
Large-Scale Analysis of the Co-Commit Patterns of the
Active Developers in GitHub’s Top Repositories

Eldan Cohen
ecohen@mie.utoronto.ca
University of Toronto

Toronto, Canada

Mariano P. Consens
consens@mie.utoronto.ca
University of Toronto

Toronto, Canada

ABSTRACT
GitHub, the largest code hosting site (with 25 million public active
repositories and contributions from 6 million active users), pro-
vides an unprecedented opportunity to observe the collaboration
patterns of software developers. Understanding the patterns behind
the social coding phenomena is an active research area where the
insights gained can guide the design of better collaboration tools,
and can also help to identify and select developer talent. In this
paper, we present a large-scale analysis of the co-commit patterns
in GitHub. We analyze 10 million commits made by 200 thousand
developers to 16 thousand repositories, using 17 of the most popular
programming languages over a period of 3 years. Although a large
volume of data is included in our study, we pay close attention
to the participation criteria for repositories and developers. We
select repositories by reputation (based on star ranking), and we
introduce the notion of active developer in GitHub (observing that
a limited subset of developers is responsible for the vast majority
of the commits). Using co-authorship networks, we analyze the
co-commit patterns of the active developer network for each pro-
gramming language. We observe that the active developer networks
are less connected and more centralized than the general GitHub
developer networks, and that the patterns vary significantly among
languages. We compare our results to other collaborative environ-
ments (Wikipedia and scientific research networks), and we also
describe the evolution of the co-commit patterns over time.
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1 INTRODUCTION
Withmore than 25million public repositories,1 GitHub is the largest
online code host. The recent surge in social coding, together with
large, publicly available datasets, provides a great opportunity to
study the collaboration patterns in large developer networks. Un-
derstanding the characteristics of GitHub can help researchers
and practitioners design better tools for supporting and enhancing

1At the end of 2017, as described in https://octoverse.github.com.
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social coding, and perhaps discover new ways to encourage collab-
oration [32]. Insights gained from analyzing GitHub patterns can
also lead to a better assessment of software developer productivity
at the individual and group level (as it has been shown for scientific
research productivity, e.g. [5]). In fact, many recruiters are relying
on the candidates’ GitHub profile as a significant factor in hiring
decisions [7, 31], and collaborative recruiting platforms (such as
lever.co, hikido.com, sourcinglab.io) support identification
and selection of applicants based on their social coding activities.

Recent work on mining GitHub, as well as analyzing collab-
oration patterns in large-scale online environments, highlighted
several challenges that should be addressed. Cosentino et al. [6]
analyzed 93 research papers that address the task of mining GitHub
and found that most papers use datasets of small or medium size,
with only 5.4% of the papers applying much-needed longitudinal
studies (e.g., evolution analysis). Kalliamvakou et al. [16] explained
that while GitHub is a rich source of data on software develop-
ment, mining GitHub for research purposes should take various
potential perils into consideration. Examples for such perils are the
large number of repositories that are inactive or have low-activity,
the large number of personal repositories, and the limitations of
GitHub’s API. When studying collaboration patterns in GitHub,
other considerations should be taken into account. As a rapidly
growing online environment, many of the contributions are ex-
tremely small, and many are being rolled-back in a short while.
The time dimension is also important, GitHub is a fast-growing
network and the collaboration patterns change over time.

The challenges of analyzing large online communities are not
unique to social coding sites. Laniado and Tasso [17] used co-
authorship networks to analyze collaboration patterns inWikipedia,
adapting to the collaboratively written encyclopedia a central tool
in the study of many scientific collaborative environments (e.g.,
see [2, 23, 24]). They found that traditional co-authorship network
methods face challenges to scale to the size of Wikipedia, and with-
out adaptation cannot be applied to the reality of online authoring
environments, in which many of the contributions are not suffi-
cient to establish a collaborative relationship. Lack of collaboration
can be attributed to the potentially long time gaps between con-
tributions, to the relatively small size of most contributions, or to
the fact that a large portion of the edits are being cut-out shortly
after. Therefore, the authors propose to limit the relationships in
the co-authorship networks only to the main authors of each page.
They define a participation criteria that keeps only the main au-
thors, and perform a large-scale analysis of the English Wikipedia
network. The authors also use temporal co-authorship networks,
each corresponding to a time period, allowing them to account for
temporal differences and analyze the evolution of the collaboration.

https://doi.org/10.1145/3196398.3196436
https://doi.org/10.1145/3196398.3196436
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In this work, we present a comprehensive, large-scale analysis
of GitHub co-commit patterns, that attempts to address the above
mentioned challenges. We consider 10 million commits to 16 thou-
sand repositories, made by 200 thousand developers, over a period
of three years. Our study is among those that use the largest amount
of GitHub data (only one sixth of the 93 references analyzed in [6]
consider more than 100 thousand developers). We select reposito-
ries for 17 programming languages, including all the top 10 lan-
guages according to IEEE Spectrum ranking,2 representing diverse
characteristics (e.g., imperative/functional, systems/web/scientific,
established/recent). Our input data is used to construct 374 tem-
poral co-authorship networks (for multiple languages and time
windows), allowing us to analyze co-commit patterns and their evo-
lution over time. Our efforts to analyze a large quantity of GitHub
data do not overlook the importance of data quality. We carefully
develop participation criteria for both repositories (focusing on
the top projects by star-based reputation, and discarding personal
and inactive projects), and developers (seeking to eliminate minor
committers). Our activity criteria for developers (defining a notion
of active developers) proves to be very effective; we keep 30% of
the developers that are responsible for 90% of the commits.

