[L}Jllr\/\ DOEJ\JGC*WQ &mmo‘(cjjoms:}

CSC236 winter 2020, week 5: The Master Theorem

Recommended supplementary reading: David Liu 236 course notes pp 27-41, Ch. 5
“Algorithm Design” by Kleinberg & Tardos, Ch. 3 Vassos course notes

Colin Morris
colin@cs.toronto.edu
http://www.cs.toronto.edu/~colin/236/W20/

February 5, 2020


https://www.cs.toronto.edu/~david/courses/csc236_w14/resources/notes.pdf
http://www.cs.toronto.edu/~colin/236/W20/

Recap: unwinding TleD= Onlegn SN

B %5 |fn:1 4 [?e(
T =\ 20 27(nf2) ifn>1 M

. L apul 2
Convention used in slides: ;‘//y

(N XN
> label nodes with number of -
non-recursive steps -
> label /evels with problem size and total 2
steps -
Also note: o4

> height 7 num ‘levels’

» Usually good to draw the final (leaf)

level, especially if seeking an exact”/n o~
’ * S - S
closed form @ &) @ ~

My cAistornce Scom, MOSF “f@ (Gﬂp TL"\> z 2t D Qn oo h,‘)‘(i)



From last week: closest pair
T(n)=aT(%)+ f(n). What are a, b, and f(n)?

def closest_distance(A):
if len(A) == 2:
return abs(A[0] - A[1]1)
mid = len(A)//2
L = A[:mid]
R = Almid:]

closest_LR = infinity
for 1 in L:
for r in R:
closest_LR = min(closest_LR, abs(l-r))
# Closest pair is either within L, within R,
return min(closest_LR, closest_distance (L),

© 0w N O s W N =

=
w N R O

# Find the closest distance between pairs that straddle L and R

or between L and R
closest_distance (R))

Geo beo StDeB(n?)



Closed form when cost per recursive call is quadratic?

T(n) = 2T(n/2) + £(n), where £(n) € O(r?) Sed=n/g 4 ("
W Totl stepc
‘\——-
N
~?
N - -
/Q\ /LL ) h} ~
R 2.
r\/LF -
Pl N o /Lb
le S‘\eps 1‘0‘};”
hi/g



Closed form when cost per recursive call is quadratic?

() 1 ifn=1
n)—=
n?+2T(n/2) ifn>1 n |copes

. N BNANEIRES
Tw\>:n¢+0/1+n/wfm N 0

\2Q ~

S )

1=0

-

\oy ~

(&L

1=

af:j;?y#\L ) :K;é%hgstmth

Sk



Useful geometric series to recognize p
\

Powers of 2 come up a lot in computer science!

n

22":1+2+4+...+2":2"+1—1
i=0

(Number of nodes in a binary tree of height n) m
‘ 1 1 1 1 o
=144+ =2 —
s TaTat T 2

But you don't need to memorize these. For tests, we'll either provide you with the
formula, or allow you to leave these as un-reduced ¥ sums.



Finding the maximum by divide-and-conquer L) ¢ @( 1)

T(n) = aT(ﬁ) + f(n). What are a, b, and f(n)?

O 2 L=2 $ie) = |

if L_max > R_max:
return L_max
else:
return R_max

1 |def maximum(A):

2 if len(A) ==

3 return A[O]

4 mid = len(A) // 2

5 L_max = maximum(A[:mid])
6 R_max = maximum (A[mid:])
7

8

9

-
o

(Brainteaser: can you prove that any algorithm solving this problem must be in O(n)?)



Asymptotic runtime of maximum?

T(n) =2T(n/2) + f(n), where f(n) € ©(1)

T()= |+ 2TCR)

|+ 2 () QT(“/LJ\
00~ 2 (1 +3mnis))

I+ 2+ 4 4(2?0\/@)

\ «

—
—

—

= \ 1Rt

:\"2_.‘#

At

~

™

0T ()




Bifurcate? No, trifurcate!
T(n)=aT(%)+ f(n). What are a, b, and f(n)?

C\ = E% (3 ::\f \§[°;> = ]

def max_tri(A): —
if len(A) == 1:
return A[O]
mli = len(A) // 3
m2 = (2xlen(A)) // 3
L_max = max_tri(A[:m11])
Centre_max = max_tri(A[m_1:m_2])
R_max = max_tri(A[m_2:])
if L_max > Centre_max and L_max > R_max:
return L_max
elif Centre_max > R_max:
return Centre_max
else:
return R_max

© 0 N O O B~ W N =

N <
A W N = O




Asymptotic runtime of max tri? Tl =

T(n) =3T(n/3)+ f(n), where f(n) € ©(1)
:\Jr\PJ‘l' Le 5©’t\| sters oF /QV?‘/
) -~ - -

N e
1% - 2° V)=V ey 94,
o [:\Pe(‘x\lo\%or\ O ot sl;oﬁej
oo
R ~
=", DD OO 2

2
= @Gul) /72

Mg



[r 3T < s

) ¥ 3>T(3>:) + elp
=13




What if a > b?
i.e. number of recursive calls is greater than shrinkage factor. Overlapping subproblems?

P:Hcm‘, Jor ;(\(%j Sine

\L(“)\ﬁ S0 n)g‘:,4T( )+ n
Y\ R
q/\A)’}O“D L oF
N L{"x % - @\.ﬁ -T*\j ,@\E( (S k-r\
(J\ v
©/eh « D
6« Do e
D= é(.‘. K% - %ﬁ
T A\e 0y

Pin OO0 DD






The Master Theorem

Now that we're thoroughly tired of unwinding...

