
Ontology Aided Smart Contract Execution
for Unexpected Situations
Farhad Mohs in , X ing j ian Zhao, Zhuo (Rob in) Hong,
Geeth de Mel , L i rong Xia , and Oshani Seneviratne

10/27/19
2

Blockchain and Smart Contract

• Blockchain enables trustworthy data
sharing between untrusting parties in a
tamper-proof manner

• Smart contracts enables us to add logic to
govern updates via transactions

• Once the smart contracts are set in motion,
they cannot be changed!

Can we predict, detect, and fix unexpected
situations in smart contracts?

10/27/19
3

Limitations of Smart Contracts

• Immutable
• No way out for a break-glass-in-case-of-emergency scenarios
• Need to foresee all unexpected situations
• We need a solution when smart contracts aren’t as smart as they need be

Our Proposal
Use Oracles to change how smart contracts execute, so unexpected situations may

be resolved

10/27/19
4

Oracles in Blockchain

https://developer.ibm.com/articles/cl-extend-blockchain-smart-contracts-trusted-oracle/

• Trusted system for information transfer
• Good for extending smart contracts with
off-chain complex logic
• To integrate volatile knowledge, e.g., stock
price

• Complex business rules

https://developer.ibm.com/articles/cl-extend-blockchain-smart-contracts-trusted-oracle/

10/27/19
5

Ontology based Oracle for Smart Contract Execution

• Blockchain to will act as a verifiable data structure
• Logic for each transaction will be performed off-chain

Smart
Contract

Oracle

Send necessary data to
check transaction status

Return true/false on
transaction constraints

Check if current status
satisfies conditions

Completes/rejects
transaction

10/27/19
6

Example: Decentralized Course Selection

4

2

1

3
CS1

4

2

1

3 CS1

1st Day 2nd Day

But, no proper function in the
original Smart Contract!

Unexpected Situation
A freshman student with a very
good GPA gets a special
permission to enroll in an
already full course.

10/27/19
7

Decentralized Course Selection (DCS) Ontology

Legend
rdfs: = Resource Description
Framework Schema
dcs: = Decentralized Course
Selection

10/27/19
8

Off-Chain Rule Update
Updated Rule

Student(?s) ∧
hasYear(?s,?y) ∧
Course(?c) ∧
hasRequiredYear(?c, ?ry) ∧
hasMaxCapacity(?c, ?mc) ∧
hasCurrentSize(?c, ?curr) ∧
swrlb:greaterThanOrEqual(?y, ?ry) ∧
swrlb:lesserThan(?curr, ?mc)
→
canAddCourse(?s, ?c)

Student(?s) ∧
hasGPA(?s, ?g) ∧
hasRequiredGPA(?c, ?rg) ∧
hasYear(?s,?y) ∧
Course(?c) ∧
hasRequiredYear(?c, ?ry) ∧
hasMaxCapacity(?c, ?mc) ∧
hasCurrentSize(?c, ?curr) ∧
swrlb:greaterThanOrEqual(?g, ?rg) ∧
swrlb:greaterThanOrEqual(?y, ?ry) ∧
swrlb:lesserThan(?curr, ?mc)
→
canAddCourse(?s, ?c)

Initial Rule

10/27/19
9

DCS Instance Graph

10/27/19

10

Governance Structure

• Pre-processor determines an action list
• Smart Contract Execution Engine executes

the action that was selected by the peers

Model
asset A{

a1
a2

}
participant B{

b1
b2

}

Script{
transaction t1{
//...
}

Model
asset A{

a1
a2

}
participant B{

b1
b2
vote_data

}

Script{
transaction t1{
//...
}

//new
transactions

start_vote{}
submit_vote{}
end_vote{}

//action list
change_a1{}
change_a2{}
change_b1{}
change_b2{}
}

Analyze
Smart
Contract

Model
asset A{

a1
a2

}
participant B{

b1
b2
vote_data

}

Script{
transaction t1{
//...
}

//new
transactions

start_vote{}
submit_vote{}
end_vote{}

//action list
change_a1{}
change_a2{}
change_b1{}
change_b2{}
}

voting
Smart
Contract
Execution

execute
change_a1()

Preprocessor

Smart
Contract

Execution
Engine

Strengthening Smart Contracts to
Handle Unexpected Situations;
Shuze Liu, Farhad Mohsin, Lirong Xia,
Oshani Seneviratne; International
Conference on Decentralized
Applications and Infrastructures 2019

10/27/19
11

Future Work: Proposed Voting Mechanism for Updating the Ontology

Submit proposals in form of
rules

Other Users Oracle

Check condition for
proposers

Initiator

Request proposals from
select users

Smart
Contract

Provide users satisfying
proposer constraint

Start vote with necessary conditions for proposers and voters defined

Provide users satisfying
voter constraint

Request votes on proposals
from select users

Vote on proposed rules
Report winning consistent

rule

Check condition for
voters

Implement consistent
change to transaction

constraints

10/27/19
12

Implementation Concerns
• Rules and attributes should only be changed to an extent.

• E.g. course.MaxCapacity may be changeable, student.GPA should probably not be changed

• For privacy concerns, the oracle should receive data necessary for forming
instances for each transaction and never store a complete knowledge graph

• Update on the rules should only occur from the smart contract and protected
against external tampering

10/27/19
13

Summary

• Utilization of external rules to augment the
smart contract logic

• If there is a gap in the logic, the external
oracle could be updated

10/27/19
14

Questions?

https://idea.tw.rpi.edu/projects/scales

SCALES – Smart Contracts Augmented
with LEarning and Semantics

senevo@rpi.edu

https://idea.tw.rpi.edu/projects/scales

