-stable.

Example 3.3 Consider edge 〈s9, s9〉 from Figure 2. The
edge is not forward-stable because some element in
extent(s9) is not in a ns relation with elements in the same
extent (for instance, there is no element that is the next
sibling of 36 in Figure 1). The first iteration of edge un-
folding creates a new node, s91, such that extent(s91) =

{11, 17, 29, 36} and extent(s9) = {10, 16, 28, 34, 35},
and adds a new edge 〈s9, s91〉 with label ns. Since
〈34, 35〉 ∈ ns, there is still a ns loop on node s9 and
the algorithm continues. The second iteration creates a
new node, s92, such that extent(s92) = {10, 16, 28, 35}
and extent(s9) = {34}, adds new edges 〈s9, s92〉 and
〈s92, s91〉 with label ns, and deletes edge 〈s9, s91〉. Since
there is now no ns loop on node s9, the algorithm renames
the node to s93 and the corresponding edges, and ends. The
new edges 〈s93, s92〉 and 〈s92, s91〉 are forward-stable. The
resulting nodes and extents are shown in Figure 3.

The AxPRE of an SD node can be “generalized” when
the neighbourhood of the node satisfies certain conditions.
We define this notion of AxPRE generalization next.

Proposition 3.2 (AxPRE Generalization) Given an SD s
and an AxPRE α for s, if α contains a subexpression
αaxis = axis[l1]| . . . |axis[ln] and l1 . . . ln are the labels
of all nodes matched by axis on forward-stable edges, then
αaxis can be replaced by α′axis = axis. The new AxPRE
thus obtained expresses the same neighbourhood of s as α.

Example 3.4 Consider node s61 from Figure 4. The de-
tailed AxPRE (see Example 3.1) for s61’s c neighbour-
hood is [item]|c[description]|c[title]|c[ym : group]. Since
such AxPRE satisfies Proposition 3.2, it can be replaced by
[item]|c.

We have now all the building blocks for introducing the
Neighbourhood Stabilization Algorithm, which computes a
refinement of the extent of an SD node s for an AxPRE α.

Algorithm 3.3 (Neighbourhood Stabilization)
StabilizeNeighbourhood(sd, α, s)

Input: An SD sd, an AxPRE α, and a node s
Output: An SD where all the edges in the α neighborhood of
s are forward-stable

1: compute the α neighbourhood of s
2: S = {s′ | s′ is in the α neighbourhood of s}
3: while S 6= ∅ do
4: pick a node s′ in S such that s′ is at the end of the

longest simple path from s
5: for each edge e = 〈s′, s′〉 do
6: unfoldEdge(sd, s′, axis)
7: for each edge e = 〈s′′, s′〉 do
8: stabilizeEdge(sd, s′, s′′)
9: remove s′ from S

Example 3.5 Consider node s6 in Figure 2 and suppose
we want to refine it with AxPRE [item]c.fc.ns∗. First, Al-
gorithm 3.3 will find the [item]c.fc.ns∗ neighbourhood of
s6, which consists of the c edges from s6, the fc edge from
s8 and the ns edge from s9 (Figure 2). Then, it unfolds
edge 〈s9, s9〉 labeled ns, as described in Example 3.3. Fi-
nally, it stabilizes edge 〈s6, s5〉, as described in Example
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3.2. Figure 3 shows the resulting SD after applying AxPRE
generalization (Proposition 3.2).

4 DescribeX Implementation

In this section we discuss how the framework introduced
in Sections 2 and 3 is implemented in our tool, DescribeX.
The tool is geared to support the interactive creation and re-
finement of AxPRE SDs for large collections of XML doc-
uments. We present two strategies for refining an SD: one is
based on materializing the SD partitions, the other utilizes
a novel virtual approach that relies on constructing XPath
expressions that compute extents.

