
CSC236 winter 2020, week 5: The Master Theorem
Recommended supplementary reading: David Liu 236 course notes pp 27-41, Ch. 5

“Algorithm Design” by Kleinberg & Tardos, Ch. 3 Vassos course notes

Colin Morris
colin@cs.toronto.edu

http://www.cs.toronto.edu/~colin/236/W20/

February 5, 2020

https://www.cs.toronto.edu/~david/courses/csc236_w14/resources/notes.pdf
http://www.cs.toronto.edu/~colin/236/W20/

Recap: unwinding

T (n) =

{
2 if n = 1

2n + 2T (n/2) if n > 1

Convention used in slides:

I label nodes with number of
non-recursive steps

I label levels with problem size and total
steps

Also note:

I height 6= num ‘levels’

I Usually good to draw the final (leaf)
level, especially if seeking an exact
closed form

From last week: closest pair
T (n) = aT (n

b
) + f (n). What are a, b, and f (n)?

1 def closest_distance(A):

2 if len(A) == 2:

3 return abs(A[0] - A[1])

4 mid = len(A)//2

5 L = A[:mid]

6 R = A[mid:]

7 # Find the closest distance between pairs that straddle L and R

8 closest_LR = infinity

9 for l in L:

10 for r in R:

11 closest_LR = min(closest_LR , abs(l-r))

12 # Closest pair is either within L, within R, or between L and R

13 return min(closest_LR , closest_distance(L), closest_distance(R))

Closed form when cost per recursive call is quadratic?

T (n) =

{
1 if n = 1

n2 + 2T (n/2) if n > 1

Useful geometric series to recognize
Powers of 2 come up a lot in computer science!

n∑
i=0

2i = 1 + 2 + 4 + . . . + 2n = 2n+1 − 1

(Number of nodes in a binary tree of height n)

n∑
i=0

2−i = 1 +
1

2
+

1

4
+ . . . +

1

2n
= 2− 1

2n

But you don’t need to memorize these. For tests, we’ll either provide you with the
formula, or allow you to leave these as un-reduced Σ sums.

Finding the maximum by divide-and-conquer
T (n) = aT (n

b
) + f (n). What are a, b, and f (n)?

1 def maximum(A):

2 if len(A) == 1:

3 return A[0]

4 mid = len(A) // 2

5 L_max = maximum(A[:mid])

6 R_max = maximum(A[mid:])

7 if L_max > R_max:

8 return L_max

9 else:

10 return R_max

(Brainteaser: can you prove that any algorithm solving this problem must be in O(n)?)

Asymptotic runtime of maximum?
T (n) = 2T (n/2) + f (n), where f (n) ∈ Θ(1)

Bifurcate? No, trifurcate!
T (n) = aT (n

b
) + f (n). What are a, b, and f (n)?

1 def max_tri(A):

2 if len(A) == 1:

3 return A[0]

4 m1 = len(A) // 3

5 m2 = (2* len(A)) // 3

6 L_max = max_tri(A[:m11])

7 Centre_max = max_tri(A[m_1:m_2])

8 R_max = max_tri(A[m_2:])

9 if L_max > Centre_max and L_max > R_max:

10 return L_max

11 elif Centre_max > R_max:

12 return Centre_max

13 else:

14 return R_max

Asymptotic runtime of max tri?
T (n) = 3T (n/3) + f (n), where f (n) ∈ Θ(1)

What if a > b?
i.e. number of recursive calls is greater than shrinkage factor. Overlapping subproblems?

T (n) = 4T (
n

2
) + n

The Master Theorem
Now that we’re thoroughly tired of unwinding...

A handy-dandy recipe for finding the asymptotic complexity of divide-and-conquer
algorithms. Given T (n) of the form

T (n) = aT (
n

b
) + f (n)

The Master Theorem says that, if f ∈ Θ(nd), then

T (n) ∈


Θ(nd) if a < bd

Θ(nd logb n) if a = bd

Θ(nlogb a) if a > bd

Looking back

Algo a b f (n) ∈ Θ(nd) bd T (n) ∈ Θ()

mergesort 2 2 n1 n log n

closest distance 2 2 n2

binsearch 1 2 1 = n0

maximum 2 2 1 = n0

max tri 3 3 1 = n0

(anon) 4 2 n1

T (n) = aT (
n

b
) + Θ(nd)

Master Theorem
==========⇒ T (n) ∈


Θ(nd) if a < bd

Θ(nd logb n) if a = bd

Θ(nlogb a) if a > bd

Looking back even further

T (n) = aT (
n

b
) + Θ(nd)

Master Theorem
==========⇒ T (n) ∈


Θ(nd) if a < bd

Θ(nd logb n) if a = bd

Θ(nlogb a) if a > bd

What about fact, which had recurrence

T (n) = 1 + T (n − 1)

Or subset sum?

T (n) = 1 + 2T (n − 1)

Master Theorem can’t replace unwinding for all recurrences. (It also doesn’t give an
exact closed form.)

Appendix: Slices and step counting

What is the cost of running the following code?

1 # Sublist with the left half of A

2 L = A[:len(A)//2]

Reality of Python’s implementation = Ω(n)
In this course, we’ll count it as Θ(1). Justification:

I We can generally rewrite our algorithms to avoid slicing by passing additional
arguments, representing start and end indices into the original list (see next slide)

I We could also imagine our algorithms are taking numpy arrays instead of lists

I We don’t want to tie ourselves to the implementation details of any particular
language.

Except where we explicitly state otherwise, we will treat all built-in functions and
operators as constant time.

Appendix: maximum without slices

Original

1 def maximum(A):

2 if len(A) == 1:

3 return A[0]

4 mid = len(A) // 2

5 L_max = maximum(A[:mid])

6 R_max = maximum(A[mid:])

7 if L_max > R_max:

8 return L_max

9 else:

10 return R_max

Transformed

1 def maximum(A, start , end):

2 if end - start == 1:

3 return A[start]

4 mid = (start + end) // 2

5 L_max = maximum(A, start , mid)

6 R_max = maximum(A, mid , end)

7 if L_max > R_max:

8 return L_max

9 else:

10 return R_max

	The Master Theorem
	Appendix