This is the first work, to our knowledge, to present a compre-
hensive analysis of the co-commit patterns in GitHub based on
co-authorship networks, that addresses the following questions:

RQ1: What are the co-commit patterns of the active developers,
and how do they differ from the patterns of the full set of developers?

RQ2: How did the co-commit patterns of the active developers
evolve over time, compared to the full set of developers?

RQ3: How do the co-commit patterns observed for GitHub compare
to the ones observed for scientific collaboration networks and other
online collaborative environments such as Wikipedia?

RQ4: How do the co-commit patterns differ among programming
languages? Note that RQ4 cross-cuts the previous questions.

A summary answer for each research question appears in page 9,
at the end of Section 3 (Results), and following the next section
where we describe the design of our study. Section 4 discusses
threats to validity, and Section 5 describes related work. We con-
clude in Section 6, also mentioning future work directions.

We make our dataset and our analysis code and notebooks (in-
cluding results omitted due to lack of space) available.3

2 STUDY DESIGN
2.1 Data Sources and Time Period
We study the co-commit patterns in GitHub, focusing on the com-
munities of the 17 programming languages we select: C, C#, C++,
Clojure, Go, Haskell, Java, Javascript, Julia, OCaml, PHP, Python, R,
Ruby, Rust, Scala, Scheme. We break our analysis based on program-
ming languages to answer RQ4. This decision is also justified by
the observation (presented in page 8) that the intersection between
the programming languages is very small.

Table 1 describes the number of repositories, developers, and
commits for each programming languages in our dataset, collected
over a period tc of three years from June 2013 to June 2016. In total,

2http://spectrum.ieee.org/computing/software/the-2016-top-programming-
languages
3http://www.cs.toronto.edu/ consens/AnalysisGitHubCoCommit

we considered 16, 827 unique repositories, 200, 205 unique devel-
opers, and 9, 666, 915 unique commits. Notice that these numbers
are not the sums of the numbers in Table 1, since some repositories
declare more than one language, and some developers contribute
to repositories in more than one language. While the repositories
for some languages are more active than others (in commits and/or
developers), the differences remain within one order of magnitude.

Language # Repositories # Developers # Commits

C 988 24,981 1,687,163
C# 997 14,864 838,687
C++ 995 27,049 2,155,219

Clojure 997 3,844 246,797
Go 999 15,215 623,247

Haskell 993 3,886 383,923
Java 996 19,405 1,130,188

Javascript 1,000 39,022 921,785
Julia 993 1,564 154,033

OCaml 967 1,855 298,147
PHP 994 25,388 1,104,364

Python 1,000 36,758 1,233,076
R 987 2,298 217,092

Ruby 998 31,208 1,051,830
Rust 997 4,493 254,694
Scala 996 7,680 446,835

Scheme 930 1,425 207,309
Table 1: Number of repositories, developers, and commits
studied during tc for each language

To account for temporal changes and analyze the evolution of
the co-commit patterns to answer RQ3, we break tc into 10 nine-
month periods with six-month overlap (t10, ..., t1), with t1 the most
recent three-quarter period from October 2015 to July 2016, t2 the
period from July 2015 to April 2016, etc. We consider nine-month
to be a reasonable period to observe collaborative patterns, and we
use overlapping time windows with a three-month shift to allow a
smoother analysis of the changes observed after each quarter.

2.2 Data Collection and Cleaning
To collect the data, we used GitHub API v3.4 For each language
in our study, we use the searchRepositories API call to obtain the
top 1,000 repositories based on star ranking (as discussed later, we
use star ranking as a popularity measure). Next, we try to take ad-
vantage of the developerStatistics API call, that provides a weekly
summary of commits for each developer. Since this API only pro-
vides information for the top 100 developers, we have to resort to
mining commits from the commit log of each repository (using
commitLoд API), which is a slower process. Fortunately, only a
small number of repositories exceed 100 developers.

The collected dataset is a set of tuples
(lanдuaдe, repository,developer ,date, commits )

where commits obtained from the developer statistics API have a
granularity of a week, while individual commits are obtained from

4https://developer.github.com/v3/
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the commit log (since our temporal study uses quarterly units we
are not affected by this difference in granularity).

The cleaning process involves filtering out tuples with invalid
logins (e.g. an empty login or "invalid-email-address" login),
which fortunately eliminates only a small portion of the tuples
in our dataset (less than 5%) . However, this cleanup is critical to
avoid invalid logins being misinterpreted as a developer with a high
volume of associated activity.

2.3 Participation Criteria
In this section we present the participation criteria for repositories
and developers in our analysis.

Repositories (reputation criteria).Our analysis is focused on the
co-commit patterns of the top repositories based on reputation. To
understand our rationale, this is akin to studying the collaboration
patterns of scientific authors by focusing on top tier conferences
in each area [4]. We use GitHub’s star ranking as a measure of
repository reputation. GitHub uses the star ranking in many of its
repository rankings including Trending repositories 5 and Explore
GitHub 6 and recommends users to star repositories to allow easy
access and to show their appreciation.7

We filter out personal repositories (only one committer) as well
as inactive repositories. Since some repositories start as personal
projects and gradually grow into collaborative projects, while others
become inactive over time, we filter personal and inactive repos-
itories for each time period ti . For instance, for tc , we filter 2,707
personal and inactive repositories, representing 16% of the reposito-
ries. This is a relatively low percentage compared to Kalliamvakou
et al.’s finding that 71.6% of the repositories have only one developer
(the owner), and that many repositories are inactive [15]. We at-
tribute difference to our reputation criteria (that effectively selects
active and collaborative repositories).