We implemented DescribeX in Java using Berkeley DB
Java Edition to store and manage indexed collections (ta-
bles). The DescribeX System architecture is tailored to pro-
cess XML collections one file at a time, the prevalent data
processing model for the Web. Each file is parsed, pro-
cessed and stored before continuing with the next file in the
collection. The DescribeX System can invoke an arbitrary
XPath processor for the evaluation of XPath expressions.
For the experiments reported later in this paper, the Saxon 6

XPath processor was employed.
In the DescribeX System, the extents are stored in an in-

dexed table named elemDB that has schema elemDB(SID,
docID, endPos, startPos, SID2), where the under-
lined attributes are the key (also used for indexing). The
elemDB table contains a tuple for each XML element in
the collection. Each SD node is identified by a unique id
called SID. Each element belongs to the extent of a unique
SD node, whose SID is stored in the SID attribute. The at-
tribute docID holds the identifier of the document in which
the element appears. The startPos and endPos are
the position, in the document, where the element starts and
ends, respectively. SID2 allows us to maintain an SID for
more than one SD. The SD graph is kept in main memory
in separate hash tables for each axis relation in the SD.

Alternatively, the user can decide to keep the extents
virtual and thus having a docDB table instead of the
elemDB table described above. The schema of docDB is
elemDB(SID, docID), which contains for each sid s the
docIDs of all XML documents containing elements in the
extent of s. This can be used to efficiently locate the XML
documents to be evaluated by the extent expression (EE for
short) of s in order to get the extent of s.

The SD graph is kept in main memory in separate
hash tables for each axis relation in the SD, e.g. the
parentsMap and childrenMap maps contain the edge
definitions for the p and c SD axes respectively. In other
words, each binary axis relation is stored as a map be-
tween a key SID s and a set of SIDs s1, . . . , sn such that

6http://saxon.sourceforge.net/

buildP(k)

Input: Collection C of XML documents
Output: pk SD

1: for each XML document doc in collection C do
2: assign a new docID d to doc
3: create a new DOM tree t
4: while parsing doc do
5: if element start tag is found in doc then
6: create a new e in t with XML attributes sid,

startPos, and endPos set to empty
7: if the pk neighbourhood of e is not in the SD

graph then
8: create a new SID s′

9: update labelMap, parentsMap, and
childrenMap

10: store the pk XPath expression of s′ in the
EE XML file

11: get the sid s of e from the SD
12: set e.sid to s and e.startPos to the offset

position of the start tag of the element
13: if element end tag is found in doc then
14: set e.endPos to the offset position of the

end tag of the element
15: append tuple

(e.s, d, e.endPos, e.startPos) to elemDB

Figure 5. pk SD construction

〈s, si〉 ∈ axis, 1 ≤ i ≤ n. In addition, there is a label
map, labelMap, that contains the label of each SD node.
Finally, there is an XML file that stores the EE expressions.

We describe next the construction of the initial SDs per-
formed in one-pass over the collection. After that, we show
how to implement the refinements presented in Section 3
using the XPath processor and DescribeX data structures 7.

4.1 Initial SD Construction

Some SDs can be constructed in one-pass over the col-
lection. This is possible when the parsing information col-
lected at either the start tag or the end tag of an element
v is enough to construct the AxPRE neighbourhood Nα(v)
of the element, compute the AxPRE partition and thus de-
cide what SD extent v belongs to. For instance, the start
tag itself is enough to classify an element v when construct-
ing the ε SD (the Nε(v) contains just node v). For the pk

and p∗ SDs, it suffices to keep the sequence of the last k
open elements (for the pk) or all of them (for the p∗) for
creating Npk(v) and Np∗(v). Thus, pk and p∗ SDs can be
constructed in one-pass over the collection.

7Additional implementation details are given in
http://www.cs.toronto.edu/∼consens/describex/
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Algorithm buildP(k) (Figure 5) illustrates the use of
the DescribeX data structures introduced in Section 4.
BuildP(k) computes the ε, pk and p∗ SDs. The parame-
ter k encodes the SD as follows: k = 0 corresponds to ε,
k = maxint to p∗, and all other values represent pk. For
each XML document in the collection, the algorithm parses
the document and creates a DOM tree 8), which will then
be used for updating the SD. The DOM tree and the SD are
constructed simultaneously during parsing time.

Once an SD has been constructed from scratch, the user
can refine any SD node or set of nodes by changing the
node’s AxPRE, as described in Section 3.

4.2 Expressing Virtual Extents in XPath

In DescribeX, the extents of any SD node can be precom-
puted and stored in a data structure. This approach, which
we call materialized extents, requires to have a pointer to
every XML element in the collection and thus can be very
space consuming. A more space-efficient approach is to
keep an EE that represents all elements in the extent of a
given SD node s, denoted ee(s). In these virtual extents,
the evaluation of the ee(s) returns the actual extents of s.
DescribeX virtual extents are a compact representation of
the extents, similar to the concept of virtual view with the
addition of the non-monotonic property.

