
CSC236 winter 2020, week 8: Proving termination
Recommended supplementary reading: Chapter 2 Vassos course notes

Colin Morris
colin@cs.toronto.edu

http://www.cs.toronto.edu/~colin/236/W20/

March 2, 2020

http://www.cs.toronto.edu/~colin/236/W20/


Proving termination

1 def imax(A):

2 """Pre: A is non -empty and contains comparable items.

3 Post: return the maximum element in A

4 """

5 curr = A[0]

6 i = 1

7 while i < len(A):

8 if A[i] > curr:

9 curr = A[i]

10 i += 1

11 return curr

Eventually i must reach len(A)...



A corollary of principle of well-ordering

All decreasing sequences of natural numbers are finite.



Spot the decreasing sequence

1 def imax(A):

2 """Pre: A is non -empty and contains comparable items.

3 Post: return the maximum element in A

4 """

5 curr = A[0]

6 i = 1

7 while i < len(A):

8 if A[i] > curr:

9 curr = A[i]

10 i += 1

11 return curr



Another corollary of PWO

Any increasing sequence of natural numbers with an upper bound is finite.



Recipe: proving termination

Define some quantity mj associated with each iteration j of the loop.

I will be defined in terms of one or more variables that change inside the loop

I e.g. mj = len(A)− ij

Show that

I Every mj ∈ N
I the sequence 〈m0,m1,m2, . . .〉 is decreasing.



Example: A2Q3 appendix

1 def R(A):

2 B = []

3 i = 0

4 while i < len(A):

5 a = A[i]

6 b = A[(i+1) % len(A)]

7 if a == b:

8 B.append(a)

9 i += 1

10 return B

Lemma (R termination)

R terminates on any A ∈ N∗

Proof.
Let mj = len(A)− ij be a quantity associated with each loop iteration j . By Lemma
1.3 (a), mj ∈ N. By line 9, mj+1 = mj − 1. Thus m0,m1,m2, . . . is a decreasing
sequence of natural numbers, and therefore finite. Therefore, R terminates.



merge

1 def merge(A, B):

2 """ Pre: A and B are sorted lists of numbers.

3 Post: return a sorted permutation of A+B

4 """

5 i = j = 0

6 C = []

7 while i < len(A) and j < len(B):

8 if A[i] <= B[j]:

9 C.append(A[i])

10 i += 1

11 else:

12 C.append(B[j])

13 j += 1

14 return C + A[i:] + B[j:]



bitcount (week 7 tutorial exercise)

1 def bitcount(n):

2 """ Pre: n is a positive int.

3 Post: return the number of digits in the binary representation of n

4 """

5 i = 1

6 while n > 1:

7 n = n//2

8 i += 1

9 return i



Tricky example

1 def mystery(n):

2 """ Pre: n is a positive int

3 """

4 i = 0

5 while n > 1:

6 if n % 10 == 0:

7 n = n // 10

8 else:

9 n += 1

10 i += 1

11 return i

See Piazza for 
full write-up


