UNIVERSITY OF TORONTO
Faculty of Arts and Science
term test #1 SOLUTIONS
CSC236
Date: Monday February 3, 2020
Duration: 50 minutes
Instructor(s): Colin Morris
Examination Aids: pencils, pens, erasers, drinks, snacks

first and last names:
utorid:
student number:

Please read the following guidelines carefully!

- Please write your name, utorid, and student number on the front of this exam.
- This examination has 3 questions. There are a total of 7 pages, DOUBLE-SIDED.
- Answer questions clearly and completely.
- You will receive 20% of the marks for any question you leave blank or indicate “I cannot answer this question.”

Take a deep breath.
This is your chance to show us
How much you’ve learned.

We WANT to give you the credit
Good luck!
1. [5 marks] (≈ 10 minutes) The table below contains variations on the structure of an inductive proof. Fill in the last column to indicate the set of numbers ⊆ N for which we can conclude the predicate P holds, having proven the given base cases and inductive steps. If you think there are none, use the symbol ∅. The first row has been filled in as an example.

<table>
<thead>
<tr>
<th>Basis</th>
<th>Inductive step</th>
<th>Therefore P(n) holds for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(0)</td>
<td>∀n ∈ N, P(n) =⇒ P(n + 2)</td>
<td>even numbers</td>
</tr>
<tr>
<td>P(236)</td>
<td>∀n ∈ N, P(n) =⇒ P(n + 1)</td>
<td>n ≥ 236</td>
</tr>
<tr>
<td>-</td>
<td>∀n ∈ N, [∀k ∈ N, 0 < k < n =⇒ P(k)] =⇒ P(n)</td>
<td>all n</td>
</tr>
<tr>
<td>-</td>
<td>∀n ∈ N, [∀k ∈ N, k ≤ n =⇒ P(k)] =⇒ P(n + 1)</td>
<td>∅</td>
</tr>
<tr>
<td>P(0) ∧ P(1)</td>
<td>∀n ∈ N, P(n) =⇒ P(2n + 1)</td>
<td>n = 2^k − 1 for k ∈ N</td>
</tr>
<tr>
<td>P(0)</td>
<td>∀n ∈ N, n > 0 ∧ P(n − 1) =⇒ P(n)</td>
<td>all n</td>
</tr>
</tbody>
</table>
this page is left (nearly) blank in case you need the space
2. [9 marks] \(\approx \) 18 minutes
\(F \) is a set of strings representing a limited class of proposition formulas, using only implication, negation and a finite number of variables (or ‘atoms’). In particular, we define \(F \) to be the smallest set of strings such that:

1. \(x, y, \) and \(z \) are elements of \(F \). (We’ll refer to these as ‘atoms’.)
2. If \(f_1, f_2 \in F \) then \((f_1 \Rightarrow f_2) \in F \).
3. If \(f \in F \) then \(\neg f \in F \).

Denote the number of atoms in string \(f \) by \(A(f) \), and the number of parentheses by \(B(f) \). For example, \(f' = \neg((x \Rightarrow y) \Rightarrow \neg x) \) is an example of an element in \(F \) having \(A(f') = 3 \) and \(B(f') = 4 \) (note that we count duplicate atoms).

Use structural induction to prove that \(\forall f \in F, B(f) \geq A(f) - 1 \).

Solution
Define \(P(f) : B(f) \geq A(f) - 1 \).

Basis: Let \(f \in \{x, y, z\} \). Then \(B(f) = 0 \) and \(A(f) = 1 \), so \(B(f) = 0 \geq 1 - 1 = A(f) - 1 \), so \(P(f) \).

Inductive step (rule 2): Let \(f_1, f_2 \in F \) and assume \(P(f_1) \land P(f_2) \). Let \(f \) be the formula \((f_1 \Rightarrow f_2) \). Then by definition, we have

\[
B(f) = 2 + B(f_1) + B(f_2) \quad \text{(1)} \\
A(f) = A(f_1) + A(f_2) \quad \text{(2)}
\]

Applying the I.H. to (1), we get

\[
B(f) \geq 2 + (A(f_1) - 1) + (A(f_2) - 1) \\
= A(f) \quad \# \text{simplifying and substituting (2)} \\
\geq A(f) - 1
\]

Thus \(P(f) \).

Inductive step (rule 3): Let \(f_1 \in F \) and assume \(P(f_1) \). Let \(f \) be the formula \(\neg f_1 \). \(A(f) = A(f_1) \) and \(B(f) = B(f_1) \), so \(P(f) \) follows immediately from our I.H.
this page is left (nearly) blank in case you need the space
3. [9 marks] (≈ 22 minutes) Consider a game played between two players, P1 and P2, with the following rules:

- The game starts with a box containing \(n > 0 \) chopsticks
- Until the game is won, P1 and P2 alternate making moves, with P1 making the first move
- A valid move is to remove either 1, 2, or 3 chopsticks from the box
- The player who causes the box to be empty (by removing the last chopstick(s)) wins

Use complete induction to prove that for all \(n > 0 \), if \(n \) is not a multiple of 4, then if the box starts with \(n \) chopsticks, P1 can win the game no matter what P2 does.

Suggestion: Before starting your proof, it may help to think about a few small values of \(n \). What does P1 need to do to guarantee a win?

Solution Define \(P(n) : (n \text{ mod } 4 \neq 0) \implies \text{starting from a box of } n \text{ chopsticks, P1 can win the game.} \)

I will use complete induction to prove \(\forall n \in \mathbb{N}^+, P(n) \).

Let \(n \in \mathbb{N}^+ \). Assume \(\forall k \in \mathbb{N}, 0 < k < n \implies P(k) \).

Case 1: \(0 < n < 4 \)
Then P1 can immediately win the game by taking all \(n \) chopsticks, so \(P(n) \).

Case 2: \(n \text{ mod } 4 = 0 \)
Then \(P(n) \) is vacuously true.

Case 3: \(n \geq 4 \land n \text{ mod } 4 \neq 0 \)
In this case, I will show that P1 can win if they take \(n \text{ mod } 4 \) chopsticks. This leaves the box with \(4k \) chopsticks when it passes to P2, for some \(k \in \mathbb{N}^+ \). P2 must then remove 1, 2, or 3 chopsticks, leaving \(c \in \{4k-1, 4k-2, 4k-3\} \) chopsticks when the box returns to P1.

Note that the following facts are true of all possible values of \(c \):

- \(0 < c < n \), meaning that \(P(c) \) holds by our I.H.
- \(c \text{ mod } 4 \neq 0 \)

Therefore, by \(P(c) \), P1 can win the game from this point, so \(P(n) \) holds.

\(P(n) \) holds in all cases. \(\blacksquare \)
this page is left (nearly) blank in case you need the space