We discuss next how to construct the EEs. Since an
EE computes the extent of an SD node s in an axis graph
regardless of any variable context, they are of the form
ee(s) = /descendant-or-self :: l/locpath, where l is an
element label and locpath is the remainder of the EE. We
call the self :: l/locpath subexpression the relative extent
expression (REE, for short) of s, denoted ree(s). The EE
of s can always be constructed from the REE of s because
ee(s) = //ree(s) in XPath abbreviated syntax.

Each AxPRE α of an SD node s created by Algorithms
3.1 and 3.2 has an equivalent EE es that can compute the
extent of s. Such EEs can be created by adding lines 4′ :
ree(s′i) = ree(si)[axis :: ∗ [ree(sj)]][count(axis :: ∗) =
count(axis :: ∗[ree(sj)]] and 5′ : ree(s′′i ) = ree(si)
[count(axis :: ∗[ree(sj)]) = 0] to Algorithm 3.1, and lines
8′ : ree(si) = ree(s)[count(axis :: ∗) = 0] and 10′ :
ree(si) = ree(s)[axis :: ∗[ree(si−1)]] [count(axis :: ∗) =
count(axis :: ∗[ree(si−1)]] to Algorithm 3.2. The count
predicates are in the EEs to make sure that all nodes in
the answer of ee(s′i) satisfy only the [axis :: ∗[ree(sj)]
predicate, and all nodes in the answer ee(s′′i ) are not in the
answer of ee(s′i). This guarantees that ee(s′i) and ee(s′′i )
compute a partition of the nodes in the answer of ee(si).

Example 4.1 Consider edge 〈s6, s5〉 from Figure
2, which is not forward-stable. Edge stabiliza-

8http://www.w3.org/TR/REC-DOM-Level-1

refineVirtual(sd, s, r1, . . . , rn, extent)

Input: sd is the SD, s is the sid to be refined, r1 . . . rn
is a family of refining XPath EEs
Output: Updated sd, extent with the element in the
extent of si

1: get the XPath EE es of s
2: for each input ri do
3: create a new sid si
4: for each d s.t. there is a tuple td in docDB with

td.SID = s and td.docID = d do
5: create a DOM tree t of d in which each ele-

ment has an endPos attribute with the offset
position of the end tag of the element

6: assign to extent the answer of /es/ri
7: update labelMap by assigning the label of s

to the new si
8: store the ri XPath expression of si in the EE

XML file
9: for each axis in sd do

10: call computeEdgeByXPath(sd, axis, si, extent, s)
to test the existence of an axis edge from si

Figure 6. Refine virtual extents

tion will create two nodes, s61 and s62 from Fig-
ure 4. Given that ree(s5) = self :: description ,
and the stabilized edge corresponds to a c axis,
ree(s61) = self :: item[child :: ∗[self :: description]]
[count(child :: ∗) = count(child :: ∗[self :: description])]
and ree(s62) = self :: item[count(child :: ∗[self ::
description]) = 0].

Since each AxPRE refinement generates several EEs,
one for each new SD node to be created by the refinement,
computing a refinement involves evaluating a wide range of
different EEs.

4.3 Computing Refinements

Following the materialized extents approach the refine-
ment can be evaluated with Algorithm refineMaterialized
(Figure 8), whereas virtual extents can be refined by Algo-
rithm refineVirtual (Figure 6). Both algorithms are invoked
with sid s to be refined, its current EE es, and a family
r1 . . . rn of refining EEs, constructed as described in Sec-
tion 4.2.

