CSC236 winter 2020, week 4: Runtime of recursive algorithms

Recommended supplementary reading: David Liu 236 course notes pp 27-41, Ch. 5
“Algorithm Design” by Kleinberg & Tardos, Ch. 3 Vassos course notes

Colin Morris
colin@cs.toronto.edu
http://www.cs.toronto.edu/~colin/236/W20/

January 27, 2020
Outline

Induction roundup

Runtime analysis of recursive algorithms

Divide-and-conquer algorithms
 Example: merge sort
 Divide-and-conquer definitions
 Experimenting with different runtime characteristics

The Master Theorem

Appendix
Cardinal sins of induction
You will always lose marks for these

1. ‘Overwriting’ your predicate’s argument. e.g. $P(n) : \forall n \in \mathbb{N}, 2^n \geq n$
 Should be $P(n) : 2^n \geq n$
 If you really want to be explicit about the domain of your predicate, these are also acceptable (but not necessary):
 - $P(n) : 2^n \geq n, n \in \mathbb{N}$
 - For $n \in \mathbb{N}$, define $P(n) : 2^n \geq n$
 - Define a predicate of the natural numbers $P(n) : 2^n \geq n, n \in \mathbb{N}$

2. Referring to a predicate without defining it.

3. Omitting the induction hypothesis.
Venial sins of induction

You *might* be able to get away with these, but try to avoid them.

1. Writing something like \(P(0) = 2^0 \geq 0 \)
 - TypeError: Incompatible types ‘bool’ and ‘int’
 - Instead “\(2^0 \geq 0, \text{thus } P(0) \)"

2. Using variables without introducing them. e.g. starting I.S. with “Assume \(P(n) \)"
 - NameError: name ‘n’ is not defined
 - Instead “Let \(n \in \mathbb{N} \) and assume \(P(n) \)”, or “Assume \(P(n) \) for arbitrary \(n \)”, etc.
 - Especially important if you need to put restrictions on \(n \) to make I.S. work. e.g. “Let \(n \in \mathbb{N}, n \geq 20 \)"

3. Unnecessary base cases. *Usually* one is enough.
 - You’ll never lose marks for this, but you will lose time!
 - If you need more than 1 base case, it should become apparent as you’re writing your I.S.

4. Implicitly using I.H.
 - If you’re using the I.H. to rewrite an expression, say so
 - In complete induction, if you invoke, say, \(P(n - 3) \), justify why you’re able to do so.

 How do you know \(n - 3 \) falls under the range of the I.H.?
Parting induction tips

- Not sure where to start? Looking at some small examples may help.
 - And, if applicable, scribbling some diagrams

- You can get most of the marks for having the right *structure*, even if you can’t figure out the “trick” to complete the induction step.

- For complete induction, focus on **understanding** the induction hypothesis, rather than memorizing a formula
 - Remember, there are lots of acceptable ways to write the I.H.
 - In general, we’re not picky about notation, as long as your reasoning is clearly expressed

\[
\phi(n):
\begin{align*}
\text{Base: } & \phi(0) \\
\text{Let } & n \in \mathbb{N} \\
\text{Assume } & \phi(n) \\
\text{Thus } & \phi(n+1)
\end{align*}
\]
Runtime analysis of recursive algorithms
What is the runtime of \texttt{fact} on input \(n \)?

\begin{verbatim}
def fact(n):
 """Return n!
 """
 if n == 0:
 return 1
 return n * fact(n-1)
\end{verbatim}

\[
T(n) = \begin{cases}
1 & n = 0 \\
1 + T(n-1) & n > 0
\end{cases}
\]

\[
T(1000) = O(n) \\
O(1)
\]
Closed form for $T(n)$?

Motivation: suppose we want to know $T(1000)$...

$$T(n) = 1 + T(n-1)$$

$$= 1 + (1 + T(n-2))$$

$$= 1 + (1 + (1 + T(n-3)))$$

$$= [\text{intuition happens}]$$

$$= 1 + 1 + 1 + \ldots + 1 + \ldots + T(n-n)$$

$$= \underbrace{n + 1}_{n}$$

$$T(n) = n + 1$$
What is the runtime of subset_sum?

For more information see Wikipedia’s article on the subset sum problem.

```python
def subset_sum(A, target):
    """Return True iff there is a subset of items in A, a list of integers, which adds up to the given target sum."
    """
    if len(A) == 0:
        return target == 0
    return subset_sum(A[1:], target) or subset_sum(A[1:], target - A[0])
```

$$T(n) = \begin{cases}
1, & n = 0 \\
1 + 2T(n-1), & n > 0
\end{cases}$$

(guess: $\Theta(2^n)$)
Closed form for runtime of subset_sum?

Use the technique of repeated substitution (AKA “unwinding”)...

\[T(n) = 1 + 2T(n-1) \]

\[= 1 + 2(1 + 2T(n-2)) \]

\[= 1 + 2(1 + 2(1 + 2T(n-3))) \]

\[= 1 + 2 + 4 + 8 + \cdots + 2^{n-1} T(n-n) \]

\[= 1 + 2 + 4 + 8 + \cdots + 2^{n-1} T(n-n) \]

\[T(n) = 2^{n+1} - 1 \]

\[T(n) = \begin{cases}
1 & , n = 0 \\
1 + 2T(n-1) & , n > 0
\end{cases} \]

height\(=n+1\)

number of nodes, \(=\) sum of value of nodes

\[= 2^{n+1} - 1 \]
Proving our closed form is correct

\(P(n) : T(n) = 2^{n+1} - 1 \)

Basis, \(n = 0 \)

\[T(0) = 1 = 2^0 - 1, \text{ so } P(0) \]