Developers (activity criteria). A key part of our analysis is the
selection of active developers (see RQ1). We use c (d, r ), the number
of commits by a developer d to a specific repository r , and define
a parameterized activity threshold based on the average number
of commits per repository, denoted as cavд (r ). A developer d is
considered an active developer of repository r iff c (d, r ) > θ ·cavд (r )
where θ ≥ 0 is a parameter that controls the tightness of the activity
threshold (for θ = 0, all developers are considered active developers,
and for θ = 0.75, only developers that contributed above 75% of the
average number of commits are considered active developers).

The purpose of the activity threshold is to get rid of the long
tail that is associated with activities in social networks. In the
context of our GitHub study, it is the long tail of developers that
make very few commits for each repository. However, due to the
large variety of repositories and commit volumes, we use the mean
number of commits per repository. A simple parameter θ adjusts
the activity threshold, and we select a θ value that keeps the overall
contributions of the removed long tail to approximately 10%.

We analyzed different θ values in the range [0.5, 1.25], observing
the percentage of commits contributed by the active developers
defined by θ . Table 2 presents a breakdown of the percent of active

5https://github.com/trending
6https://github.com/explore
7https://help.github.com/articles/about-stars/

Fraction of Percent of
Language Active Developers Commits

C 0.226 87.0%
C++ 0.240 89.3%
C# 0.287 89.8%

Clojure 0.325 90.3%
Go 0.240 89.6%

Haskell 0.361 90.5%
Java 0.242 88.7%

Javascript 0.177 87.3%
Julia 0.457 88.2%

OCaml 0.370 88.7%
PHP 0.225 88.3%

Python 0.203 87.9%
R 0.365 90.8%

Ruby 0.193 85.9%
Rust 0.326 89.4%
Scala 0.300 88.9%

Scheme 0.371 91.4%

Median 0.287 88.9%

Table 2: The fraction of active developers and the percent of
commits for each language in t1, for θ = 0.75

developers, and the percent of commits made by these developers,
for each language in t1, for our selected parameter value θ = 0.75.
We validate that for all languages the active developers contribute
approximately 90% of the commits, while the fraction of the active
developers ranges between 0.177 and 0.457, with a median of 0.287
(eliminating long tails of developers).

For further validation, this median is very close to 0.33, the
median fraction of active developers per repository across all repos-
itories in t1, as shown in Figure 1 (top), the full histogram of this
distribution. As additional information, we also show the full his-
togram for the fraction of active developers per repository across
all repositories in tc in Figure 1 (bottom), with a median of 0.22.

We also evaluated the option of expanding the repositories in-
cluded in our study by adding non-top repositories where two or
more active developers had collaborated, considering both quali-
tiative and quantitative aspects. On the qualitative side, using an
analogy to the study of scientific authors, we can see that such an
expansion could be similar to including non-top publication venues
in co-authorship studies. On the quantitiative side, we observe that
the number of repositories that would be added to the one thousand
top repositories already considered in our study would be small
(e.g., for Python just a few hundred repositories would be added,
with just low tens involving more than three active developers).

2.4 Analysis Method
To answer the research questions in Section 1, we construct co-
authorship networks and analyze the co-commit patterns in GitHub
(RQ1), studying their evolution (RQ2) on per-language basis (RQ4),
and comparing these results with co-authorship networks of other
collaborative environments (RQ3). In this section, we describe the
process of constructing the networks and the metrics used to ana-
lyze the co-commit patterns.
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Figure 1: Histogram of the fraction of active developers in
the different repositories of π1 (top) and πc (bottom)

2.4.1 Network Construction. Let D be the set of all developers,
Rλ be the set of all repositories in language λ, and γi : D → 2R be
the mapping from a developer to the repositories they commit to
during time period ti . The co-authorship network is an undirected
graph πi,λ = ⟨V ,E⟩, constructed as follows:

V = {dj | ∃r ∈ Rλ : r ∈ γi (dj )}
E = {(dj ,dk ) | ∃r ∈ Rλ : r ∈ γi (dj ) ∧ r ∈ γi (dk )}

Thus, each node in πi,λ is a developer, and each edge connects two
developers that contributed commits to the same repository.

We similarly define π∗i,λ , the core co-authorship network, by
replacing the γi : D → 2R with γ ∗i : D → 2R , the mapping from a
developer d to the repositories r for which d is an active developer
(that is, c (d, r ) > θcavд (r ), as described in page 3). Note that the
core is always a subnetwork of the full (π∗i,λ ⊆ πi,λ ).

Our notation uses πc,λ and π∗c,λ to denote the full and core
networks for tc (the full three-year period), and omits λ in πi to
refer to the set of networks of all languages (i.e., πi,λ for all λ).
In total we construct and analyze 374 co-authorship networks for
the corresponding combinations of 17 programming language × 11
time periods × 2 (core or full).

2.4.2 Network Metrics. The literature on co-authorship net-
works is large and diverse, and many different characteristics has
been proposed (see [23–27]). Due to our interest in the extent and
nature of co-commit patterns we focus on five key characteristics
of co-authorship networks: connected components, degree distribu-
tion, network centralization, community structure, and repository
and language overlap.

Connected Components. The giant component is the largest
connected component in the graph. Typically, the giant component
fills a large portion of the graph, while the rest of the nodes are or-
ganized in much smaller components [25]. We measure the relative
size of the giant component GC = |nodes in giant component |

|nodes in network | . In our
study, we also analyze the second, third and fourth largest compo-
nents to provide more insights on the structure of the network.