Suppose that SD node si with EE ri is one of the refine-
ments of SD node s with EE es. The extent of si is com-
puted by evaluating ri on the set of documents that contain
elements in the extent of s, which entails evaluating the ex-
pression /es/ri (line 6 of algorithms in Figures 6 and 8).
This set of documents are obtained from ElemDB (if the

8



computeEdgeByXPath(sd, axis, si, extent, s)

Input: sd is the SD, axis is the axis edge to be com-
puted, si is the new sid, extent is the extent of si, and s
is the sid being refined.
Output: Updated sd

1: assign to candidates the set of sids {c1, . . . , cn}
mapped to s in axisMap

2: for each cj in candidates do
3: get the EE ej of cj from the EE XML file
4: evaluate the intersection expression e = axis ::

∗ ∩ ej from extent
5: if the evaluation of e is not empty then
6: add an axis edge between si and cj to the cor-

responding axisMap

Figure 7. Compute edges with XPath

extent of s is materialized) or from docDB (if the extent of
s is virtual). Once we have the extent of si, the edges in
the SD graph can be constructed either from the EE when
the extent is virtual (by computeEdgeByXPath, line 10 of
Algorithm refineVirtual) or from ElemDB when the extent
is materialized (by computeEdgeByMerge, line 13 of Algo-
rithm refineMaterialized).

In order to update the edges we need to check whether
there is an axis edge between si and a set of candidate
SD nodes c1, . . . , cn such that 〈s, cj〉 ∈ axis. This is per-
formed by Algorithm computeEdgeByXPath (Figure 7) by
computing the expression esr/axis :: ∗ ∩ ecj , where ecj

is the EE of candidate cj (line 4). If the evaluation of the
expression is not empty, then there exists and edge from si
to cj , otherwise there is no edge (lines 5 and 6).

Algorithm computeEdgeByMerge (not shown in the Fig-
ures), in contrast, simply computes a merge of the ElemDB
using the startPos and endPos attributes to check for
containment and precedence, depending on the axis edge
being computed.

5 Experimental Results

In this section we report running times of both SD con-
struction and AxPRE refinements. We conducted five sepa-
rate runs starting with a cold Java Virtual Machine (JVM),
for each query. The best and worst times were ignored and
the reported runtime is the average of the remaining three
times. The experiments were carried on a Windows XP Vir-
tual Machine running on a 2.4GHz dual Opteron server, and
the JVM was allocated 1 GB of RAM.

refineMaterialized(sd, s, r1, . . . , rn)

Input: sd is the SD, s is the sid to be refined, r1 . . . rn
is a family of refining XPath EEs
Output: Updated sd

1: get the XPath EE es of s
2: for each input ri do
3: create a new sid si
4: for each d s.t. there is a tuple td in elemDB with

td.SID = s and td.docID = d do
5: create a DOM tree t of d in which each ele-

ment has an endPos attribute with the offset
position of the end tag of the element

6: assign to extent the answer of /es/ri
7: for each element nj in extent do
8: locate the tuple tj in the elemDB ta-

ble corresponding to nj by using (s, d,
nj .endPos) as a key

9: assign si to tuple tj by setting tj .SID = si
10: update labelMap by assigning the label of s

to the new si
11: store the ri EE of si in the EE XML file
12: for each axis in the SD do
13: call computeEdgeByMerge(sd, axis, si, extent, s)

to test the existence of an axis edge from si

Figure 8. Refine materialized extents

Table 1. Test Collections
Collection MB #docs Load (sec)
Wikipedia10 1050 90000 736
RSS4 420 19200 452

5.1 Comparing Initial SD Construction

Table 1 summarizes the size and number of documents
of our test collections, and the load time for the p∗ SD
(Section 4.1), which includes computing the partitions and
storing them in the ElemDB table. The first collection
(Wikipedia10) was created from the Wikipedia XML Cor-
pus provided in INEX 2006 [10]. The second collection
(RSS4) was obtained by collecting RSS feeds from thou-
sands of different sites.

Table 2 shows comparable results for SD graph con-
struction times between DescribeX and an open-source

Table 2. SD Graph Construction Times (sec)
Collection Size (MB) DescribeX XSum
XMark1 115 17.3 12.8
XMark5 580 60.8 62.2
XMark10 1150 118.1 122.1
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Table 3. SD nodes and EEs
SD Node Extent Expression (EE) for p∗ AxPRE
w1 /article/body/figure
w2 /article/body/section/section/section/figure
w3 /article/body/section/p/sub
r1 /rss/channel/image
r2 /rss/channel/item/item
r3 /rss/channel/item/body/blockquote/p

XML summarization tool, XSum [2], which constructs an
annotated p∗ SD graph (a dataguide). XSum does not
store neither the extents nor EEs, it only creates a p∗ SD
graph. To the best of our knowledge, this is the only
structural summarization system publicly available. More-
over, no other work in the extensive literature on summaries
[13, 17, 15, 16, 21, 4, 20] reports construction times for their
systems.

