SmartChainDB: Towards Semantic Events on
Blockchains for Smart Manufacturing

Abhisha Bhattacharyya, Rahul lyer, Kemafor Anyanwu

October 26, 2019

N C state U n |Ve rSIty This work is funded by NSF grant CNS-1764025

Introduction

® Blockchains are increasingly being appropriated for different business
processes

® Business processes typically comprise of different kinds of
transactions, events and actors

® Beyond the need to support codifying of complex transactional
processes, there is also a need to enable actors be notified about
business process events relevant to them.

N C state U n |Ve I”Slty This work is funded by NSF grant CNS-1764025

Smart Contracts

® Mainstream blockchain platforms provide two core first-class
primitives that support the ability to create and transfer assets
® Beyond the steps of creating and transferring assets, the rest of
business process behavior is "hidden” in programs referred to as
Smart Contracts.
® immutable blocks of code that when deployed on a blockchain executes
automatically when certain conditions are met

N C State U n |Ve I”Slty This work is funded by NSF grant CNS-1764025

Blockchains — Smart Contracts

® Steps in a business process, other than creating and transferring
assets, are encoded as functions e.g. bid, withdraw. ., etc.

® These functions emit "events" (represented as strings in an event log)
that can be consumed by the external environment
® From the point of view of usability, there are three key things that
target users need from platforms managing smart contracts:
® to be able to discover their existence
® to be able to understand their behavior
® to know when interesting application events have occurred during their
execution

N C State U n |Ve I”Slty This work is funded by NSF grant CNS-1764025

An Example Smart Contract

contract Auction { function bid() public payable an_ongoing_auction returns (bool){
require(bids[msg.sender]+msg.value> highestBid, "Make a higher Bid");
address internal auction_owner; highestBidder = msg.sender;
uint256 public auction_start; highestBid - msg.value;
uint256 public auction_end; bidders.push(msg.sender);
uint256 public highestBid; bids[msg.sender]= bids[msg.sender]+msg.value;
address public highestBidder; emit BidEvent(highestBidder, highestBid);

enum auction_state{ return true;

CANCELLED, STARTED

struct car{ function cancel_auction() external only_owner an_ongoing_auction returns (bool){
string Brand; STATE-auction_state. CANCELLED;
string Rnumber; emit CanceledEvent("Auction Cancelled”, now;
return true;
car public Mycar; }
address[] bidders;
mapping(address => uint) public bids; function withdraw() public returns (bool){
auction_state public STATE; require(now > auction_end ,"You can't withdraw, the auction is still open");

L . . uint amount;
modifier an_ongoing_auction(){

require(now <= auction_end); amount-bids[msg. sender];
- bids[msg. sender]=0;
} msg.sender . transfer(amount);
modifier only_owner(){ emit WithdrawalEvent(nsg.sender, amount);
require(msg.sender==auction_owner); return true;
- N

}

function bid() public payable returns (bool){}
function withdraw() public returns (bool){}
function cancel_auction() external returns (bool){}

event BidEvent(address indexed highestBidder, uint256 highestBid);
event WithdrawalEvent(address withdrawer, uint256 amount);
event CanceledEvent(string message, uint256 time);

C state U n |Vers|ty This work is funded by NSF grant CNS-1764025

Motivation(1)

® Several issues with the current model

® Anyone who wants to setup an auction has to implement auction
contract with perhaps similar behavior

® Potential consumers/customers will need to understand the terms of
contract implemented in code

® But how does one find out that there is an auction contract of interest
in the first place? e.g. auction for an automobile by their
preferred manufacturer

® |t may be possible to implement a publish/subscribe model based on
the data in the event log, buts it usability will be limited by the well
known "keyword search problem”

N C State U n |Ve I”Slty This work is funded by NSF grant CNS-1764025

Motivation(2): Need for More Complex Event Detection

¢ Consider a CyberManufacturing scenario (being made increasingly
popular by the increasing complexity of manufacturing and
technologies like 3D-printing)
® Manufacturers may want to post requests for quotes for
manufacturing capabilities
® Potential suppliers will need to be made aware of requests for quotes
that match their capabilities

® Even simple manufacturing capability description requests cannot be
suitably represented with just textual phrases
® terminological differences will present the first obstacle e.g. additive
manufacturing vs. 3D-printing
® descriptions may be implicit and may require some semantic mapping,
e.g. If Material = PolyCarbonate and Quantity < 10 Then
Capability is 3D-Printing
e Existing topic-based publish/subscribe models that are based on
keyword topic labels will not be adequate

N C State U n |Ve I”Slty This work is funded by NSF grant CNS-1764025

Our Position

® |t is necessary to introduce additional primitives that will support a
broader range of business process steps to be captured declaratively
e.g. Request For Quote, Bid,

® A major success factor for relational database systems!!

® Need to support semantic technologies e.g. ontologies and ontological
reasoning integrated with publish/subscribe models

Additional requirements such as privacy
These ideas are being implemented in a project called SmartChainDB

® SmartChainDB builds on the BigChainDB blockchain platform
® BigChainDB's architecture is more amenable to the nature of
extensibility desired

N C State U n |Ve I”Slty This work is funded by NSF grant CNS-1764025

SmartChainDb — Architecture

©
e
B o=
Y o
APACHE +E
kafk 5 2
arka. > g
€ 0o
&)
K 2
[}

J

PRE—
Semantic Layer

Client Ul + SmartChainDB driver

Cient Ul +
SmartChainDB driver

& @
& - @
& - @
Q- AN e Q)

Clients Clients
(Requestors) (Suppliers)

\ C state U n iVerSity This work is funded by NSF grant CNS-1764025

Conclusion

® Work is ongoing a
® (Contact: kogan®ncsu.edu

® Acknowledgements

® CoPlIs - Binil Starly (Professor of Industrial System Engineering),
Alessandra Scafuro (Assistant Professor of Computer Science)
® Funding: National Science Foundation

N C state U n |Ve rSIty This work is funded by NSF grant CNS-1764025