Degree Distribution. Degree is the number of edges connected
to a node, and the spread in the degrees is characterized by a distri-
bution P (k ) (the probability that a node has exactly k edges) [1]. In
our work, we analyze the degree distribution of the network, and
compare networks based on the mean and median degree. Due to
the different size of the networks, we use the normalized degree
of a node n, ndeд(n) = 100·deдr ee (n)

|nodes in network | . Note that ndeд is in the
range [0, 100], and indicates the percent of the network a node is
directly connected to.

Network Centralization. Betweenness centrality B (k ) [8] mea-
sures the centrality of a node k based on the proportion of shortest
paths passing through the node, between all pairs of nodes. There-
fore, we have that

B (k ) =
∑
i, j

|dik j |

|di j |

where for each pair of nodes i, j, |di j | is the number of shortest
paths between i and j, and |dik j | is the number of shortest paths
that are passing through node k . High betweenness represents a
node with more influence and control of communication [8]. As
betweenness centrality is measured for individual nodes in the
network, betweenness centralization BN is a network-wide metric
that measures the relative difference between the most central node
and all the other nodes in the network [9]. Hence,

BN =

∑
i [B (i∗) − B (i )]

BS

where i∗ is the most central node in the network (i.e., B (i∗) is
the highest centrality in the network), and BS is the betweenness
centralization of the star network (the value for the most centralized
network). Therefore, higher BN values characterize networks with
a higher level of centrality. In this work, we use BN as the network
centralization metric.

Community Structure. Many networks tend to exhibit a com-
munity structure, in which the nodes are organized in tightly-knit
groups, betweenwhich there are only looser connections [10]. In the
context of this work, strong community structure indicates the ex-
istence of distinct sub-communities that are mostly co-committing
within themselves, and share very few connections between the
different sub-communities. Modularity is a measure that quanti-
fies the strength of community structure based on the density of
connections within each community and between the different com-
munities [27]. Given a partition of the network intoK communities,
we define aK×K symmetric matrix e , where ei j is the fraction of all
edges in the network that connects community i with j . Modularity
M is defined as

M =
∑
i
(eii − a

2
i )

where ai denotes the row sum
∑
j ei j (which is the same as the

column sum due to symmetry). If the network does not exhibit
more dense inter-communities connections than a random net-
work, M ≈ 0. Values approaching the maximum, M = 1, indicate
strong community structure. In this work, we use the parallel Lou-
vain method proposed by Staudt and Meyerhenke [29], which uses
modularity as its measure of network density.
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Language %GC Core %GC Full Ratio

C 22.9% 87.4% 3.82
C# 22.7% 83.5% 3.68
C++ 5.5% 88.2% 16.07

Clojure 12.2% 89.6% 7.37
Go 46.9% 95.5% 2.04

Haskell 38.5% 89.6% 2.32
Java 5.1% 89.2% 17.41

Javascript 38.1% 96.2% 2.52
Julia 62.5% 94.8% 1.52

OCaml 43.1% 85.1% 1.98
PHP 30.7% 93.5% 3.05

Python 23.3% 92.6% 3.98
R 18.8% 72.1% 3.84

Ruby 42.3% 96.6% 2.28
Rust 52.4% 97.1% 1.85
Scala 40.8% 84.5% 2.07

Scheme 10.9% 26.5% 2.43

Median 30.7% 89.6% 2.52

Table 3: The relative size of the Giant Component(GC) for
each language in π1 and π∗1

Repository and Language Overlap. In this work, we examine
both repository and language overlap. We first analyze the distribu-
tion of the number of repositories per user, and the percent of users
participating in more than one repository. Then, we analyze the
distribution of the number of programming languages per user, and
the percent of users that participate in repositories of more than
one language (note that language overlap specifically addresses
RQ4 by analyzing the intersection between the communities of the
different programming languages).

3 RESULTS
In this section we analyze the co-commit patterns in the constructed
co-authorship networks, based on the five chosen metrics. For each
metric, we clearly mark the part that addresses each research ques-
tion. We then summarize the answers to the research questions.

3.1 Connected Components
RQ1: Table 3 shows the relative size of the giant component for
each programming language in π1 and π∗1 , and highlights the dif-
ference between them. For most programming languages, the giant
component of the full network is above 90%. However, for π∗1 we
observe a much smaller giant component. Furthermore, for π∗1 , it
varies dramatically between the different programming languages,
ranging between 62.5% (Julia) to approximately 5% (Java, C++).

One hypothesis is that the core network includes several rela-
tively large components that if connected, would sum to a dominant
giant component. In order to test this hypothesis we measure the
relative sizes of the second, third, and fourth largest components.
The results, presented in Table 4, contradict this hypothesis, since
the second-largest component is quite smaller than the first compo-
nent. For most languages, the second component is quite smaller
than the largest component, and the largest four components do
not sum up to the giant component of π1.

Language 2nd Comp. 3rd Comp. 4th Comp.