Since XSum can only summarize individual files, we
were not able to test it with our benchmark collections.
Thus, we decided to do the comparative evaluation using
the XMark benchmark [5], which creates one single file of
a chosen size.

5.2 Refinement Times

Table 3 shows the SD nodes we refined and their EEs
before the refinement. For instance, w1 corresponds to the
node p∗ SD node that has /article/body/figure/ as its EE. Our
benchmark queries were designed with scalability in mind:
smallest and largest extents and number of documents in-
volved in the AxPRE refinements are at least three orders
of magnitude apart (from 6 documents in r2 to 17369 doc-
uments in w1).

Table 4 reports refinement times for the SD nodes pro-
vided in Table 3. For each collection, we compare two
AxPRE refinements, each one on three different SD nodes.
That is, we picked three different p∗ SD nodes from each
collection and refine them by p∗|c∗ and p∗|c.fs. These two
refinements were chosen to show the DescribeX’s perfor-
mance with AxPREs involving common axes used through-
out the summary literature (e.g. p and c), together with
novel axes (e.g. fs).

The number of new SD nodes created by the refine-
ments are reported in the # columns of Table 4. For
instance, the refinement p∗|c.fs of w3 using Algorithm
3.3 partitions w3 into 6 new SD nodes. The EE of
one them is ee(w3)[child :: ∗[ree(s1)]][count(child ::
∗) = count(child :: ∗[ree(s1)])], where ree(s1) =
self :: emph2[following-sibling :: ∗[ree(s2)]][count(
following-sibling :: ∗) = count(following-sibling ::
∗ [ree(s2)])] and ree(s2) = self :: emph2
[count(following-sibling :: ∗) = 0] are the result of Al-

Table 4. Refinement Times (sec)
SD Extent Size p∗|c∗ p∗|c.fs

Node Doc Elem # V M # V M
w1 17369 21296 85 67 11.3 6 208 40
w2 317 687 26 7.9 2.8 2 64 27
w3 581 2822 8 47 15.9 6 19 8
r1 3300 3300 15 34 9.9 15 33 11
r2 6 6 2 0.6 0.3 2 0.7 0.2
r3 16 158 19 0.3 0.1 6 0.5 0.4

gorithm 3.3 stabilizing the p∗|c.fs neighbourhood of w3.
We consider two scenarios, one in which the extents are

pre-computed and stored in the ElemDB table, and another
in which the extents are not materialized and are thus rep-
resented by the EEs (see Section 4.2). The average running
times per EE evaluated are shown under the V columns for
the “virtual” extents, and under the M columns for the “ma-
terialized” extents. The reported average times comprise
locating the affected files using the SD, opening them and
evaluating the EE.

The time differences between the V and M columns
come from the fact that, for the virtual extents, DescribeX
has to evaluate the XPath expression for computing the
edges between the new SD nodes. This is more costly than
evaluating the edges from the information stored in the El-
emDB table.

In contrast, time differences between rows is mainly due
to the different number of document and elements on which
the EE is evaluated. For instance, the extent of w1 (/arti-
cle/body/figure) consists of 21296 elements on 17369 files,
and the EEs of both refinements tested have to be evaluated
on those files. In general, the refinement times increases
proportionally to the number of documents that need to be
opened for computing the AxPRE refinement.

Our results show that DescribeX can provide interactive
response times (from sub second to just a few seconds) for
most refinements, even with Gigabyte size collections. This
is compelling evidence that DescribeX can be used in sce-
narios like the one described in Section 1.1.

6 Related Work

The large number of summaries that have been proposed
in recent years clearly establishes the value and usefulness
of these structures for describing semistructured data, as-
sisting with query evaluation, helping to index XML data,
and providing statistics useful in XML query optimization.