A handy-dandy recipe for finding the asymptotic complexity of divide-and-conquer

algorithms. Given T(n) of the form 0. ¢ \N‘t
n
= — 1
T(n) aT(b)+f(n) { e I[\) R %(}
The Master Theorem says that, if f € @(nd), then Az C )R
O(n9) if a < b9

T(n) € ¢ ©(n?log, n) if a= b9
O(n'oss ) if a > b9



Looking back

Algo f(n) € ©(n?) | b | T(n) € ©()
mergesort nt 2 nlogn
( closest_distance n? Ly (‘)q'
| binsearch 1=n Vol ( o N = 104 N\
( maximum 1=n° R og,* _ o~
8D max_tri 1=n° \ n“’ P n
(anon) n* 2 ﬂ)og”\‘) =N
O(n9) if a < b?

T(n) = aT(3) + ©(n’) LEELDEER, 7(n) € $ ©(nlog, n) if a = b7

o(noes?)  ifa> be



When filling in the table on the previous slide, we observed the following pattern:

- When a > b*d, the work done at the root (i.e. the initial call) dominates the big-Theta,
because the total steps at lower levels in the tree decreases exponentially

- When a < b*d, we have the opposite situation. The total big-Theta runtime is dominated
by the final leaf layer. The cost at the root is very small, but it increases exponentially.

- When a = b*d, the work done at each level of the tree is exactly the same. So the
big-Theta runtime is equal to the work done per level (which is n*d) multiplied by the
number of levels (which is about log_b(n)).

a (the number of recursive calls) tells us the rate at which the number of nodes increases
from layer to layer. bAd tells us the rate at which the work done per node shrinks as we
go from layer to layer. When these are in balance, the amount of work done per level is
static. Otherwise, it either grows or decreases exponentially.



Looking back even further

O(n9) if a < b?

. n d\ Master Theorem d . d
T(n) = aT(E) +0(n?) =—————== T(n) €S O(n%log,n) ifa=b

O(n'°es ) if a > b9

What about fact, which had recurrence

T(n)=1+T(n—-1)

Or subset_sum?

T(n)=1+4+2T(n-1)

Master Theorem can't replace unwinding for all recurrences. (It also doesn't give an
exact closed form.)



Appendix: Slices and step counting [Read oy if youre cof\ousl

What is the cost of running the following code?

1 # Sublist with the left half of A
2 L = A[:1len(A)//2]

Reality of Python's implementation = Q(n)
In this course, we'll count it as ©(1). Justification:
» We can generally rewrite our algorithms to avoid slicing by passing additional
arguments, representing start and end indices into the original list (see next slide)
» We could also imagine our algorithms are taking numpy arrays instead of lists
» We don't want to tie ourselves to the implementation details of any particular
language.

Except where we explicitly state otherwise, we will treat all built-in functions and
operators as constant time.



© 0 N O U~ W N

=
o

Appendix: maximum without slices

Original

Transformed

def maximum(A):
if len(A) == 1:
return A[O]
mid = len(A) // 2
L_max = maximum(A[:mid])
R_max = maximum (A[mid:])
if L_max > R_max:
return L_max
else:
return R_max

© 0 N O U A W N R

=
o

def maximum(A, start, end):
if end - start == 1:
return A[start]
mid = (start + end) // 2
L_max = maximum(A, start, mid)
R_max = maximum (A, mid, end)
if L_max > R_max:
return L_max
else:
return R_max




Exercise: Use the Master Theorem to devise a recurrence T(n) having big-Theta complexity.
M e & lod.n o
fc ) ((\ %5 B G =53 Q((\J p,@(nm>

b = 5 O{:Q
TO=DTT(O0) )+ 0T TS



Exercise: What are the possible big-Theta complexities of a divide-and-conquer recurrence
where f(n) is constant? i.e. T(n) of the form
T(n) =aT(n/b) + 1

of c\z\Jf?(v\)e @(\03%{\3 = @(\OS) "\J‘@aaézn>

G5\

(e @( V\Q%‘O o
O () Sor ey “celV

N\j § G = ’):\ S( e MY be QIKM
YD e O ) T Vol ik nead fogia =0



1. Consider the following sketch of a divide-and-conquer algorithm r(s) for reversing a string:

(a) s is a string.

(b) If len(s) < 2, return s

(c) Else, partition s into three roughly equal parts: prefix sy, suffix s3, and mid-section s,, and return
7(s3) + r(s2) + 7(s1).

(d) You may assume that the time complexity of string concatenation of s3 + s, + s; is proportional
to len(ss) + len(s,) + len(sy)

Use the Master Theorem to find the asymptotic time complexity of function 7 in terms of len(s). Be

sure to show all the components of your analysis, including the values of a,b, and d. How does this
compare to the complexity of simply copying the string elements in reverse order, using a loop?

We didn't get to this exercise or the next one. Feel free to try them on your own if you'd
like to get some extra practice with the Master Theorem.



2. Describe a ternary version of MergeSort where the list segment to be sorted is divided into three
(roughly) equal sub-lists, rather than two. Use the Master Theorem to find the asymptotic time
complexity of your ternary MergeSort in terms of the length of the list segment being sorted, and
compare /contrast it with the version we analyzed in class. Be sure to show all the components of your
analysis, including the values of a,b, and d.