C 1.7% 1.4% 1.3%
C# 3.3% 2.3% 2.3%
C++ 4.5% 2.6% 1.7%

Clojure 5.7% 3.5% 3.0%
Go 1.6% 1.3% 1.2%

Haskell 2.5% 1.3% 1.2%
Java 5.1% 3.2% 2.7%

Javascript 0.9% 0.8% 0.7%
Julia 0.9% 0.9% 0.6%

OCaml 5.5% 2.9% 2.9%
PHP 3.0% 1.8% 1.6%

Python 11.8% 1.2% 1.1%
R 2.4% 1.5% 1.5%

Ruby 3.2% 2.2% 1.6%
Rust 1.6% 1.6% 0.9%
Scala 1.6% 1.4% 1.3%

Scheme 5.9% 5.0% 4.0%

Median 3.0% 1.6% 1.5%

Table 4: The relative size of 2nd , 3rd , and 4th components in
the core sub-network π∗1 for each language

Language %GC Core %GC Full Ratio

C 32.9% 97.2% 2.95
C# 42.1% 94.5% 2.25
C++ 7.0% 96.9% 13.86

Clojure 49.7% 98.1% 1.98
Go 67.9% 99.0% 1.46

Haskell 55.6% 96.8% 1.74
Java 20.6% 98.5% 4.77

Javascript 60.3% 99.8% 1.66
Julia 61.7% 95.6% 1.55

OCaml 43.3% 93.0% 2.15
PHP 60.8% 99.1% 1.63

Python 65.8% 99.2% 1.51
R 18.5% 84.8% 4.58

Ruby 75.4% 99.8% 1.32
Rust 64.2% 99.1% 1.54
Scala 48.3% 97.2% 2.01

Scheme 7.0% 34.7% 4.97

Median 49.7% 97.2% 1.98

Table 5: The relative size of the Giant Component(GC) for
each language in πc

RQ1/RQ4: These results highlight an important difference be-
tween the the different languages that only emerges when we focus
on the core network. By filtering out ≈10% of the commits we can
see a dramatic decrease in the relative size of the giant component.
In the extreme cases (Java and C++), we see a giant component that
is more than 16 times smaller.

Table 5 shows the results for the cumulative networks πc and
π∗c . Naturally, the numbers are a bit higher, as we consider a much
larger time period during which components can connect. However,
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Figure 2: Evolution of the giant component across the tem-
poral networks π1 − π10

Core Full
Language avg. ndeд avg. ndeд Ratio

C 2.5% 4.1% 1.67
C# 0.6% 0.9% 1.56
C++ 0.4% 0.7% 1.72

Clojure 0.5% 1.1% 2.14
Go 0.7% 1.9% 2.54

Haskell 0.7% 2.1% 3.18
Java 0.6% 1.4% 2.22

Javascript 0.4% 0.8% 1.88
Julia 5.2% 21.8% 4.21

OCaml 2.8% 10.1% 3.63
PHP 0.5% 1.0% 2.11

Python 0.5% 0.9% 1.94
R 0.4% 1.3% 2.83

Ruby 1.0% 4.3% 4.39
Rust 1.3% 5.9% 4.64
Scala 1.1% 3.0% 2.59

Scheme 2.0% 6.7% 3.40

Median 0.7% 1.9% 2.54

Table 6: Average ndeд for each language in π1 and π∗1

the same patterns observed for π∗1 apply for π∗c . For all languages,
the giant component of π∗c is smaller. Again, when we focus on the
core network, we can see clear differences between the different
programming languages.

RQ2/RQ4: We examine the evolution of the giant component
across the temporal networks π1 − π10. As the detailed results for
all languages cannot fit due to space, we select four languages

(Python, Scala, Ruby, Java), that exhibit a range of variations repre-
sentative of all 17 languages. Figure 2 shows the evolution of the
giant component. The relative size of giant component for the core
network is constantly smaller than for the full network. The giant
component of the full network seems nearly constant and provides
little insights on the changing dynamics in the community.

RQ3: In Wikipedia, even when considering the main authors, we
see a giant component that is larger than 90% in both the tempo-
ral and the cumulative network [17]. Even when considering the
topical communities in Wikipedia, the giant component remains
approximately 90% [17]. Huang et al. [13] compared the scientific
co-authorship networks of Computer science, Maths, Physics, and
Biology. These networks demonstrate a large variance in the size
of the giant component, ranging from 57.2% to 92.6%.

RQ3/RQ4: More interesting is the difference between the topical
communities in computer science. Huang et al. [13] also compared
the giant component of six topical communities in computer science,
and found that it varies significantly: the largest one was 55.9%
(databases) and the smallest one 4.9% (applications). These results
are similar to ones observed for the core network in GitHub.

3.2 Degree Distribution
RQ1: Table 6 shows the average normalized degree (ndeд) for each
language in π1 and π∗1 . We can see that for all languages, ndeд
of the core network is smaller than ndeд of the full network. We
note this is not a direct result of considering a smaller subset of
nodes, due to the normalization of the degree. The meaning is that
an average active developer is connected to a smaller percent of
the other active developers. To validate the mean is not biased due
to some extreme values, we also analyzed the median ndeд, and
observed the same patterns. We omit these results due to space.

Figure 3 shows the cumulative distribution function (CDF) of the
degree distribution for selected 6 languages. For all languages, the
core curve is left to the curve of the full network. This supports the
pattern observed for the mean and median degree, that the active
developers are less connected to the other active developers. Also,
the core curve doesn’t have the long tail that is often associated
with the full network (as can be seen for Python, Javascript and
Clojure). Similar patterns have been observed for the cumulative
network πc . We omit the detailed results due to space.

RQ1/RQ4: Note the large difference between the programming
languages: the mean ndeд values range between 0.4% to 5.2%; and
the degree distribution exhibit different patterns.

RQ2/RQ4: Figure 4 shows the evolution of the mean ndeд across
π1−π10. The active developers constantly have lower mean ndeд,
and the two types of network do not evolve in the exact same
manner. We can also see that different languages evolve differently.