DescribeX summaries can be classified in a lattice that
describes a refinement relationship between entire sum-
maries. Figure 9 shows a fragment of a DescribeX summary
lattice that captures earlier proposals based on the notion of
bisimilarity [11]. Each node in the lattice of Figure 9 cor-
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Figure 9. DescribeX lattice capturing earlier
homogeneous proposals

responds to a homogeneous SD defined by an AxPRE. The
node labels indicated in green are the names of the proposal
that each node captures. Nodes and edges in blue are a sam-
ple of the richer SDs that were never considered in the liter-
ature, like the one that appears in Figure 3 (c.fc.ns∗) or in
Section 5 (p∗|c.fs).

The earliest bisimilarity-based summary proposal is the
family presented in [17], which contains a p∗ summary: the
1-index. The 1-index partition is computed by using bisim-
ulation as equivalence relation. The F&B-Index [15], is
an example of a (p|c)∗ SD. The F&B-Index construction
uses bisimulation like the 1-index, but applied to the edges
and their inverses in a recursive procedure until a fix-point.
The same work introduces the F+B-index (a p∗|c∗ AxPRE
summary constructed by applying bisimulation to the edges
and their inverses only once) and the BPCI(k,j,m) index (a
(pk|cj)m AxPRE summary, where k, and j controls the
lengths of the paths and m the iterations of the bisimulation
on the edges and their inverses). The A(k)-index [16] is a
pk AxPRE summary based on k-bisimilarity (bisimilarity is
computed for paths of lenght k).

There has been almost no activity on summaries that
capture the node ordering in the XML tree: the only pro-
posals we are aware of are the earlier region order graphs
(ROGs) [7] and the Skeleton summary [4] that clusters to-
gether nodes with the same subtree structure. Skeleton uses
an entirely different construction approach, but its essence
can be captured by the (fc.ns∗)∗ AxPRE.

The D(k)-index [21], and M(k)-index [14] are hetero-
geneous SD proposals. All nodes si are described by
Nd[pk](si) with a different k per si. They use different con-
struction strategies based on dynamic query workloads and
local similarity (i.e. the length of each path depends on its
location in the XML instance) to determine the subset of
incoming paths to be summarized.

XSketch [20] manages summaries capturing many (but

not all) heterogeneous SD’s along the p and c axis, ranging
from the label summary to the F&B-Index. However there
is no control over the refinements chosen, nor a descrip-
tion of the intermediate summaries obtained. This makes
sense given that XSketch objective is to provide selectivity
estimates, as such its construction algorithm is guided by
heuristics to optimize the space/accuracy trade-off.

Other summary proposals are defined without resort-
ing to bisimulation. A number of them are equivalent to
bisimulation-based summaries when the data instances are
trees. These include Region Inclusion Graphs (RIGs) [7],
Representative Objects (RO) [18], strong dataguides [13],
and ToXin [22].

Another heterogeneous proposal that uses an ad-hoc con-
struction mechanism is APEX [6], an adaptive path index
that summarizes paths that appear frequently in a query
workload. The workload considered by APEX are limited
to expressions containing a number of child axis composi-
tion that may be preceded by a descendant axis, without
any predicate.

7 Conclusion

This paper focuses on addressing the need to describe
the actual structure of web collections of XML documents
using a novel framework (and related tool, DescribeX) to
manipulate summaries that can be conveniently tailored us-
ing AxPRE expressions. Our main results demonstrate the
scalability of AxPRE summary refinements (the key enabler
for tailoring summaries) using gigabyte XML collections.
There are further opportunities for exploiting the flexibility
available in AxPRE-based summaries in the context of tra-
ditional summary applications to query evaluation (see [8]),
indexing, selectivity estimation, and query optimization.

Familiar research issues can be re-visited in the context
of AxPRE summaries; how to give guidelines for selecting
good summaries (similar to schema design); or how to in-
fer general and succinct AxPRE expressions from an XML
collection (similar to DTD inference from instances). Pro-
viding tools for metadata management is also addressed in
a very complementary way by a recent schema summariza-
tion proposal [24]. A combination that creates summaries
that describe how metadata labels (including some gen-
erated using schema abstraction and summarization tech-
niques) are used in a given instance seems promising.

Finally, the notion of bisimulation originated in fields
other than databases (concurrency theory, verification,
modal logic, set theory), where it continues to find ap-
plications. It would be interesting to explore whether the
more flexible notion used in this paper (selective bisimilar-
ity applied to subgraphs described by AxPREs) can also find
novel applications in such areas.
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