Induction: Let \(n \in \mathbb{N} \), assume \(P(n) \)

\[T(n+1) = 1 + 2T(n) \]

\[= 1 + 2(2^{n+1} - 1) \]

\[= 1 + 2^{n+2} - 2 \]

\[= 2^{n+2} - 1 \]

\# \(n+1 > 0 \)

thus \(P(n+1) \)
def mergesort(A):
 if len(A) <= 1:
 return A
 m = len(A) // 2
 L1 = mergesort(A[:m])
 L2 = mergesort(A[m:])
 return merge(L1, L2)

def merge(A, B):
 i = j = 0
 C = []
 while i < len(A) and j < len(B):
 if A[i] <= B[j]:
 C.append(A[i])
 i += 1
 else:
 C.append(B[j])
 j += 1
 return C + A[i:] + B[j:]
Finding a closed form for $T(n)$

Via unwinding

$$T(n) = \begin{cases} 1 & n \leq 1 \\ T(n/2) + T(n/2) + n & n > 1 \end{cases}$$

```
gross...
```
An officially sanctioned *deus ex machina*

For proofs in this course, you may assume that inputs are always “nice” sizes when analysing the runtime of recursive algorithms that partition their inputs, such as mergesort.

In this case, you may assume n is always such that

$$\lceil \frac{n}{2} \rceil = \lfloor \frac{n}{2} \rfloor = \frac{n}{2}$$

If you’re skeptical, you may wish to look at chapter 3 of the course notes, which proves a closed form for mergesort without this hand-waving. The proof is *long*, but not difficult to understand.
Trying again

Find a closed form for $T(n)$ via unwinding, assuming n is a power of 2

$$T(n) = \begin{cases} 1, & n \leq 1 \\ 2 \cdot T(n/2) + n, & n > 1 \end{cases}$$

The height is $\log n + 1$.

At each level, we do n steps.

$$T(n) = n(\log n + 1) = n\log n + n$$

NB: Test closed form on a small value of n to check for off-by-one errors.
Trying again

Prove

Find a closed form for \(T(n) \) via unwinding, assuming \(n \) is a power of 2

\[P(n) : (n \text{ is a power of } 2) \implies T(n) = n \log n + n \]

Let \(n \in \mathbb{N} \), assume \(P(k) \) holds for all \(k < n \)

Case 1: \(n \) is a power of 2, \(n > 1 \)

\[T(n) = 2T(\frac{n}{2}) + n \quad \# \quad n > 1 \]

\[= 2 \left(\frac{n}{2} \cdot \log \left(\frac{n}{2} \right) + \frac{n}{2} \right) + n \quad \# \quad P(\frac{n}{2}) \text{ by IH} \]

\[= \left[\log n + n \right] \quad \text{so} \quad P(n) \]

Case 2: \(n = 1 \)

by def \(T(1) = 1 = 1 \log 1 + 1 \), so \(P(n) \)

Case 3: \(n \) not a power of 2, \(P(n) \) is vacuously true
Trying again

Find a closed form for $T(n)$ via unwinding, assuming n is a power of 2.

Proof Sketch: $T(n) \in \Theta(n \log n)$ for all n (not ignoring floor and ceiling).

1. Prove for 2^k
2. Prove $T(n)$ is non-decreasing
3. Trickery
 (To show that behaviour in between powers of 2 “doesn’t matter” in terms of big-Oh.)
Divide-and-conquer

Mergesort is an example of the general class of divide and conquer algorithms. These algorithms break their input into equally sized subproblems, solve them recursively, then combine the results. Their runtime can be written as:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

Where

- \(a \) is the number of recursive calls
- \(b \) is the ‘shrinkage factor’ of the subproblems
- \(f(n) \) is the cost of the non-recursive part (splitting and recombining)

Mergesort values:

- \(a = 2 \)
- \(b = 2 \)
- \(f(n) = \Omega \)

Bin search:

- \(a = 1 \)
- \(b = 2 \)
- \(f(n) = 1 \)
Divide-and-conquer

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

We’ve seen \(a = b = 2 \) and \(f(n) \in \Theta(n) \implies T(n) \in \Theta(n \log n) \)

What happens when we change some of these parameters?
A silly algorithm

\[T(n) = aT\left(\frac{n}{b}\right) + f(n). \]

What are \(a\), \(b\), and \(f(n)\)?

```
def closest_distance(A):
    if len(A) == 2:
        return abs(A[0] - A[1])
    mid = len(A) // 2
    L = A[:mid]
    R = A[mid:]
    # Find the closest distance between pairs that straddle L and R
    closest_LR = infinity
    for l in L:
        for r in R:
            closest_LR = min(closest_LR, abs(l - r))
    # Closest pair is either within L, within R, or between L and R
    return min(closest_LR, closest_distance(L), closest_distance(R))
```

\[a = 2 \quad b = 2 \quad f(n) = \frac{n^2}{4} \]
Closed form when cost per recursive call is quadratic?

\[T(n) = 2T(n/2) + f(n), \text{ where } f(n) \in \Theta(n^2) \]

Size of problem

\[n \]

Total steps

\[f(n) = \frac{n^2}{4} \approx n^2 \]

\[n \]

\[\frac{n^2}{4} \times 2 = \frac{n^2}{2} \]

\[\frac{n^2}{4} \]

\[\frac{n^2}{16} \]

\[\frac{n^2}{16} \]

\[\frac{n^2}{16} \]

\[\frac{n^2}{16} \]

\[T(n) = (2 - \frac{1}{2^2})n^2 \]

\[T(n) \approx 2n^2 \]

Oops, This should have been \(2 \log n \)