RQ3/RQ4: We computed the mean ndeд for topical communities
in Wikipedia based on the data provided by Laniado and Tasso [17],
and for the topical communities in Computer Science based on the
data provided by Huang et al. [13]. In Wikipedia, the mean ndeд
of the examined topical communities ranged between 0.1% to 0.2%.
For the topical communities in Computer Science, the value ranged
between 0.1% to 0.3%. The result for GitHub is therefore higher.
However, this can be attributed to the larger measurement unit of
a repository, compared to a scientific paper or a Wikipedia page.
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Core Full

Figure 3: Degree distribution of the core network vs. the full
network in π1

3.3 Network Centralization
RQ1/RQ4: Table 7 shows the betweenness centralization (BN ) for the
giant component of the core and full network for each language.
We focus on the giant component, which represents the largest col-
laborative component in each language. In all cases but one (Java),
the centralization of the core network is much higher than the full,
indicating the core networks are more centralized. This observa-
tion is consistent with the degree distribution, and suggests the
core networks are less collaborative, and the connections between
different communities are sparse. We also observe large differences
between languages with values ranging from 0.08 to 0.66. We found
similar trends in πc . We omit these results due to space.

RQ2/RQ4: Figure 5 shows the evolution of betweenness central-
ization across temporal networks π1 − π10. The plots confirm that
the higher centralization of the core remains over time.We note that
the centralization of the core is much more sensitive to temporal
changes. Java demonstrates particularly high sensitivity, however,
it can be attributed to the unique structure of a relatively small giant
component, followed by components that are not much smaller.

RQ3/RQ4: Bird et al. [4] measured BN of 3 Computer Science
communities, and find values ranging from 0.0 to 0.6 over time.
These are much lower than the core networks, and even lower than
most full networks. We could not find similar data for Wikipedia.
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Figure 4: Evolution of the average ndeд across the temporal
networks π1 − π10

Core Full
Language BN BN Ratio

C 0.15 0.05 0.35
C# 0.31 0.14 0.44
C++ 0.33 0.20 0.62

Clojure 0.66 0.17 0.25
Go 0.34 0.07 0.20

Haskell 0.33 0.10 0.31
Java 0.08 0.10 1.22

Javascript 0.62 0.30 0.49
Julia 0.13 0.07 0.52

OCaml 0.24 0.08 0.31
PHP 0.32 0.07 0.22

Python 0.50 0.17 0.33
R 0.41 0.20 0.48

Ruby 0.19 0.07 0.37
Rust 0.11 0.06 0.50
Scala 0.40 0.09 0.24

Scheme 0.19 0.13 0.69

Median 0.32 0.10 0.37

Table 7: Betweenness centralization of giant component in
π1 and π∗1

3.4 Community Structure
RQ1/RQ4: Table 8 shows the community structure and modularity
achieved by the parallel Louvainmethod [29] for each programming
languages in π1 and π∗1 respectively. We can see that, although
the core networks are much smaller than the full networks, the
number of communities found in the core networks is much higher.
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Figure 5: Evolution of the betweenness centralization across
the temporal networks π1 − π10

Core (π∗1 ) Full (π1)

Language #(C ) ⟨C⟩ M #(C ) ⟨C⟩ M

C 516 4.25 0.22 211 45.97 0.20
C# 446 3.39 0.84 206 25.58 0.77
C++ 627 4.30 0.95 266 42.28 0.90

Clojure 180 2.24 0.94 55 22.56 0.79
Go 385 4.38 0.83 103 68.30 0.70

Haskell 194 2.68 0.75 54 26.65 0.57
Java 460 3.99 0.89 150 50.47 0.69

Javascript 528 4.79 0.88 130 109.62 0.76
Julia 111 3.07 0.20 37 20.16 0.18

OCaml 93 2.95 0.57 51 14.51 0.45
PHP 437 4.51 0.93 151 58.17 0.83

Python 544 4.83 0.93 194 66.81 0.84
R 184 1.82 0.89 95 9.67 0.70

Ruby 340 5.55 0.78 86 113.88 0.54
Rust 245 2.85 0.49 39 54.82 0.21
Scala 250 3.40 0.64 110 25.69 0.53

Scheme 57 1.77 0.75 44 6.18 0.40

Median 340 3.40 0.830 103 42.28 0.686

Table 8: Community structure for π∗1 and π1: # of communi-
ties #(C ), average community size ⟨C⟩, and modularityM .

Naturally, the average size of each core community is much smaller.
Also, for all languages, the community structure of the core network
has higher modularity compared to the community structure of the
full network. These patterns indicate a much stronger community
structure of the core networks, and are consistent with previous
findings on the co-commit patterns of the active developers. Also,
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Figure 6: Evolution of the number of communities across the
temporal networks π1 − π10
the values vary significantly between the languages. Modularity,
as one example, varies from 0.2 to 0.95. Similar patterns have been
observed for the cumulative network πc . We omit the detailed
results due to space, and provide the medians across the languages.
The median #(C ) is 317.5 for the core networks, compared to 66.5
for the full networks. The median values for ⟨C⟩ are 4.5 (core) and
110.5 (full). The median values forM are 0.75 (core) and 0.57 (full).
These trends are consistent with our analysis on π1.

RQ2/RQ4: Figure 6 shows the evolution of the community struc-
ture, by following the number of communities across the temporal
networks. The number of core communities is much higher, which
matches our observation on π1 and πc . Furthermore, we see a dra-
matic increase in the number of core communities for Scala, Java
and Python, that is not visible for the full network.

