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Principle of well-ordering
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Every non-empty subset of N has a smallest element.
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Surprisingly, turns out to be equivalent to principle of mathematical induction /
complete induction. (Theorem 1.1 in Vassos course notes)



Every n > 1 has a prime factorization

For sake of contradiction, assume this is false. i.e.

S={neN|n>1Anis not the product of primes}
is non-empty. By PWO, S has a smallest element, call it j.
AN

beceovse S ﬂoo\’er\(‘;‘f\lu < oN

/ o<y, 68 < /
J= Gax b ’ =53

b<(5 56\5



] ] ) Looks very Similes Jo oVl (omglete
Every n > 1 has a prime factorization E_
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For sake of contradiction, assume this is false. i.e.

S={neN|n>1Anis not the product of primes}

is non-empty. By PWO, S has a smallest element, call it j.

Case 1: j is prime. Contradiction!

Case 2: j is composite. Let a,b € Nsuchthat j=axbAl<a<jAl<b<j(by
definition of composite).

a,b ¢S, since j was chosen to be the smallest element. So a and b each have a prime
factorization. We can concatenate them to form a prime factorization of j.
Contradiction!

In each case, we derived a contradiction, so our premise is false. S must be empty.

Vn € N —{0,1}, n has a prime factorization.



Round-robin tournament cycles

Round-robin tournament = every player faces every other player once.

Consider “cycles” of matchups such as... Naoter o complele speci€iedion
» Naomi beats Kim N K of this graph wevld have
» Kim beats Monica codges bun Ve and
» Monica beats Serena STk, 60 tHhe diredtion of
» Serena beats Naomi Hhese edges i irrelevsd
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Claim: Any round-robin tournament having at least one cycle has a 3-cycle.
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Proof: if a RR tournament has a cycle, it has a 3-cycle
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Recursively defined sets

Sets defined in terms of one or more ‘simple’ examples, plus rules for generating
elements from other elements.

Example:
> A single node is a complete binary tree

» If t; and t» are complete binary trees, then a new node joined to t; and t» as its
children form a complete binary tree

We can use structural induction to prove properties of such sets.



Structural induction proof outline

For some recursively defined set S...
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2. Basis: verify P(x) for ‘basic’ element(s) x € S

3. Inductive step: show that each rule that generates other elements of S preserves
P-ness. i.e. for each rule...

1. Define predicate with domain S

3.1 Choose arbitrary elements of S

3.2 Assume predicate holds for those elements

3.3 Use assumption to show that P(z) holds, where z is an element generated from our
previously chosen elements.
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Prove: all c%plet\e binary trees have an odd number of nodes

1. Predicate

() ke N, Medslt) = 2k |



Prove: all complete binary trees have an odd number of nodes
2. Basis
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Prove: all complete binary trees have an odd number of nodes
3. Inductive step M se¥ O\Q CON\P\Q_VG Li~ ‘&\\e‘es
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Compare with simple induction
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Define N as the smallest! set such that:
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"Why is this necessary?



Strings with matching parentheses
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Define B as the smallest set such that...
l.eeB # where ¢ denotes the empty string v
2. If be B, then (b) € B

3. If by, by € B, then byb, € B # closed under concatenation
Examples of elements?
e
( ) (¢ ))

(N0



A Clalm about B S \'5 a PVC'(;}Y O'g 5“ ;-?- 9 S"}(‘?ow‘a' 2, S.ﬁ

S=sg'=

Define...

tr
> L(s) = # of occurrences of (ins - coust (')

» R(s) = # of occurrences of ) in's

Claim: Vs € B, if s’ is a prefix of s, then L(s") > R(s'). IO ()
S&\\lr‘% b has 3 wrefixes:
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Prove: prefixes of strings of balanced parens are left-heavy
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Prove: prefixes of strings of balanced parens are left-heavy

Inductive step [par‘* 1]
Let < ¢ B, cssome PCS
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Inductive step L%@(‘ Comncdendion rJle
Lek 5,5 ¢ B, assume P3) A P(s)) ——em

Prove: prefixes of strings of baIancedfarens are left-heavy

Let 5= 55, |
Let 5 be on cobitrery pretix oF S |
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