
CSC236 winter 2020, week 5: The Master Theorem
Recommended supplementary reading: David Liu 236 course notes pp 27-41, Ch. 5

“Algorithm Design” by Kleinberg & Tardos, Ch. 3 Vassos course notes

Colin Morris
colin@cs.toronto.edu

http://www.cs.toronto.edu/~colin/236/W20/

February 5, 2020

https://www.cs.toronto.edu/~david/courses/csc236_w14/resources/notes.pdf
http://www.cs.toronto.edu/~colin/236/W20/

Recap: unwinding

T (n) =

{
2 if n = 1

2n + 2T (n/2) if n > 1

Convention used in slides:

I label nodes with number of
non-recursive steps

I label levels with problem size and total
steps

Also note:

I height 6= num ‘levels’

I Usually good to draw the final (leaf)
level, especially if seeking an exact
closed form

From last week: closest pair
T (n) = aT (n

b
) + f (n). What are a, b, and f (n)?

1 def closest_distance(A):

2 if len(A) == 2:

3 return abs(A[0] - A[1])

4 mid = len(A)//2

5 L = A[:mid]

6 R = A[mid:]

7 # Find the closest distance between pairs that straddle L and R

8 closest_LR = infinity

9 for l in L:

10 for r in R:

11 closest_LR = min(closest_LR , abs(l-r))

12 # Closest pair is either within L, within R, or between L and R

13 return min(closest_LR , closest_distance(L), closest_distance(R))

Closed form when cost per recursive call is quadratic?
T (n) = 2T (n/2) + f (n), where f (n) ∈ Θ(n2)

Closed form when cost per recursive call is quadratic?

T (n) =

{
1 if n = 1

n2 + 2T (n/2) if n > 1

Useful geometric series to recognize
Powers of 2 come up a lot in computer science!

n∑
i=0

2i = 1 + 2 + 4 + . . . + 2n = 2n+1 − 1

(Number of nodes in a binary tree of height n)

n∑
i=0

2−i = 1 +
1

2
+

1

4
+ . . . +

1

2n
= 2− 1

2n

But you don’t need to memorize these. For tests, we’ll either provide you with the
formula, or allow you to leave these as un-reduced Σ sums.

Finding the maximum by divide-and-conquer
T (n) = aT (n

b
) + f (n). What are a, b, and f (n)?

1 def maximum(A):

2 if len(A) == 1:

3 return A[0]

4 mid = len(A) // 2

5 L_max = maximum(A[:mid])

6 R_max = maximum(A[mid:])

7 if L_max > R_max:

8 return L_max

9 else:

10 return R_max

(Brainteaser: can you prove that any algorithm solving this problem must be in O(n)?)

Asymptotic runtime of maximum?
T (n) = 2T (n/2) + f (n), where f (n) ∈ Θ(1)

Bifurcate? No, trifurcate!
T (n) = aT (n

b
) + f (n). What are a, b, and f (n)?

1 def max_tri(A):

2 if len(A) == 1:

3 return A[0]

4 m1 = len(A) // 3

5 m2 = (2* len(A)) // 3

6 L_max = max_tri(A[:m11])

7 Centre_max = max_tri(A[m_1:m_2])

8 R_max = max_tri(A[m_2:])

9 if L_max > Centre_max and L_max > R_max:

10 return L_max

11 elif Centre_max > R_max:

12 return Centre_max

13 else:

14 return R_max

Asymptotic runtime of max tri?
T (n) = 3T (n/3) + f (n), where f (n) ∈ Θ(1)

Placeholder (comments)

What if a > b?
i.e. number of recursive calls is greater than shrinkage factor. Overlapping subproblems?

T (n) = 4T (
n

2
) + n

Placeholder (comments)

The Master Theorem
Now that we’re thoroughly tired of unwinding...

A handy-dandy recipe for finding the asymptotic complexity of divide-and-conquer
algorithms. Given T (n) of the form

T (n) = aT (
n

b
) + f (n)

The Master Theorem says that, if f ∈ Θ(nd), then

T (n) ∈

Θ(nd) if a < bd

Θ(nd logb n) if a = bd

Θ(nlogb a) if a > bd

Looking back

Algo a b f (n) ∈ Θ(nd) bd T (n) ∈ Θ()

mergesort 2 2 n1 n log n

closest distance 2 2 n2

binsearch 1 2 1 = n0

maximum 2 2 1 = n0

max tri 3 3 1 = n0

(anon) 4 2 n1

T (n) = aT (
n

b
) + Θ(nd)

Master Theorem
==========⇒ T (n) ∈

Θ(nd) if a < bd

Θ(nd logb n) if a = bd

Θ(nlogb a) if a > bd

Placeholder (comments)When filling in the table on the previous slide, we observed the following pattern:
- When a > b^d, the work done at the root (i.e. the initial call) dominates the big-Theta,
 because the total steps at lower levels in the tree decreases exponentially
- When a < b^d, we have the opposite situation. The total big-Theta runtime is dominated
 by the final leaf layer. The cost at the root is very small, but it increases exponentially.
- When a = b^d, the work done at each level of the tree is exactly the same. So the
 big-Theta runtime is equal to the work done per level (which is n^d) multiplied by the
 number of levels (which is about log_b(n)).

a (the number of recursive calls) tells us the rate at which the number of nodes increases
from layer to layer. b^d tells us the rate at which the work done per node shrinks as we
go from layer to layer. When these are in balance, the amount of work done per level is
static. Otherwise, it either grows or decreases exponentially.

Looking back even further

T (n) = aT (
n

b
) + Θ(nd)

Master Theorem
==========⇒ T (n) ∈

Θ(nd) if a < bd

Θ(nd logb n) if a = bd

Θ(nlogb a) if a > bd

What about fact, which had recurrence

T (n) = 1 + T (n − 1)

Or subset sum?

T (n) = 1 + 2T (n − 1)

Master Theorem can’t replace unwinding for all recurrences. (It also doesn’t give an
exact closed form.)

Appendix: Slices and step counting

What is the cost of running the following code?

1 # Sublist with the left half of A

2 L = A[:len(A)//2]

Reality of Python’s implementation = Ω(n)
In this course, we’ll count it as Θ(1). Justification:

I We can generally rewrite our algorithms to avoid slicing by passing additional
arguments, representing start and end indices into the original list (see next slide)

I We could also imagine our algorithms are taking numpy arrays instead of lists

I We don’t want to tie ourselves to the implementation details of any particular
language.

Except where we explicitly state otherwise, we will treat all built-in functions and
operators as constant time.

Appendix: maximum without slices

Original

1 def maximum(A):

2 if len(A) == 1:

3 return A[0]

4 mid = len(A) // 2

5 L_max = maximum(A[:mid])

6 R_max = maximum(A[mid:])

7 if L_max > R_max:

8 return L_max

9 else:

10 return R_max

Transformed

1 def maximum(A, start , end):

2 if end - start == 1:

3 return A[start]

4 mid = (start + end) // 2

5 L_max = maximum(A, start , mid)

6 R_max = maximum(A, mid , end)

7 if L_max > R_max:

8 return L_max

9 else:

10 return R_max

Placeholder (comments)
Exercise: Use the Master Theorem to devise a recurrence T(n) having big-Theta complexity...

Placeholder (comments)
Exercise: What are the possible big-Theta complexities of a divide-and-conquer recurrence
where f(n) is constant? i.e. T(n) of the form
 T(n) = aT(n/b) + 1

Placeholder (comments)

We didn't get to this exercise or the next one. Feel free to try them on your own if you'd
like to get some extra practice with the Master Theorem.

Placeholder (comments)

Placeholder (comments)