RQ3/RQ4: Bird et al. [4] measured the community structure for
several topical communities in Computer Science. Their modularity
ranges between 0.634 to 0.916, with a median of 0.824. The median
modularity is similar to the one observed for the core networks
(0.830). Unfortunately, similar data is not provided for for the topical
communities, or for themain authors, inWikipedia. For the network
of all authors, Lizorkin et al. found a modularity of 0.63 [20].

3.5 Repository and Language Overlap
RQ1/RQ4: Table 9 shows the percent of users who are contributing
to only one repository in the core and full networks. For nearly all
languages, the percent is much higher for the core network, indi-
cating that active developers are much more likely to work on only
one repository. We note, however, that the percent varies between
the programming languages. Table 10 shows the distribution of the
number of programming language used by developers in the core
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Language % in π∗1 % in π1

C# 87.1% 83.7%
Scheme 84.2% 73.5%
Rust 74.4% 64.5%
C++ 93.6% 89.5%

OCaml 70.4% 71.5%
Javascript 91.8% 84.8%

Julia 59.8% 55.0%
C 86.4% 80.5%

Haskell 73.2% 69.5%
R 82.1% 78.3%

Scala 79.2% 77.1%
Clojure 78.2% 75.5%
PHP 88.8% 83.4%
Go 81.7% 77.5%
Ruby 82.7% 75.5%
Python 91.3% 87.0%
Java 93.5% 89.5%

Median 82.7% 77.5%

Table 9: Percent of users who are developers in only one
repository in the core and in the full networks in π1

# L π∗1 π1 # L π∗1 π1

1 95.214% 87.983% 6 0.000% 0.020%
2 4.440% 9.907% 7 0.000% 0.006%
3 0.314% 1.664% 8 0.000% 0.007%
4 0.019% 0.320% 9 0.000% 0.004%
5 0.014% 0.085% 10 0.000% 0.001%

Table 10: Distribution of the number of languages used by
developers in the core and full networks in πc

and full networks. Again, active developers are much more likely
to only work on repositories in one programming language.

We observed similar patterns of repository overlap for the cumu-
lative network, however we observed interesting exceptions. The
more popular languages (Python, Javascript, PHP, etc) exhibit the
same patterns, and in most cases it is even strong. For languages
with smaller communities (most notable is Julia), we find some
cases in which the core community has larger repository overlap,
for πc . The median value for the core networks remains higher. The
language overlap in πc exhibited patterns that are similar to the
ones observed for π1. We omit the detailed results due to space.

RQ2/RQ4: We performed an analysis of the percentage of devel-
opers that only contribute to one repository across π1−π10 (omitted
due to space). The percentage for the core network is constantly
higher compared to the full network, and the difference between
the two curves is clear, and is consistent with previous results.

RQ1 Summary: We analyze the co-commit patterns of the
active developers using five key metrics. Our results indicate
that the active developers are less collaborative, more cen-
tralized, and have a stronger community structure compared
to the population of all GitHub developers.

RQ2 Summary:We study the evolution of the co-commit
patterns based on the five metrics, and show that the differ-
ences between the active developers and all GitHub develop-
ers hold in all time periods in our study. We also show that
the core and full networks evolve differently.

RQ3 Summary:We compare our results to similar analyses
of Wikipedia and scientific networks in Computer Science
(CS). We find some similarities between the component and
community structure in GitHub and CS, although GitHub’s
active developers tend to be more centralized.

RQ4 Summary: We establish that co-commit patterns of
active developers varies significantly between the different
languages, and they also exhibit different evolution over
time. We also observe that differences among languages are
comparable to differences among topical communities in CS.

4 THREATS TO VALIDITY
Construct validity.Weassume the data collected throughGitHub’s
API is correct and complete, and that the algorithms used to cal-
culate the different metrics [28] are correct with respect to the
theoretical metrics. However, we analyzed the data to find inconsis-
tencies (e.g., the discovery and elimination of invalid/empty logins).

Our analysis is exposed to the threat “multiple online personas
can cause individuals to be represented as multiple people” present
in several papers as described by the survey [12] (as D7).

We tried to validate the collected data with GitHub’s Public Data
Set8 and GHTorrent [11], however we could not reproduce the full
dataset due to limitations of these sources (GitHub’s Public Data
Set does not include information on repositories without license,9
and GHTorrent does not track repositories renames10).

Internal validity.Wemanually picked a set of 17 programming
languages that we believed to be diverse and representative of
different paradigms. However, we intentionally made sure that we
cover the most popular programming language (as indicated earlier,
we include all the top 10 ranked languages).

Our study is based on 1000 repositories for each language. While
more data can be collected, our choice to use the 1000 most pop-
ular repositories based on star ranking indicates that we cover
the most visible repositories for each language (which results in a
low percent of personal repositories, compared to Kalliamvakou et
al.’s findings [16]). An investigation into the starring patterns of
GitHub’s users is outside the scope of this work, however we adopt
GitHub’s interpretation of this measure.11

In our analysis, we used a chosen θ in our activity threshold for
developers. A potential threat is that our analysis is very sensitive
to the choice of θ , and a small relaxation of θ might introduce many
more active developers and effect the general observed trends. To
address this, we repeated our analysis for different values of θ . Table
11 shows the results for keymetrics in our analysis (percent of active
developers, percent of included commits, size of giant component,
and average community size) for t1 for the different programming
languages, when using a relaxed activity threshold with θ=0.5. We
8https://cloud.google.com/bigquery/public-data/github
9https://github.com/blog/2298-github-data-ready-for-you-to-explore-with-bigquery
10http://ghtorrent.org/faq.html
11https://help.github.com/articles/about-stars/
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Language %Com %d %GC %2nd ndeд ⟨C⟩

C# 0.923 0.349 36.1% 3.4% 0.6% 4.51
C++ 0.922 0.304 7.7% 5.2% 0.4% 5.72
C 0.905 0.294 34.0% 2.6% 2.7% 6.03

Clojure 0.923 0.405 28.9% 3.2% 0.7% 3.35
Go 0.917 0.322 66.2% 1.1% 0.8% 7.28

Haskell 0.931 0.443 55.3% 2.0% 0.8% 3.94
Java 0.918 0.307 10.2% 9.1% 0.6% 5.71

Javascript 0.897 0.248 50.3% 1.1% 0.4% 7.62
Julia 0.921 0.540 78.4% 0.7% 8.5% 5.68

OCaml 0.918 0.431 48.3% 5.6% 3.7% 3.99
PHP 0.910 0.307 51.8% 3.3% 0.5% 7.16

Python 0.907 0.276 50.8% 1.4% 0.6% 7.57
R 0.940 0.482 30.7% 2.5% 0.7% 2.58

Ruby 0.890 0.275 67.7% 1.6% 1.1% 9.72
Rust 0.920 0.417 66.8% 2.8% 1.5% 4.72
Scala 0.921 0.377 51.0% 1.4% 1.3% 4.78

Scheme 0.940 0.434 12.7% 5.1% 2.5% 2.15

Median θ=0.5 0.920 0.363 49.3% 2.7% 0.8% 5.23

Median θ=0.75 0.889 0.287 30.7% 3.0% 0.7% 3.40
Median θ=0 1.0 1.0 89.6% – 1.9% 42.28

Table 11: Results for π∗1 with θ=0.5; % commits, % developers,
% giant, % 2nd component, % mean ndeд, mean community
size.

can see that even with a weaker selection criteria, we still filter the
majority of developers, while retaining the majority of the commits.
The giant component naturally grows, but is still much lower than
the full network. The mean degree and the average community size
are very similar to the ones observed for θ=0.75. In general, we still
observe large changes compared to the full network θ=0 (and large
differences among programming languages).

External validity. Our participation criteria for developers is
based on the number of commits, which does not take into consider-
ation the content of each commit. More sophisticated participation
criteria would require a different dataset (e.g., accessing the code
base and automatically analyzing it to evaluate the impact of com-
mits). Since we do not manually or programmatically analyze the
content of the 16,827 repositories in our study, we are exposed
to the threat of repositories that are not software development
projects [16]. However, we expect that our selection of top ranked
repositories for each language helps mitigate this threat.

Our analysis is limited to the co-commit patterns in GitHub.
Other code hosts exists that could exhibit different patterns. How-
ever, with more than 25 million public active repositories, GitHub
is the largest code host.

5 RELATEDWORK
Co-authorship networks were used to analyze the collaboration
patterns in a large variety of scientific collaborative environments
[2, 4, 19, 23, 24], and our study adapts this methodology in the
context of developer networks.

Few works present a large-scale quantitative analysis of the col-
laboration patterns in GitHub. Lima et al. analyzed GitHub events,

and showed that the distribution of the number of contributors,
watchers and followers show a power-law-like shape, that very
active users do not necessarily have a large number of followers,
and analyzed geographic aspects of collaboration [18]. Thunget
al. analyzed the network structure of social coding in GitHub [32].
They modeled the network as a graph and calculated the degree
distribution and the shortest path between projects and between
developers, and used PageRank to find influental projects and de-
velopers. Both [18, 32] partially address RQ1, however, they do not
cover the five metrics, and do not analyze the evolution of collabo-
ration. Two other major differences with our work are our focus
on active developers, and our language-specific analysis.

As described in [6], there are many studies that consider small
scale GitHub datasets. Other examples of small scale dataset anal-
yses include Lopez-Fernandez et al. [21] (applying social network
analysis to three well-known open source projects), and Bhat-
tacharya et al. [3] (presenting a graph-based model for analysis and
prediction of software evolution, studying 11 open source projects).

Previous work also considered social aspects of collaboration in
GitHub (e.g., “following”), instead of code authorship collaboration
we address. Yu et al. examined the growthmode and follow-network
[34]. Jiang et al. analyzed project dissemination [14].

There is also research on developer collaboration outside of
GitHub. Xu et al. performed a topological analysis of the open
source community based on a SourceForge 2003 data dump [33].
Surian et al. analyzed frequent topological sub-graphs patterns
based on a snapshot of SourceForge from 2009 [30]. A recent study
[22] that evaluated the validity of social network analysis found
that the developer network is supported by developer perceptions.

6 CONCLUSION AND FUTUREWORK
Our large-scale analysis of GitHub co-commit patterns attempts
to maximize both the quantity and the quality of the data ana-
lyzed, while recognizing the inherent threats and challenges. The
resulting study provides answers to research questions including
distinguishing a set of active developers, analyzing temporal evolu-
tion, comparing developer patterns to ones exhibited by authors
of academic papers or Wikipedia articles, and yielding insight into
differences among languages. An additional contribution is that the
methodology we develop to answer the research questions can be
employed to better understand developer productivity and collabo-
ration. One application of this methodology is to analyze smaller
teams for the purpose of attracting and retaining developer talent.

There are a number of directions for future work. One is pursu-
ing the analysis of collaborative work within repositories (edges
represent commits to the same module, or subsystem), which could
produce insights into intra-project collaborative patterns. Another
is refining the activity criteria for developers, incorporating addi-
tional information (e.g., results from analysis of contributed code).
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